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1. Introduction

This paper is concerned with the local convergence analysis of the sequential
quadratic programming (SQP) method for the following class of semilinear op-
timal control problems:

Minimize f(y, u) :=

∫

Ω

φ(ξ, y(ξ), u(ξ)) dξ (P)

subject to u ∈ L∞(Ω) and the elliptic state equation

Ay + d(ξ, y) = u in Ω,

y = 0 on ∂Ω,
(1.1)
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as well as pointwise constraints

u > 0 in Ω,

ε u+ y > yc in Ω.
(1.2)

Here and throughout, ξ denotes points in the bounded domain Ω ⊂ R
N , N ∈

{2, 3}, which is convex or has a C1,1 boundary ∂Ω. In (1.1), A is an elliptic
operator in H1

0 (Ω) specified below, and ε is a positive number. The bound yc

is a function in L∞(Ω).
Problems with mixed control-state constraints are important as Lavrientiev-

type regularizations of pointwise state-constrained problems (Meyer, Prüfert
and Tröltzsch, 2007; Meyer, Rösch and Tröltzsch, 2005; Meyer and Tröltzsch,
2006), but they are also interesting in their own right. Note that in addition
to the mixed control-state constraint, a pure control constraint is present on
the same domain. Since problem (P) is nonconvex, different local minima may
occur.

SQP methods have proven to be fast solution methods for nonlinear pro-
gramming problems. A large body of literature exists concerning the analysis of
these methods for finite-dimensional problems. For a convergence analysis in a
general Banach space setting with equality and inequality constraints, we refer
to Alt (1990, 1994).

The main contribution of this paper is the proof of local quadratic conver-
gence of the SQP method, applied to (P). To our knowledge, such convergence
results in the context of PDE-constrained optimization are so far only avail-
able for purely control-constrained problems (Alt, Sontag and Tröltzsch, 1996;
Heinkenschloss, 1998; Heinkenschloss and Tröltzsch, 1998; Tröltzsch, 1994, 1999;
Tröltzsch and Volkwein, 2001). In the context of ordinary differential equa-
tions, the SQP method has been analyzed for instance in Alt and Malanowski
(1993), Malanowski (1996, 2004), even in the presence of mixed control-state
constraints and pure state constraints. Following Alt (1990, 1994), we exploit
the equivalence between the SQP and the Lagrange-Newton methods, i.e., New-
ton’s method, applied to a generalized (set-valued) equation representing nec-
essary conditions of optimality. We concentrate on specific issues arising due
to the semilinear state equation, e.g., the careful choice of suitable function
spaces. An important step is the verification of the so-called strong regularity
of the generalized equation, which is made difficult by the simultaneous pres-
ence of pure control and mixed control-state constraints (1.2). The key idea was
recently developed in Alt et al. (2010), using concepts from Malanowski (2001).

We remark that strong regularity is known to be closely related to second-
order sufficient conditions (SSC). For problems with pure control constraints,
SSC are well understood and they are close to the necessary ones when so-
called strongly active subsets are used, see, e.g., Tröltzsch (1999), Tröltzsch
and Volkwein (2001), Tröltzsch and Wachsmuth (2006). However, the situa-
tion is more difficult for problems with mixed control-state constraints (Griesse
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and Wachsmuth, 2009; Rösch and Tröltzsch, 2003, 2006b) or even pure state
constraints. In order to avoid a more technical discussion, we presently em-
ploy relatively strong SSC. We comment on the possibility of weakening these
conditions in Section 8.

The material in this paper is organized as follows. In Section 2, we state
our main assumptions and recall some properties concerning the state equation.
Necessary and sufficient optimality conditions for problem (P) are stated in
Section 3, and their reformulation as a generalized equation is given in Section 4.
Section 5 addresses the equivalence of the SQP and Lagrange-Newton methods.
Section 6 is devoted to the proof of strong regularity of the generalized equation.
Finally, Section 7 completes the convergence analysis of the SQP method. A
number of auxiliary results have been collected in the Appendix.

We denote by Lp(Ω) and Hm(Ω) the usual Lebesgue and Sobolev spaces
(Adams, 1975), and (·, ·) is the scalar product in L2(Ω) or [L2(Ω)]N , respectively.
H1

0 (Ω) is the subspace of H1(Ω) with zero boundary traces, and H−1(Ω) is its
dual. The continuous embedding of a normed space X into a normed space Y is
denoted by X →֒ Y . Throughout, we denote by BX

r (x) the open ball of radius
r around x, in the topology of X . In particular, we write B∞

r (x) for the open
ball with respect to the L∞(Ω) norm. Throughout, c, c1 etc. denote generic
positive constants, whose value may change from instance to instance.

2. Assumptions and properties of the state equation

The following assumptions, (A1)–(A4), are taken to hold throughout the paper.

Assumptions

(A1) Let Ω be a bounded domain in R
N , N ∈ {2, 3} which is convex or has C1,1

boundary ∂Ω. The bound yc is in L∞(Ω), and ε > 0.

(A2) The operator A : H1
0 (Ω) → H−1(Ω) is defined as Ay(v) = a[y, v], where

a[y, v] = 〈∇v,A0∇y〉H1

0
(Ω),H−1(Ω) + (c y, v).

A0 is an N ×N matrix with Lipschitz continuous entries on Ω such that
ρ⊤A0(ξ) ρ > m0 |ρ|2 holds with some m0 > 0 for all ρ ∈ R

N and almost
all ξ ∈ Ω. Moreover, c ∈ L∞(Ω) holds. The bilinear form a[·, ·] is not
necessarily symmetric, but it is assumed to be continuous and coercive,
i.e.,

a[y, v] 6 c ‖y‖H1(Ω) ‖v‖H1(Ω)

a[y, y] > c ‖y‖2
H1(Ω)

for all y, v ∈ H1
0 (Ω), with some positive constants c and c. A simple

example is a[y, v] = (∇y,∇v), corresponding to A = −∆.
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(A3) d(ξ, y) belongs to the C2-class of functions with respect to y for almost all
ξ ∈ Ω. Moreover, dyy is assumed be a locally bounded and locally Lipschitz
continuous function with respect to y, i.e., the following conditions hold
true: there exists K > 0 such that

|d(ξ, 0)| + |dy(ξ, 0)| + |dyy(ξ, 0)| 6 Kd,

and for any M > 0, there exists Ld(M) > 0 such that

|dyy(ξ, y1) − dyy(ξ, y2)| 6 Ld(M) |y1 − y2| a.e. in Ω

for all y1, y2 ∈ R satisfying |y1|, |y2| 6 M .

Additionally, dy(ξ, y) > 0 a.e. in Ω, for all y ∈ R.

(A4) The function φ = φ(ξ, y, u) is measurable with respect to ξ ∈ Ω for each
y and u, and of class C2 with respect to y and u for almost all ξ ∈ Ω.
Moreover, the second derivatives are assumed to be locally bounded and
locally Lipschitz continuous functions, i.e., the following conditions hold:
there exist Ky,Ku,Kyu > 0 such that

|φ(ξ, 0, 0)| + |φy(ξ, 0, 0)| + |φyy(ξ, 0, 0)| 6 Ky, |φyu(ξ, 0, 0)| 6 Kyu,

|φ(ξ, 0, 0)| + |φu(ξ, 0, 0)| + |φuu(ξ, 0, 0)| 6 Ku.

Moreover, for any M > 0, there exists Lφ(M) > 0 such that

|φyy(ξ, y1, u1) − φyy(ξ, y2, u2)| 6 Lφ(M)
(

|y1 − y2| + |u1 − u2|
)

,

|φyu(ξ, y1, u1) − φyu(ξ, y2, u2)| 6 Lφ(M)
(

|y1 − y2| + |u1 − u2|
)

,

|φuy(ξ, y1, u1) − φuy(ξ, y2, u2)| 6 Lφ(M)
(

|y1 − y2| + |u1 − u2|
)

,

|φuu(ξ, y1, u1) − φuu(ξ, y2, u2)| 6 Lφ(M)
(

|y1 − y2| + |u1 − u2|
)

for all yi, ui ∈ R satisfying |yi|, |ui| 6 M , i = 1, 2.

In addition, φuu(ξ, y, u) > m > 0 a.e. in Ω, for all (y, u) ∈ R
2.

In the sequel, we will simply write d(y) instead of d(ξ, y), etc. As a conse-
quence of (A3)–(A4), the Nemyckii operators d(·) and φ(·) are twice continuously
Fréchet differentiable with respect to the L∞(Ω) norms, and their derivatives
are locally Lipschitz continuous, see Lemma A.1.

The necessity of using L∞(Ω) norms for general nonlinearities d and φ mo-
tivates our choice

Y := H2(Ω) ∩H1
0 (Ω)

as a state space, since Y →֒ L∞(Ω).

Remark 2.1 In case Ω has only a Lipschitz boundary, our results remain true
when Y is replaced by H1

0 (Ω) ∩ L∞(Ω).
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Recall that a function y ∈ H1
0 (Ω) ∩ L∞(Ω) is called a weak solution of

(1.1) with u ∈ L2(Ω) if a[y, v] + (d(y), v) = (u, v) holds for all v ∈ H1
0 (Ω).

Lemma 2.1 Under assumptions (A1)–(A3) and for any given u ∈ L2(Ω), the
semilinear equation (1.1) possesses a unique weak solution y ∈ Y . It satisfies
the a priori estimate

‖y‖H1(Ω) + ‖y‖L∞(Ω) 6 CΩ

(

‖u‖L2(Ω) + 1
)

with a constant CΩ independent of u.

Proof. The existence and uniqueness of a weak solution y ∈ H1
0 (Ω) ∩ L∞(Ω) is

a standard result, Tröltzsch (2005, Theorem 4.8). It satisfies

‖y‖H1(Ω) + ‖y‖L∞(Ω) 6 CΩ (‖u‖L2(Ω) + 1) =: M

with some constant CΩ independent of u. Lemma A.1 (see the Appendix A)
implies that d(y) ∈ L∞(Ω). Using the embedding L∞(Ω) →֒ L2(Ω), we conclude
that the difference u − d(y) belongs to L2(Ω). Owing to assumption (A1),
y ∈ H2(Ω), see for instance Grisvard (1985, Theorem 2.2.2.3).

We will frequently also need the corresponding result for the linearized equa-
tion

Ay + dy(y) y = u in Ω,

y = 0 on ∂Ω.
(2.1)

Lemma 2.2 Under assumptions (A1)–(A3) and given y ∈ L∞(Ω), the linearized
PDE (2.1) possesses a unique weak solution y ∈ Y for any given u ∈ L2(Ω). It
satisfies the a priori estimate

‖y‖H2(Ω) 6 CΩ(y) ‖u‖L2(Ω)

with a constant CΩ(y) independent of u.

Proof. According to (A3) and Lemma A.1, dy(y) is a nonnegative coefficient
in L∞(Ω). The claim thus follows again from standard arguments, see, e.g.,
Grisvard (1985, Theorem 2.2.2.3).

Example

We briefly comment on the existence of optimal controls for (P) in L∞(Ω),
which we will suppose in the sequel. For the general objective function above,
the existence of an optimal control in L2(Ω) follows from the convexity assump-
tion on φ in (A4), see Tröltzsch (2005, Theorem 4.13). However, our theory
requires u∗ to belong to L∞(Ω). Such a result typically follows from projection
formulas, compare Rösch and Tröltzsch (2007). Projection formulas are derived
from the first-order necessary optimality conditions, which, in turn, rely on the
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differentiability of the reduced objective. For general objective functions, this
differentiability requires growth conditions.

The situation becomes easier for the following class of objective functions:

f(y, u) =

∫

Ω

ψ(ξ, y(ξ)) dξ +
ν

2
‖u‖2

L2(Ω) .

The new function ψ is required to satisfy the same smoothness assumptions
as in (A4). Clearly, φuu ≡ ν > 0 is satisfied. The reduced objective is twice
differentiable w.r.t. L2(Ω). The existence of Lagrange multipliers µ∗

i ∈ L2(Ω)
follows even for u∗ ∈ L2(Ω). Using the projection formula (Griesse, Metla and
Rösch, 2008, proof of Theorem 6.4), one can show that u∗ and the Lagrange
multipliers belong in fact to L∞(Ω). For examples of this type, all assumptions
are satisfied, and only (SSC) and the separation assumption (A6) remain to be
verified.

3. Necessary and sufficient optimality conditions

In this section, we introduce necessary and sufficient optimality conditions for
problem (P). For convenience, we define the Lagrange functional

L : Y × L∞(Ω) × Y × L∞(Ω) × L∞(Ω) → R

as

L(y, u, p, µ1, µ2) = f(y, u) + a[y, p] + (p, d(y) − u) − (µ1, u) − (µ2, ε u+ y − yc).

Here, µi are Lagrange multipliers associated to the inequality constraints, and
p is the adjoint state. The existence of regular Lagrange multipliers µ1, µ2 ∈
L∞(Ω) was shown in Rösch and Tröltzsch (2006a, Theorem 7.3), which implies
the following lemma:

Lemma 3.1 Suppose that (y, u) ∈ Y ×L∞(Ω) is a local optimal solution of (P).
Then there exist regular Lagrange multipliers µ1, µ2 ∈ L∞(Ω) and an adjoint
state p ∈ Y such that the first-oder necessary optimality conditions

Ly(y, u, p, µ1, µ2) = 0, Lu(y, u, p, µ1, µ2) = 0, Lp(y, u, p, µ1, µ2) = 0,

u > 0, µ1 > 0, µ1u = 0,

εu+ y − yc > 0, µ2 > 0, µ2(εu+ y − yc) = 0











(FON)

hold.

Remark 3.1

1. Note that due to the structure of the constraints, an additional regularity
assumption such as the existence of a Slater point is not required.
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2. The Lagrange multipliers and adjoint state associated to a local optimal
solution of (P) need not be unique if the active sets {ξ ∈ Ω : u = 0} and
{ξ ∈ Ω : ε u + y − yc = 0} intersect nontrivially, see Alt et al., 2010,
Remark 2.6. This situation will be excluded by Assumption (A6) below.

Conditions (FON) are also stated in explicit form in (4.1) below. To guaran-
tee that x = (y, u) with associated multipliers λ = (p, µ1, µ2) is a local solution
of (P), we introduce the following second-order sufficient optimality con-
dition (SSC):

There exists a constant α > 0 such that

Lxx(x, λ)(δx, δx) > α ‖δx‖2
[L2(Ω)]2 (3.1)

for all δx = (δy, δu) ∈ Y × L∞(Ω) which satisfy the linearized equation

Aδy + dy(y) δy = δu in Ω,

δy = 0 on ∂Ω.
(3.2)

In (3.1), the Hessian of the Lagrange functional is given by

Lxx(x, λ)(δx, δx) :=

∫

Ω

(

δy

δu

)⊤(

φyy(y, u) + dyy(y) p φyu(y, u)
φuy(y, u) φuu(y, u)

)(

δy

δu

)

dξ.

For convenience, we will use the abbreviation

X := Y × L∞(Ω) = H2(Ω) ∩H1
0 (Ω) × L∞(Ω)

in the sequel.

assumption
(A5) We assume that x∗ = (y∗, u∗) ∈ X , together with associated Lagrange

multipliers λ∗ = (p∗, µ∗
1, µ

∗
2) ∈ Y × [L∞(Ω)]2, satisfies both (FON) and

(SSC).

As mentioned in the introduction, the second-order sufficient conditions can
be weakened by taking into account strongly active subsets. However, this
would make the discussion more technical. Nevertheless, we comment on this
possibility in Section 8.

Definition 3.1
(a) A pair x = (y, u) ∈ X is called an admissible point if it satisfies (1.1)

and (1.2).
(b) A point x̄ ∈ X is called a strict local optimal solution in the sense

of L∞(Ω) if there exists ε′ > 0 such that the inequality f(x̄) < f(x) holds
for all admissible x ∈ X \ {x̄} with ‖x− x̄‖[L∞(Ω)]2 6 ε′.
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Theorem 3.1 Under Assumptions (A1)–(A5), there exists β > 0 and ε′ > 0
such that

f(x) > f(x∗) + β ‖x− x∗‖2
[L2(Ω)]2

holds for all admissible x ∈ X with ‖x− x∗‖[L∞(Ω)]2 6 ε′. In particular, x∗ is

a strict local optimal solution in the sense of L∞(Ω).

Proof. The proof can be done along the lines of Maurer (1981, Theorem 3.5).
It has to observe the two-norm discrepancy principle and uses Lemma A.2.

4. Generalized equation

We recall the necessary optimality conditions (FON) for problem (P), which
read in the explicit form

a[v, p] + (dy(y)p, v) + (φy(y, u), v) − (µ2, v) = 0, ∀v ∈ H1
0 (Ω)

(φu(y, u), v) − (p, v) − (µ1, v) − (εµ2, v) = 0, ∀v ∈ L2(Ω)

a[y, v] + (d(y), v) − (u, v) = 0, ∀v ∈ H1
0 (Ω)

µ1 > 0, u > 0, µ1u = 0

µ2 > 0, ε u+ y − yc > 0, µ2(ε u+ y − yc) = 0

}

a.e. in Ω.



































(4.1)

As mentioned in the introduction, the local convergence analysis of SQP is
based on its interpretation as Newton’s method for a generalized (set-valued)
equation

0 ∈ F (y, u, p, µ1, µ2) +N(y, u, p, µ1, µ2) (4.2)

equivalent to (4.1). We define

K := {µ ∈ L∞(Ω) : µ > 0 a.e. in Ω},

the cone of nonnegative functions in L∞(Ω), and the dual coneN1 : L∞(Ω) −→
P (L∞(Ω)),

N1(µ) :=

{

{z ∈ L∞(Ω) : (z, µ− ν) > 0 ∀ν ∈ K} if µ ∈ K,

∅ if µ 6∈ K.

Here, P (L∞) denotes the power set of L∞(Ω), i.e., the set of all subsets of
L∞(Ω). In (4.2), F contains the single-valued part of (4.1), i.e.,

F (y, u, p, µ1, µ2) =













A⋆p+ dy(y) p+ φy(y, u) − µ2

φu(y, u) − p− µ1 − εµ2

Ay + d(y) − u

u

ε u+ y − yc













.
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Both A and its formal adjoint A⋆ are considered here as operators from Y

to L2(Ω), i.e., Ay = −div (A0∇y) + c y and A⋆p = −div (A⊤
0 ∇p) + c p hold.

Moreover, N is the set-valued function

N(y, u, p, µ1, µ2) =
(

{0}, {0}, {0}, N1(µ1), N1(µ2)
)⊤
.

Note that the generalized equation (4.2) is nonlinear, since it contains the non-
linear functions d, dy, φy and φu.

Remark 4.1 Let

W := Y × L∞(Ω) × Y × L∞(Ω) × L∞(Ω),

Z := L2(Ω) × L∞(Ω) × L2(Ω) × L∞(Ω) × L∞(Ω).

Then F : W −→ Z and N : W −→ P (Z). Owing to Assumptions (A3) and
(A4), F is continuously Fréchet differentiable with respect to the L∞(Ω) norms,
see Lemma A.1.

Lemma 4.1 The first-order necessary conditions (4.1) and the generalized equa-
tion (4.2) are equivalent.

Proof. (4.2) ⇒ (4.1): This is immediate for the first three components. For the
fourth component we have

− u ∈ N1(µ1)

⇒ µ1 ∈ K and (−u, µ1 − ν) > 0 for all ν ∈ K

⇒ µ1(ξ) > 0 and − u(ξ)(µ1(ξ) − ν) > 0 for all ν > 0, a.e. in Ω.

This implies

µ1(ξ) = 0 ⇒ u(ξ) > 0

µ1(ξ) > 0 ⇒ u(ξ) = 0,

which shows the first complementarity system in (4.1). The second follows
analogously.

(4.1) ⇒ (4.2): This is again immediate for the first three components. From
the first complementarity system in (4.1) we infer that

u(ξ) ν > 0 for all ν > 0, a.e. in Ω

⇒ − u(ξ)(µ1(ξ) − ν) > 0 for all ν > 0, a.e. in Ω

⇒ − (u, µ1 − ν) > 0 for all ν ∈ K.

In view of µ1 ∈ K, this implies −u ∈ N1(µ1). Again, −(ε u+ y − yc) ∈ N1(µ2)
follows analogously.



726 R. GRIESSE, N. METLA, A. RÖSCH

5. The SQP method

In this section we briefly recall the SQP (sequential quadratic programming)
method for the solution of problem (P). We also discuss its equivalence with
Newton’s method, applied to the generalized equation (4.2), which is often called
the Lagrange-Newton approach. Throughout the rest of the paper we use the
notation

wk := (xk, λk) = (yk, uk, pk, µk
1 , µ

k
2) ∈ W

to denote an iterate of either method. SQP methods break down the solution of
(P) into a sequence of quadratic programming problems. At any given iterate
wk, one solves

Minimize fx(xk)(x − xk) +
1

2
Lxx(xk, λk)(x − xk, x− xk) (QPk)

subject to x = (y, u) ∈ Y × L∞(Ω), the linear state equation

Ay + d(yk) + dy(yk)(y − yk) = u in Ω,

y = 0 on ∂Ω,
(5.1)

and inequality constraints

u > 0 in Ω,

ε u+ y − yc > 0 in Ω.
(5.2)

The solution (which needs to be shown to exist)

x = (y, u) ∈ Y × L∞(Ω),

together with the adjoint state and Lagrange multipliers

λ = (p, µ1, µ2) ∈ Y × L∞(Ω) × L∞(Ω),

will serve as the next iterate wk+1.

Lemma 5.1 There exists R > 0 such that (QPk) has a unique global solution
x = (y, u) ∈ X, provided that (xk, pk) ∈ B∞

R (x∗, p∗).

Proof. We have to verify that the feasible set

Mk := {x = (y, u) ∈ Y × L2(Ω) satisfying (5.1) and (5.2)}.

is nonempty. This follows from Alt et al. (2010, Lemma 2.3) using δ3 = −d(yk)+
dy(yk) yk, whose proof uses the maximum principle for the differential operator
Ay+dy(yk) y. Lemma A.3 allows to show the uniform convexity of the objective.
The existence of a unique global optimal solution now follows from standard
arguments.
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The solution (y, u) of (QPk) and its Lagrange multipliers (p, µ1, µ2) are
characterized by the first order optimality system (compare Alt et al., 2010,
Lemma 2.5):

a[v, p] + (dy(yk) p, v) + (φy(yk, uk), v) + (φyu(yk, uk)(u − uk), v)

+
(

(φyy(yk, uk) + dyy(yk) pk)(y − yk), v
)

− (µ2, v) = 0, ∀v ∈ H1
0 (Ω)

(φu(yk, uk), v) + (φuu(yk, uk)(u − uk), v)

+(φuy(yk, uk)(y − yk), v) − (p, v) − (µ1, v) − (εµ2, v) = 0, ∀v ∈ L2(Ω)

a[y, v] + (d(yk), v) + (dy(yk)(y − yk), v) − (u, v) = 0, ∀v ∈ H1
0 (Ω)

µ1 > 0, u > 0, µ1u = 0

µ2 > 0, ε u+ y − yc > 0, µ2(ε u+ y − yc) = 0

}

a.e. in Ω.



































































(5.3)

Note that due to the convexity of the cost functional, (5.3) is both necessary
and sufficient for optimality, provided that (xk, pk) ∈ B∞

R (x∗, p∗).

Remark 5.1 The Lagrange multipliers (µ1, µ2) and the adjoint state p in (5.3)
need not be unique, compare Alt et al. (2010, Remark 2.6). Non-uniqueness can
occur only if µ1 and µ2 are simultaneously nonzero on a set of positive measure.

We recall for convenience the generalized equation (4.2),

0 ∈ F (w) +N(w). (5.4)

Given the iterate wk, Newton’s method yields the next iterate wk+1 as the
solution of the linearized generalized equation

0 ∈ F (wk) + F ′(wk)(w − wk) +N(w). (5.5)

Analogously to Lemma 4.1, one can show:

Lemma 5.2 System (5.3) and the linearized generalized equation (5.5) are equiv-
alent.

6. Strong regularity and implicit function theorem

The local convergence analysis of Newton’s method (5.5) for the solution of (5.4)
is based on a perturbation argument using

δ ∈ F (w∗) + F ′(w∗)(w − w∗) +N(w), (6.1)

where w∗ is a solution of (5.4), see for instance Alt (1994). We briefly sketch it
here to make the necessary auxiliary results more apparent. The main ingredient
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in the convergence proof is the strong regularity of (5.4), see Definition 6.1
and Theorem 6.1 below. This property implies that (6.1) has a locally unique
solution w(δ) for small δ, which depends Lipschitz continuously on δ.

The Newton step (5.5) can be equivalently expressed as

δk+1 ∈ F (w∗) + F ′(w∗)(wk+1 − w∗) +N(wk+1) (6.2)

where

δk+1 := F (w∗) − F (wk) + F ′(w∗)(wk+1 − w∗) − F ′(wk)(wk+1 − wk).

Since δk+1 itself depends on the unknown solution wk+1, we employ an implicit
function theorem due to Dontchev (1995, Theorem 2.4) to get existence and
local uniqueness of a solution to the Newton step (6.2) or (5.5), see Theorem 6.2.
Note that in contrast to Lemma 5.1, this approach allows us to conclude local
uniqueness also for the dual variables. A straightforward estimate for δk+1

then implies the quadratic local convergence (Theorem 7.1). Throughout, the
parameter δ belongs to the image space of F , i.e.,

Z := L2(Ω) × L∞(Ω) × L2(Ω) × L∞(Ω) × L∞(Ω),

see Remark 4.1. Note that w∗ is a solution of both (5.4) and (5.5) for wk = w∗.

Definition 6.1 (see Robinson, 1980) The generalized equation (5.4) is called
strongly regular at w∗ if there exist radii r1 > 0, r2 > 0 and a positive
constant Lδ such that for all perturbations δ ∈ BZ

r1
(0), the following hold:

1. the linearized equation (6.1) has in BW
r2

(w∗) a unique solution wδ = w(δ)
2. wδ satisfies the Lipschitz condition

‖wδ − wδ′‖W 6 Lδ ‖δ − δ′‖Z for all δ, δ′ ∈ BZ
r1

(0).

The verification of strong regularity is based on the interpretation of (6.1)
as the optimality system of the following QP problem, which depends on the
perturbation δ:

Minimize fx(x∗)(x− x∗) +
1

2
Lxx(x∗, λ∗)

(

x− x∗, x− x∗
)

(LQP(δ))

−
(

[δ1, δ2], x− x∗
)

subject to x = (y, u) ∈ Y × L∞(Ω), the linear state equation

Ay + d(y∗) + dy(y∗)(y − y∗) = u+ δ3 in Ω,

y = 0 on ∂Ω,
(6.3)

and inequality constraints

u > δ4 in Ω,

ε u+ y − yc > δ5 in Ω.
(6.4)
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As before, it is easy to check that the necessary optimality conditions of
(LQP(δ)) are equivalent to (6.1).

Lemma 6.1 For any δ ∈ Z, problem (LQP(δ)) possesses a unique global so-
lution xδ = (yδ, uδ) ∈ X. If λδ = (pδ, µ1,δ, µ2,δ) ∈ Y × L∞(Ω) × L∞(Ω)
are associated Lagrange multipliers, then (xδ, λδ) satisfies (6.1). On the other
hand, if any (xδ, λδ) ∈ W satisfies (6.1), then xδ is the unique global solution
of (LQP(δ)), and λδ are associated adjoint state and Lagrange multipliers.

Proof. For any given δ ∈ Z, let us denote by Mδ the set of all x = (y, u) ∈
Y × L2(Ω) satisfying (6.3) and (6.4). Then, Mδ is nonempty (as can be shown
along the lines of Alt et al., 2010, Lemma 2.3), convex and closed. Moreover,
(A5) implies that the cost functional fδ(x) of (LQP(δ)) satisfies

fδ(x) >
α

2
‖x‖2

[L2(Ω)]2 + linear terms in x

for all x satisfying (6.3). As in the proof of Lemma 5.1, we conclude that
(LQP(δ)) has a unique solution xδ = (yδ, uδ) ∈ X .

Suppose that λδ = (pδ, µ1,δ, µ2,δ) ∈ Y × L∞(Ω) × L∞(Ω) are associated
Lagrange multipliers, i.e., the necessary optimality conditions of (LQP(δ)) are
satisfied. As argued above, it is easy to check that then (6.1) holds. On the
other hand, suppose that any (xδ, λδ) ∈ W satisfies (6.1), i.e., the necessary
optimality conditions of (LQP(δ)). As fδ is strictly convex, these conditions
are, likewise, sufficient for optimality, and the minimizer xδ is unique.

The proof of Lipschitz stability of solutions for problems of type (LQP(δ))
has recently been achieved in Alt et al. (2010). The main difficulty consisted
in overcoming the non-uniqueness of the associated adjoint state and Lagrange
multipliers. We follow the same technique here.

Definition 6.2 Let σ > 0 be real number. We define two subsets of Ω,

Sσ
1 = {ξ ∈ Ω : 0 6 u∗(ξ) 6 σ}

Sσ
2 = {ξ ∈ Ω : 0 6 εu∗(ξ) + y∗(ξ) − yc(ξ) 6 σ},

called the security sets of level σ for (P).

Assumption
(A6) We require that Sσ

1 ∩ Sσ
2 = ∅ for some fixed σ > 0.

From now on, we suppose (A1)–(A6) to hold. Assumption (A6) implies that
the active sets

A∗

1 = {ξ ∈ Ω : u∗(ξ) = 0}

A∗

2 = {ξ ∈ Ω : ε u∗(ξ) + y∗(ξ) − yc(ξ) = 0}
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are well separated. This, in turn, implies the uniqueness of the Lagrange mul-
tipliers and adjoint state (p∗, µ∗

1, µ
∗
2), see Alt et al. (2010, Lemma 3.1). Due

to a continuity argument, the same conclusions hold for the solution and La-
grange multipliers of (LQP(δ)) for sufficiently small δ, as stated in the following
theorem.

Theorem 6.1 There exist G > 0 and Lδ > 0 such that ‖δ‖Z 6 Gσ implies:
1. The Lagrange multipliers λδ = (pδ, µ1,δ, µ2,δ) for (LQP(δ)) are unique.
2. For any such δ and δ′, the corresponding solutions and Lagrange multipli-

ers of (LQP(δ)) satisfy

‖xδ′ − xδ‖Y ×L∞(Ω) + ‖λδ′ −λδ‖Y ×L∞(Ω)×L∞(Ω) 6 Lδ ‖δ
′− δ‖Z. (6.5)

The technique of proof was introduced in Alt et al. (2010), using ideas of
Malanowski (2001). We only sketch the arguments and refer to the extended
preprint by Griesse, Metla and Rösch (2008, Theorem 6.4) for the complete
proof. One considers an auxiliary problem where the inequality constraints are
restricted to the disjoint security sets. For this problem, the adjoint variables
are unique, and one can show a stability estimate w.r.t. L2. Using a projection
formula (compare Alt et al., 2010, Lemma 2.7), the stability estimate can be
lifted to L∞ for the Lagrange multipliers and the control. Finally, one shows
that the solution and Lagrange multipliers (extended by zero outside the secu-
rity sets) of the auxiliary problem coincides with the solution of (LQP(δ)). A
similar proof for a problem with quadratic objective function can be found in
Griesse and Wachsmuth (2009), Proposition 3.3.

Remark 6.1 Theorem 6.1, together with Lemma 6.1, proves strong regularity
of (5.4) at w∗.

In order to apply the implicit function theorem (Dontchev, 1995, Theo-
rem 2.4), we verify the following Lipschitz property for F :

Lemma 6.2 For any radii r3 > 0, r4 > 0 there exists L > 0 such that for any
η1, η2 ∈ BW

r3
(w∗) and for all w ∈ BW

r4
(w∗) there holds the Lipschitz condition

‖F (η1) + F ′(η1)(w − η1) − F (η2) − F ′(η2)(w − η2)‖Z 6 L ‖η1 − η2‖W . (6.6)

Proof. Let us denote ηi = (yi, ui, pi, µ
i
1, µ

i
2) ∈ BW

r3
(w∗) and w = (y, u, p, µ1, µ2)

∈ BW
r4

(w∗), with r3, r4 > 0 arbitrary. A simple calculation shows that

F (η1) + F ′(η1)(w − η1) − F (η2) − F ′(η2)(w − η2)

= (f1(y1, u1, p1)−f1(y2, u2, p2), f2(y1, u1)−f2(y2, u2), f3(y1)−f3(y2), 0, 0)⊤,

where

f1(yi, ui, pi) = dy(yi) p+ φy(yi, ui) + [φyy(yi, ui) + dyy(yi) pi](y − yi)

+ φyu(yi, ui)(u − ui)

f2(yi, ui) = φu(yi, ui) + φuy(yi, ui)(y − yi) + φuu(yi, ui)(u− ui)

f3(yi) = d(yi) + dy(yi)(y − yi).
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We consider only the Lipschitz condition for f3, the rest follows analogously.
Using the triangle inequality, we obtain

‖f3(y1) − f3(y2)‖L2(Ω) 6 ‖d(y1) − d(y2)‖L2(Ω) + ‖dy(y1)(y2 − y1)‖L2(Ω)

+ ‖(dy(y1) − dy(y2))(y − y2)‖L2(Ω)

6 ‖d(y1) − d(y2)‖L2(Ω) + ‖dy(y1)‖L∞(Ω) ‖y2 − y1‖L2(Ω)

+ ‖dy(y1) − dy(y2)‖L∞(Ω) ‖y − y2‖L2(Ω) .

The properties of d, see Lemma A.1, imply that ‖dy(y1)‖L∞(Ω) is uniformly

bounded for all y1 ∈ B∞
r3

(y∗). Moreover, ‖y − y2‖L2(Ω) 6 ‖y − y∗‖L2(Ω) +

‖y∗ − y2‖L2(Ω) 6 c (r3 + r4) holds. Together with the Lipschitz properties of d
and dy , see again Lemma A.1, we obtain

‖f3(y1) − f3(y2)‖L2(Ω) 6 L ‖y1 − y2‖L∞(Ω)

for some constant L > 0.

Now we apply Dontchev’s implicit function theorem (Dontchev, 1995, The-
orem 2.4 and Remark 2.5). Lemma 6.2 verifies assumption (i) of this theorem,
and the strong regularity (Theorem 6.1 together with Lemma 6.1) corresponds
to assumption (iii). We recall that we use this implicit function theorem to es-
tablish the (locally unique) solvability of the Newton step (5.5) or equivalently
(6.2), in particular with regard to the dual variables. It is not needed to show
the quadratic order of convergence.

Theorem 6.2 There exist radii r5 > 0, r6 > 0 such that for any wk ∈ BW
r5

(w∗),
there exists a solution wk+1 ∈ BW

r6
(w∗) of (5.5), which is unique in this neigh-

borhood.

7. Local convergence analysis of SQP

This section is devoted to the local quadratic convergence analysis of the SQP
method. As was shown in Section 5, the SQP method is equivalent to Newton’s
method (5.5), applied to the generalized equation (5.4). We recall the function
spaces

W := Y × L∞(Ω) × Y × L∞(Ω) × L∞(Ω), Y := H2(Ω) ∩H1
0 (Ω)

Z := L2(Ω) × L∞(Ω) × L2(Ω) × L∞(Ω) × L∞(Ω).

Theorem 7.1 There exists a radius r > 0 and a constant CSQP > 0 such that
for each starting point w0 ∈ BW

r (w∗), every Newton step (5.5) has a unique
solution in BW

r (w∗). The generated sequence satisfies

∥

∥wk+1 − w∗
∥

∥

W
6 CSQP

∥

∥wk − w∗
∥

∥

2

W
.
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Proof. The proof relies on standard arguments, see, e.g., Alt (1994), Dokov
and Dontchev (1998) and it is therefore omitted here. We refer to the preprint
Griesse, Metla and Rösch (2008, Theorem 7.1) for details.

Clearly, Theorem 7.1 implies the local quadratic convergence of the SQP
method. Recall that the iterates wk are defined by means of Theorem 6.2,
as locally unique solutions, Lagrange multipliers and adjoint states of (QPk).
Indeed, we can now prove that wk+1 = (xk+1, λk+1) is globally unique, provided
that wk is already sufficiently close to w∗. For the primal variables xk+1, this
was already shown in Lemma 5.1.

Corollary 7.1 There exists a radius r′ > 0 such that wk ∈ BW
r′ (w∗) implies

that (QPk) has a unique global solution xk+1. The associated Lagrange multi-
pliers and adjoint state λk+1 = (pk+1, µk+1

1 , µk+1
2 ) are also unique. The iterate

wk+1 lies again in BW
r′ (x∗, λ∗).

Proof. We first observe that Theorem 7.1 remains valid (with the same constant
CSQP ) if r is taken to be smaller than chosen in the proof. Here, we set

r′ = min
{

σ,
σ

c∞ + ε
,R, r

}

,

where R and r are the radii from Lemma 5.1 and Theorem 7.1, respectively,
and c∞ is the embedding constant of H2(Ω) →֒ L∞(Ω).

Suppose that wk ∈ BW
r′ (w∗) holds. Then, Lemma 5.1 implies that (QPk)

possesses a globally unique solution xk+1 ∈ Y × L∞(Ω). The corresponding
active sets are defined by

Ak+1
1 := {ξ ∈ Ω : uk+1(ξ) = 0}

Ak+1
2 := {ξ ∈ Ω : ε uk+1(ξ) + yk+1(ξ) − yc(ξ) = 0}.

We show that Ak+1
1 ⊂ Sσ

1 and Ak+1
2 ⊂ Sσ

2 . For almost every ξ ∈ Ak+1
1 , we have

u∗(ξ) = u∗(ξ) − uk+1(ξ) 6
∥

∥u∗ − uk+1
∥

∥

L∞(Ω)
6 r′ 6 σ,

since Theorem 7.1 implies that wk+1 ∈ BW
r′ (w∗) and thus, in particular, uk+1 ∈

B∞

r′ (u∗). By the same argument, for almost every ξ ∈ Ak+1
2 we obtain

y∗(ξ) + ε u∗(ξ) − yc(ξ) = y∗(ξ) + ε u∗(ξ) − yk+1(ξ) − ε uk+1(ξ)

6
∥

∥y∗ − yk+1
∥

∥

L∞(Ω)
+ ε

∥

∥u∗ − uk+1
∥

∥

L∞(Ω)

6 (c∞ + ε) r′ 6 σ.

Owing to Assumption (A6), the active sets Ak+1
1 and Ak+1

2 are disjoint, and
one can show as in Alt et al. (2010, Lemma 3.1) that the Lagrange multipliers
µk+1

1 , µk+1
2 and adjoint state pk+1 are unique.
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8. Remark on second-order sufficient conditions

Finally, we comment on the possibility of weakening of the strong second-order
sufficient conditions (SSC). It is enough to require the coercivity condition
(3.1) on the critical subspace Cτ for some τ > 0, defined by

Cτ =
{

δx = (δy, δu) ∈ Y × L∞(Ω) which satisfy the linearized equation (3.2),

and δu = 0 on Aτ
1 , ε δu+ δy = 0 on Aτ

2

}

,

where

Aτ
1 = {ξ ∈ Ω : µ∗

1(ξ) > τ}, Aτ
2 = {ξ ∈ Ω : µ∗

2(ξ) > τ}

are the strongly active subsets of level τ . It was shown in Meyer and Tröltzsch
(2006) for a quadratic objective that the quadratic growth (Theorem 3.1) con-
tinues to hold for these weaker conditions. The result can be extended for our
more general objective function. A further necessary modification concerns the
proof of strong regularity (Theorem 6.1). This can be done along the lines of
Griesse and Wachsmuth, 2009, Proposition 3.3. The remaining results carry
over without change.

Appendix A. Auxiliary results

In this appendix we collect some auxiliary results. We begin with a standard
result for the Nemyckii operators d(·) and φ(·), whose proof can be found, e.g.,
in Tröltzsch (2005, Lemma 4.10, Satz 4.20). Throughout, we impose Assump-
tions (A1)–(A5).

Lemma A.1 The Nemyckii operator d(·) maps L∞(Ω) into L∞(Ω) and it is
twice continuously differentiable in these spaces. For arbitrary M > 0, the
Lipschitz condition

‖dyy(y1) − dyy(y2)‖L∞(Ω) 6 Ld(M) ‖y1 − y2‖L∞(Ω)

holds for all yi ∈ L∞(Ω) such that ‖yi‖L∞(Ω) 6 M , i = 1, 2. In particular,

‖dyy(y)‖
L∞(Ω) 6 Kd + Ld(M)M

holds for all y ∈ L∞(Ω) such that ‖y‖L∞(Ω) 6 M . The same properties, with

different constants, are valid for dy(·) and d(·). Analogous results hold for
φ and its derivatives up to second-order, for all (y, u) ∈ [L∞(Ω)]2 such that
‖yi‖L∞(Ω) + ‖ui‖L∞(Ω) 6 M .

The remaining results address the coercivity of the second derivative of the
Lagrangian, considered at different linearization points and for perturbed PDEs.
Recall that (x∗, λ∗) ∈ W satisfies the second-order sufficient conditions (SSC)
with coercivity constant α > 0, see (3.1).
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Lemma A.2 There exists ε > 0 and α′ > 0 such that

Lxx(x∗, λ∗)(x− x∗, x− x∗) > α′ ‖x− x∗‖2
[L2(Ω)]2 (8.1)

holds for all x = (y, u) ∈ Y × L∞(Ω) which satisfy the semilinear PDE (1.1)
and ‖x− x∗‖[L∞(Ω)]2 6 ε.

Proof. Let x = (y, u) satisfy (1.1). We define δu = u − u∗ and δx = (δy, δu) ∈
Y × L∞(Ω) by

Aδy + dy(y∗) δy = δu on Ω

with homogeneous Dirichlet boundary conditions. Then the error e := y∗−y−δy
satisfies the linear PDE

Ae+ dy(y∗) e = f on Ω (8.2)

with homogeneous Dirichlet boundary conditions and

f := d(y) − d(y∗) − dy(y∗)(y − y∗).

We estimate

‖f‖L2(Ω) =

∥

∥

∥

∥

∫ 1

0

[

dy(y∗ + s(y − y∗)) − dy(y∗)
]

ds (y − y∗)

∥

∥

∥

∥

L2(Ω)

6 L

∫ 1

0

s ds ‖y − y∗‖L∞(Ω) ‖y − y∗‖L2(Ω)

6
L

2
‖y − y∗‖L∞(Ω)

(

‖δy‖L2(Ω) + ‖e‖L2(Ω)

)

.

In view of Lemma A.1, dy(y∗) ∈ L∞(Ω) holds and it is a standard result that
the unique solution e of (8.2) satisfies an a priori estimate

‖e‖L∞(Ω) 6 c ‖f‖L2(Ω) .

In view of the embedding L∞(Ω) →֒ L2(Ω), we obtain

‖e‖L2(Ω) 6 c′
Lε

2

(

‖δy‖L2(Ω) + ‖e‖L2(Ω)

)

.

For sufficiently small ε > 0, we can absorb the last term in the left hand side
and obtain

‖e‖L2(Ω) 6 c′′(ε) ‖δy‖L2(Ω)

where c′′(ε) ց 0 as ε ց 0. A straightforward application of Maurer and Zowe
(1979, Lemma 5.5) concludes the proof.
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Lemma A.3 There exists R > 0 and α′′ > 0 such that

Lxx(xk, λk)(x, x) > α′′ ‖x‖2
[L2(Ω)]2

holds for all (y, u) ∈ Y × L2(Ω):

Ay + dy(yk) y = u in Ω (8.3)

y = 0 on ∂Ω,

provided that
∥

∥xk − x∗
∥

∥

[L∞(Ω)]2
+

∥

∥pk − p∗
∥

∥

L∞(Ω)
< R.

Proof. Let (y, u) be an arbitrary pair satisfying (8.3) and define ŷ ∈ Y as the
unique solution of

A ŷ + dy(y∗) ŷ = u in Ω

ŷ = 0 on ∂Ω,

for the same control u as above. Then δy := y − ŷ satisfies

Aδy + dy(y∗) δy =
(

dy(y∗) − dy(yk)
)

y in Ω

with homogeneous boundary conditions. A standard a priori estimate and the
triangle inequality yield

‖δy‖L2(Ω) 6
∥

∥dy(y∗) − dy(yk)
∥

∥

L∞(Ω)
‖y‖L2(Ω)

6
∥

∥dy(y∗) − dy(yk)
∥

∥

L∞(Ω)

(

‖ŷ‖L2(Ω) + ‖δy‖L2(Ω)

)

.

Due to the Lipschitz property of dy(·) with respect to L∞(Ω), there exists a
function c(R) tending to 0 as R → 0, such that

∥

∥dy(y∗) − dy(yk)
∥

∥

L∞(Ω)
6 c(R),

provided that
∥

∥yk − y∗
∥

∥

L∞(Ω)
< R. For sufficiently small R, the term ‖δy‖L2(Ω)

can be absorbed in the left hand side, and we obtain

‖δy‖L2(Ω) 6 c′(R) ‖ŷ‖L2(Ω) ,

where c′(R) has the same property as c(R). Again, Maurer and Zowe (1979,
Lemma 5.5) implies that there exists α0 > 0 and R > 0 such that

Lxx(x∗, λ∗)(x, x) > α0 ‖x‖
2
[L2(Ω)]2 ,

provided that
∥

∥yk − y∗
∥

∥

L∞(Ω)
< R.

Note that Lxx depends only on x and the adjoint state p. Owing to its
Lipschitz property, we further conclude that

Lxx(xk, λk)(x, x) = Lxx(x∗, λ∗)(x, x) +
[

Lxx(xk, λk) − Lxx(x∗, λ∗)
]

(x, x)

> α0 ‖x‖
2
[L2(Ω)]2 − L

∥

∥(xk, pk) − (x∗, p∗)
∥

∥

[L∞(Ω)]3
‖x‖2

[L2(Ω)]2

>
(

α0 − LR
)

‖x‖2
[L2(Ω)]2 =: α′′ ‖x‖2

[L2(Ω)]2 ,

given that (xk, pk) ∈ B∞

R (x∗, p∗) and
∥

∥xk − x∗
∥

∥

[L∞(Ω)]2
+

∥

∥pk − p∗
∥

∥

L∞(Ω)
< R.

For sufficiently small R, we obtain α′′ > 0, which completes the proof.
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Rösch,A. and Tröltzsch, F. (2006b) Sufficient second-order optimality con-
ditions for an elliptic optimal control problem with pointwise control-state
constraints. SIAM Journal on Optimization, 17(3), 776–794.
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