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Abstract: Mathematical models for option pricing often result
in partial differential equations originally starting with the Black-
Scholes model. In this context, recent enhancements are models
driven by Levy processes, which lead to a partial differential equa-
tion with an additional integral term. If one solves the problems
mentioned last numerically, this yields large linear systems of equa-
tions with dense matrices. However, by using the special structure
and an iterative solver the problem can be handled efficiently. To
further reduce the computational cost in the calibration phase we
implement a reduced order model, like proper orthogonal decompo-
sition (POD), which proves to be very efficient. In this paper we
use a special multi-level trust region POD algorithm to calibrate the
option pricing model and give numerical results supporting the gain
in efficiency.

Keywords: jump diffusion models, PIDE, proper orthogonal
decomposition, trust region method, TRPOD.

1. Introduction

The pricing of European options is a well-known problem in financial mathe-
matics. The most cited papers in this context were published by Black, Scholes
(1973) and Merton (1973) over 30 years ago. Generally, the pricing is based on
assumptions concerning behavior of the underlying price. In the above men-
tioned papers the authors assume a normally distributed return with constant
volatility. This approach can be improved by models using a local or stochas-
tic volatility or, more recently, including additional jumps driven by compound
Poisson processes, so called jump-diffusion models (see Cont and Tankov, 2004,
or Schoutens, 2003). While the first basic models result in partial differential
equations, the latter, in addition, include an integral term.

In this paper we deal with two issues arising in the numerical aspects of this
modeling approach. First we consider the partial integro-differential equations
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(PIDE) and implement an efficient way of solving them. The second issue is
the use of a reduced order model in the calibration problem, which results in an
optimization problem with PIDE constraints.

During the numerical solution of the PIDE the integral term leads to some
difficulties, since it causes the systems of equations, which result from a space
discretization, to contain dense matrices. In principle, two approaches have
emerged in the numerical solution of these dense systems. Either one uses
a splitting approach, where the dense part is treated explicitly and the rest
implicitly, or one employs a fully implicit scheme where the special structure of
the dense matrix is exploited.

The first approach, the implicit-explicit scheme, has been followed by Cont
and Voltchkova (2003) or Briani, Natalini and Russo (2004) who split the ma-
trix into two parts by treating the dense part resulting from the integral term
explicitly.

For stability purposes it is desirable to work with an implicit scheme instead.
However, the cost of the dense system solves are prohibitive unless one uses the
structure of the dense matrix. In Sachs and Strauss (2008) the case of symmetric
jump size distribution functions was considered, which leads to the dense matrix
being symmetric and Toeplitz. In this case a conjugate gradient algorithm with
special preconditioners resulted in an overall efficiency of O(n logn) for each
time step, which is of similar complexity as in the case without the dense matrix
term, where n denotes the discretization steps in space direction.

In this paper, we consider a general distribution function, which is not nec-
essarily symmetric. For the discretized version, this yields a nonsymmetric
Toeplitz matrix in the system to be solved at each time step, if one uses a fully
implicit scheme like Crank-Nicolson. Also, if one uses the Dupire version of
the problem, the symmetry of the matrix even in case of a symmetric distribu-
tion functions is destroyed. The resulting systems of equations are solved by
an iterative scheme like a preconditioned GMRES algorithm. For the dense,
but Toeplitz, matrix the matrix-vector-multiplication can be implemented effi-
ciently via fast Fourier transformation. Also in this case we obtain an overall
complexity of O(n logn). We present numerical results which confirm this claim
and also compare our approach with an implicit-explicit method.

Other research along the line of fully implicit methods was, for instance,
done by Almendral and Oosterlee (2005) or Ikonen and Toivanen (2006), who
both used a splitting technique to solve the dense linear systems of equations,
or by Matache, von Petersdorff and Schwab (2004), who used a special wavelet
basis for the spatial discretization.

During the calibration process of a PIDE model, many system solves are
required, which could result in a fairly long computing time. Hence, the sec-
ond goal of the paper is the acceleration of the calibration of a jump-diffusion
model. We take here advantage of the multiple solution of similar problems
by building a reduced order model for the PIDE, based on proper orthogonal
decomposition (POD). Since the reduced order model is only a local model
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based on a particular set of parameters, it has to be updated from time to
time. A well-defined algorithm, called TRPOD, was developed by Arian, Fahl
and Sachs (2000) by embedding the reduced model in a trust-region framework.
The well-known quadratic model function of an ordinary trust-region algorithm
is replaced by a non-quadratic function based on the POD model. To further
reduce the computational effort a multi-level strategy is implemented. A hier-
archy of discretization levels is set up and the levels are organized like a nested
iteration in a multi-grid solver.

The paper is organized as follows. Section 2 gives a brief overview of op-
tion pricing models, especially jump-diffusion models, leading to partial integro-
differential equations. The numerical solution of these PIDEs via finite element
discretization in space direction and finite difference discretization in time di-
rection is discussed in Section 3 including numerical results. Section 4 describes
the proper orthogonal decomposition and how this can be used in order to create
a reduced order model. Numerical results of the TRPOD and the multi-level
TRPOD algorithms are presented and discussed in Section 5 followed by some
final conclusions.

2. Option pricing models

First we give a brief overview about option pricing models. For the definition of
an option and the financial background we refer the reader to, e.g. Hull (2006).
The approach of Black, Scholes (1973) and Merton (1973) was to model the
market price of the underlying with a Brownian motion, i.e. the return of the
underlying is normally distributed and therefore the price itself is log-normally
distributed. Upon applying some stochastic arguments the price of a call option
C(t, S), depending on the current time t and the current underlying price S,
is given by the following partial differential equation, known as Black-Scholes
equation

Ct(t, S) + 1
2σ

2S2CSS(t, S) + rSCS(t, S)− rC(t, S) = 0,

(t, S) ∈ (0, T )× (0,∞),

C(0, t) = 0, t ∈ [0, T ],

C(T, S) = max{S −B, 0}, S ∈ (0,∞),

(1)

where T is the maturity, B the strike price of the option, and ST the under-
lying price at maturity. Parameters, which have to be defined, e.g. through a
calibration process, are the volatility σ and the risk-free interest rate r.

Although this model admits a closed-form solution, it contains also some
weaknesses, like the fact that parameters r and σ are constant. It has been ex-
tended to local volatility models with varying parameters r(t, T ) or σ(t, T, S,B),
e.g. Dupire (1994). Another weakness is the fact that the underlying price some-
times makes large jumps, which cannot be modeled with a log-normal distribu-
tion. One approach to solve this problem are Lévy models, where the Brownian
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motion of the Black-Scholes model is replaced by a more general Lévy process.
Here a composite Poisson process is added to the Brownian motion, resulting
in jump-diffusion models (see Cont and Tankov, 2004, or Schoutens, 2003). In
this case the call price is given by the solution of the following parabolic integro-
differential equation (PIDE):

Ct(t, S) + 1
2σ

2(t, S)S2CSS(t, S) + r(t)SCS(t, S)− r(t)C(t, S)

+λ
+∞∫

−∞

(

C(t, Sey)− C(t, S)− S(ey − 1)CS(t, S)
)

f(y)dy = 0,

(t, S) ∈ (0, T )× (0,∞),

C(0, t) = 0, t ∈ [0, T ],

C(T, S) = max{S −B, 0}, S ∈ (0,∞)

(2)

with the additional parameter λ ≥ 0 for the frequency of the jumps and a
density function f(y) for the distribution of the jump sizes.

Example 1 Merton model: f(y) = 1√
2πσM

exp{− (y−µM)2

2σ2

M

} (see Merton, 1976)

Example 2 Kou model: f(y) = p · η1 · e−η1y · 1{y≥0} + (1− p) · η2 · eη2y · 1{y<0}
with η1 > 1 and η2 > 0 (see Kou, 2002)

Note that the solution of the PIDE (2) depends on the strike price B and
the maturity T and has to be solved for each option with different T or B. This
is the case for a calibration problem when σ or f are to be determined from
market prices of options with the same underlying but with various maturities
T and strike prices B. In a least squares formulation, a function evaluation itself
would require a tremendous amount in computing time to solve a whole family
of problems of the type (2).

A similar problem occurs when we consider the extension of the volatility
in the original Black-Scholes equation from a constant to a function, the so-
called local volatility model. Dupire (1994) solved the problem described in
the previous paragraph by formulating a different PDE where T and B occur
as variables and the current time t and stock price S show up in the initial
conditions of the PDE. Therefore, only one PDE has to be solved for a function
evaluation in a least squares formulation.

For the PIDE case, there is a similar variant of Dupire’s equation. Ander-
sen and Andreasen (2000) also include a maturity- and strike price-dependent
volatility in the PIDE. According to this approach and the additional variable
transformation x = ln

(
B
S

)
we obtain the prices also by solving the following

PIDE, where the current time t and the current stock price S appear in the
initial condition (we consider here only t = 0), but the prices can be obtained
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from one solution D(T, x) for all maturities T and strike prices B (through x).

DT (T, x)− 1
2σ

2(T, x)Dxx(T, x) +
(
r(T ) + 1

2σ
2(T, x)− λζ

)
Dx(T, x)

+λ(1 + ζ)D(T, x)− λ
+∞∫

−∞
D(T, x− y)eyf(y)dy = 0,

(T, x) ∈ (0, Tmax)× (−∞,∞),

D(0, x) = max{S0 − S0e
x, 0} =: D0(x), x ∈ (−∞,∞),

(3)

where we use the abbreviation ζ =
∫

IR
eyf(y) dy − 1.

The next section addresses the numerical solution of the PIDE above.

3. Numerical solution of the PIDE

For the numerical solution of (3) we use a finite element approach for the
spatial variable and an implicit finite difference scheme, like Crank-Nicolson,
for the time discretization. Hence, we first restrict the infinite spatial interval
(−∞,+∞) to a finite one [x, x] and introduce boundary conditions

D(x, T ) = S0 − S0e
xe−rT ∀x ≤ x and D(x, T ) = 0 ∀x ≥ x (4)

which can easily be derived by economic considerations. Note that even after
truncation of the real line we need boundary conditions also on (−∞, x] and
[x,+∞), due to the translation in the integral term in the PIDE.

For the spatial discretization we obtain the following variational formulation:
∫ x

x

DT (x, T )Φ(x)dx = −
∫ x

x

1

2
σ2(x, T )Dx(x, T )Φ′(x)dx

−
∫ x

x

(

r(T ) +
1

2
σ2(x, T )− λζ + σ(x, T )σx(x, T )

)

Dx(x, T )Φ(x)dx

−
∫ x

x

λ(1 + ζ)D(x, T )Φ(x)dx + λ

∫ x

x

∫

IR

D(x− y, T )Φ(x)eyf(y)dy dx.

The right-hand side of this equation defines a time-dependent bilinear form
a(T ; v, w) : [0, Tmax]× (H1 ×H1)→ IR. If Db(x, T ) ∈ W ([0, Tmax], H1), where
W ([a, b], V ) := {u : u ∈ L2((a, b), V ), u′ ∈ L2((a, b), V

′} (see Dautray and Lions,
1992), is an arbitrary function that fulfills the boundary conditions, we obtain
the following weak problem formulation

Problem 1 Find D̃ ∈ W ([0, Tmax], H1
0 (x, x) satisfying

〈
D̃T (·, T ), w(·)

〉

L2

+ a
(
T ; D̃(·, T ), w(·)

)
= F

(
T ;w(·)

)
∀ w ∈ H1

0 (x, x)

with initial condition
〈
D̃(·, 0), w(·)

〉

L2

=
〈
D̃0(·), w(·)

〉

L2

∀ w ∈ H1
0 (x, x). Here

F
(
T ;w(·)

)
= −

〈
Db

T (·, T ), w(·)
〉

L2

− a
(
T ;Db(·, T ), w(·)

)
,

D̃0(x) = D0(x)−Db(x, 0).
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The next step is the discretization ofH1
0 (x, x) by an appropriate finite-dimensional

space Hn with orthonormal basis function {Φi}ni=1, e.g. linear splines. Let M
denote the mass matrix Mji = 〈Φi,Φj〉L2

, A(T ) the time-dependent stiffness

matrix Aji(T ) = a(T ; Φi,Φj), F (T )j = F (T ; Φj) and Bj = 〈D̃0,Φj〉L2
. This

leads to the system of ordinary differential equations (ODE)

M · α̇(T ) +A(T ) · α(T ) = F (T ) (5)

with initial condition M · α(0) = B.

Due to the integral term of the bilinear form, the resulting matrix A(T ) is
dense. Hence an implicit method for the ODE leads to systems of equations
with dense matrices.

Sachs and Strauss (2008) did not consider the Dupire version of the PIDE
but the original PIDE, which leads to a slightly different type of the system,
where the stiffness matrix is symmetric and Toeplitz. This allows the use of a
conjugate gradient method with special preconditioners for the solution of the
implicit time step, whereas here this method cannot be used due to the lack of
symmetry.

The splitting approach divides the matrix A(T ) into two parts, AI containing
the terms resulting from the double integral and the rest called ANI(T ). The
entries along the diagonals of AI are constant for equidistant grids and while
the matrix is no longer symmetric it is still Toeplitz. This allows the use of
fast Fourier transformation to efficiently calculate matrix-vector products with
complexity of O(n logn). The remaining part ANI(T ) is non-Toeplitz due to
the space dependent volatility function, but sparse since we use basis function
with local support:

A(T )
︸ ︷︷ ︸

dense matrix

= ANI(T )
︸ ︷︷ ︸

tridiagonal matrix

+ AI
︸︷︷︸

Toeplitz matrix

. (6)

Cont and Voltchkova (2003) or Briani, Natalini and Russo (2004) propose a
splitting technique to solve the system of ODEs. Since a fully explicit scheme
would be restricted by a strong CFL condition, they use for the dense part a
higher order Runge-Kutta method method to avoid too small time steps ∆T
versus ∆x. For example, if m denotes the number of discretization steps in
time direction and the sparse part of the matrix is treated by a Crank-Nicolson
scheme and only the dense integral part explicitly by an Euler method, we obtain

(

M +
∆T

2
ANI(Tk+1)

)

α(Tk+1) = k = 1, . . . ,m

=
(

M − ∆T

2
ANI(Tk)−∆TAI

)

α(Tk) +
∆T

2

(

F (Tk+1) + F (Tk)
)

. (7)

In contrast, a full implicit method to solve the problem by a Crank-Nicolson
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scheme results in
(

M +
∆T

2
A(Tk+1)

)

α(Tk+1) = k = 1, . . . ,m

=
(

M − ∆T

2
A(Tk)

)

α(Tk) +
∆T

2

(

F (Tk+1) + F (Tk)
)

. (8)

The system matrix from the equation above is split as follows and the resulting
flops for the matrix-vector-multiplication are indicated below:

(

M +
∆T

2
A(Tk+1)

)

x = M · x
︸ ︷︷ ︸

O(n)

+
∆T

2

(

ANI(Tk+1) · x
︸ ︷︷ ︸

O(n)

+ AI · x
︸ ︷︷ ︸

O(n log n)

)

.

Although the whole stiffness matrix is dense, the matrix vector product can be
realized with only O(n logn) operations due to the Toeplitz structure of the
dense part.

As an iterative solver we use a preconditioned GMRES algorithm with the
inverse of the tridiagonal matrix ANI(T ) as a preconditioner. In our numerical
tests the GMRES algorithm terminated on the average after three iterations per
time step using an accuracy of 10−8 on the residual.

Table 1 shows some numerical results. We consider the jump-diffusion model
by Merton (see Example 1). We compared the error to the closed-form solution
given by an infinite series. Furthermore, a comparison to the implicit-explicit
splitting technique according to (7) is given. The constants used were x = −6,
x = 6, Tmax = 5y, S0 = 1, r = 3%, σ ≡ 30%, λ = 50%, µJ = 0%, σJ = 50%
and the l∞-error was measured on the interval [B,B] := [0.2, 10].

Table 1. l∞-error between discretized problem and closed-form solution (Merton
model) at different time slices

Discretization Effort l∞-error at time slice

x T time(sec.) multtoepl iter T = 1 T = 3 T = 5

Implicit-explicit scheme

1000 800 1.11 800 — 1.3e-004 2.9e-004 4.0e-004
1000 1600 2.13 1600 — 6.7e-005 1.5e-004 2.0e-004
1000 3200 4.70 3200 — 3.5e-005 7.6e-005 1.0e-004

2000 800 3.20 800 — 1.3e-004 2.9e-004 4.0e-004
2000 1600 7.72 1600 — 6.6e-005 1.5e-004 2.0e-004
2000 3200 13.80 3200 — 3.3e-005 7.3e-005 1.0e-004

Crank-Nicolson scheme

1000 100 1.25 649 349 3.2e-004 5.6e-005 1.7e-005
1000 200 3.95 1204 604 3.6e-005 5.6e-006 7.5e-006
1000 400 7.14 2400 1200 9.4e-006 5.8e-006 7.5e-006

2000 100 3.56 666 366 5.4e-004 2.0e-004 1.2e-004
2000 200 6.42 1208 608 1.5e-004 2.6e-005 7.3e-006
2000 400 12.78 2398 1198 1.5e-005 1.4e-006 1.8e-006

Note that an increase in the time or spatial discretization shows the linear
dependence on the computing time (third column). The implicit-explicit scheme
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Figure 1. x-axis: time required for the solution at different T -discretizations (x-
steps fixed to 2000), y-axes: l∞-error at different time slices for Crank-Nicolson
and implicit-explicit method

needs one matrix-vector-multiplication per time step (fourth column), whereas
the GMRES algorithm in the Crank-Nicolson method requires approximately
six per time step (fourth column).

In order to make the results comparable, the T -discretization of the implicit-
explicit scheme was refined so that the computing times for the implicit-explicit
scheme and for Crank-Nicolson were similar. The last three columns show the
l∞-errors for three different time slices, T = 1y, T = 3y and T = 5y, where Tmax

was also set to 5y. Even for a highly refined time stepping in the implicit-explicit
scheme, the results for the Crank-Nicolson scheme provided higher accuracy.

Fig. 1 is a graphical illustration of this effect. The space discretization is
fixed to 2000 steps. For instance, the asterisk in the first picture, tagged with an
(a), represents the error of the Crank-Nicolson method at time slice T = 1 for a
discretization of 2000 x-steps and 400 T -steps. The solution requires 12.78 sec
(see Table 1), the value on the x-axis, with an the error of 1.5 · 10−5, the value
on the y-axis. Varying the time discretization results in different computing
times and different errors and leads to light dotted curve. The dark dotted
curve in the first picture represents the same for the implicit-explicit scheme.
The point tagged by (b) represents an error of 3.3 · 10−5 at a computing time of
13.80 sec with a discretization of 2000×3200. The three graphs show that if the
discretization is chosen such that both approaches require the same computing
time, then the Crank-Nicolson method usually leads to more accurate results.
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4. Proper orthogonal decomposition

We introduce briefly the proper orthogonal decomposition (POD), a technique
to obtain a problem of much smaller order than the original discretized version.

Let ui, i = 1, . . . , n be elements of a real separable Hilbert spaceH which, for
example, approximate the solution u(ti) of a differential equation at various time
instances ti. Those elements ui are sometimes called "snapshots". The space
spanned by the snapshots has dimension r ≥ 1, i.e. dim(span(u1, . . . , un)) = r.
Proper orthogonal decomposition consists of first finding elements Ψj ∈ H ,
j = 1, . . . , r, that build an orthonormal basis of span(u1, . . . , un) and have
the following additional property: Considering the partial basis Ψ1, . . . ,Ψp for
an arbitrary p ∈ {1, . . . , r}, there are no other orthonormal basis functions
Φ1, . . . ,Φp, which approximate the average element of span(u1, . . . , un) in a
better way. The projection of a v ∈ span(u1, . . . , un) on the space spanned
by arbitrary orthonormal functions {Φj}pj=1 can be computed from its Fourier
expansion:

ṽ =

p
∑

j=1

〈v,Φj〉Φj .

The mathematical definition for the POD basis functions is formulated as fol-
lows:

Definition 1 Given vectors u1, ..., un ∈ H, find orthonormal vectors Ψ1, . . . ,Ψr

∈ span(u1, . . . , un) by solving the minimization problem:

min
Ψ1,...,Ψp

n∑

i=1

γi

∣
∣
∣

∣
∣
∣ui −

p
∑

j=1

〈ui,Ψj〉HΨj

∣
∣
∣

∣
∣
∣

2

H

s.t. 〈Ψk,Ψl〉H = δkl ∀k, l = 1, . . . , p

for all p ∈ {1, . . . , r} with weights γi > 0, i = 1, . . . , n. The first p vectors
ψ1, ..., ψp are called a POD basis of rank p.

We shortly review how to calculate these POD basis functions. For this
purpose we introduce the matrix K ∈ IRn×n with

Kij := γi〈uj, ui〉H ∀ i, j = 1, . . . , n.

Solving the eigenvalue problem

Kvk = λkv
k k = 1, . . . , r

(see Volkwein, 2001) where vk ∈ IRn, the POD basis functions Ψk for a basis of
rank p (≤ r) are given by

Ψk =
1√
λk

n∑

i=1

γiv
k
i ui

where ui, i = 1, . . . , n are the snapshots from above.
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Considering only the first p < r POD basis functions for a representation
of the ui, we have to deal with an approximation, the projection of ui on the
space spanned by {Ψk}pk=1. The error resulting from dropping the information
contained in Ψp+1, . . . ,Ψr is, according to Volkwein (2001), given by:

n∑

i=1

γi

∣
∣
∣

∣
∣
∣ui −

p
∑

j=1

〈ui,Ψj〉HΨj

∣
∣
∣

∣
∣
∣

2

H
=

r∑

k=p+1

λk. (9)

If we apply this technique to our problem, we specify the snapshots as the
approximation to the solution of the problem at fixed time steps t1, . . . , tn, i.e.
D(·, t1), . . . , D(·, tn) by the finite element approach. From POD we obtain some
orthonormal basis functions containing specific information about the solution.
Solving the PIDE problem via a POD approach means that we replace the
finite element basis functions by the POD basis function calculated from a given
solution of the problem. Since we now only need a few functions - numerical
tests show that 10 is already a sufficient quantity - compared to, e.g., 1000
finite element basis functions, the systems of equations that have to be solved
are much smaller. Although the mass matrix is dense for the resulting system,
this does not matter due to the small dimension of the system. The solution of
such a reduced system, based on the POD basis functions, will be denoted by
DPOD in the following section.

5. Calibration results

In this section we show how to use the reduced order model in the calibration
process. Let market prices Dm

i (i = 1, . . . , k) of call options for different maturi-
ties Ti and different strike prices Bi (= S0e

xi) be given. Denote by u the vector
of the calibration parameters, which will be determined later, we can formulate
the calibration problem as a least squares problem

min f(u) :=
k∑

i=1

||D̃(u; Ti, xi)−Dm
i ||2. (10)

One function evaluation requires one solution of the PIDE in Problem 1. Of
course, we cannot totally discard the PIDE for the POD model since the latter is
built on a solution of the PIDE. But in a simplistic approach one would calculate
the solution of the PIDE once, then build a POD model based on this solution
and in the calibration phase only use this POD model. The error between the
POD approximation and the true PIDE solution has been estimated in Sachs
and Schu (2009), extending the results of Kunisch and Volkwein (2001) to the
time dependent case.

Note, however, that the POD model is only a local model which approx-
imates the PIDE solution. Therefore, if we veer away from the starting pa-
rameters during the calibration process, the error estimates that hold true for
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unchanged parameters cannot be applied any longer. This was also confirmed
with numerical results by Sachs and Schu (2007). For this reason Arian, Fahl
and Sachs (2000) proposed a trust region POD algorithm for an optimal flow
control problem in order to adaptively adjust the POD model. The idea here is
to use a POD model function

mPOD
k (s) =

k∑

i=1

||DPOD
k (s; Ti, xi)−Dm

i ||2

instead of the well-known quadratic model function mquad(uk + s) = f(uk) +
∇f(uk)T s+ 1

2s
THks in the trust region framework.

Algorithm 1 (Basic TRPOD Algorithm)
1. Solve the PIDE for the parameter set uk.
2. Derive the corresponding POD basis and the POD control model.
3. Compute an approximate minimizer, sk, of mPOD

k (uk + s), where ||s|| ≤
δk.

4. Solve the PIDE for uk + sk and compute

ρk =
f(uk)− f(uk + sk)

mPOD
k (uk)−mPOD

k (uk + sk)
.

5. Update the trust region radius δk+1.
Keep or drop the new solution uk + sk according to the value of ρk.
k← k + 1. GOTO 2.

Regarding the computational effort, the most expensive part in the algorithm
is the solution of the full PIDE in 4 to get f(uk + sk).

To further reduce computational cost, Kragel (2005) introduced a multi-level
approach. The discretization of the PIDE is not kept fixed, but one can switch
between different discretization levels. Goal is to avoid solutions on the finest
grids. Gratton, Sartenaer and Toint (2006) used a similar approach for the case
of a quadratic model function and via an adaptive control of the discretization
levels they even could state convergence results.

Denoting by hk the level of discretization in step k, a general algorithm for
POD based non-quadratic model functions could be

Algorithm 2 (Multi-level TRPOD Algorithm)
1. Solve the PIDE for the parameter set uk on level hk.
2. Derive the corresponding POD basis and the POD control model.
3. Compute an approximate minimizer, sk, of mPOD

k (uk + s), where ||s|| ≤
δk.

4. Solve the PIDE on level hk for uk + sk and compute

ρk =
f(uk)− f(uk + sk)

mPOD
k (uk)−mPOD

k (uk + sk)
.
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5. Update the trust region radius δk+1.
Keep or drop the new solution uk + sk according to the value of ρk.
Refine, coarse or keep the discretization level hk+1.
k← k + 1. GOTO 2.

We give some numerical results for the calibration of a Lévy model with
normally distributed jump sizes according to Merton (see Example 1). We
aim at calibrating the four parameters σ, λ, µJ and σJ , so that the model call
prices fit to 40 artificially made market prices for calls at different maturities
and strike prices. Note that the stiffness matrix depends on these parameters,
so it has to be recalculated whenever a parameter is changed. This holds true
for a normal finite element solution of the PIDE as well as for the POD solution.

(a) Line search algorithm

(b) TRPOD algorithm (c) Multi-level TRPOD algorithm

Figure 2. Calibration error for the 40 options that are calibrated

In Fig. 2 and Table 2 we compare the two introduced algorithms implemented
in Matlab with the Matlab routine fmincon which is based on a line search
algorithm. For the finite element solution of our PIDE model we choose a
discretization of 2000 space steps and 100 time steps on the finest grid. The
multi-level algorithm also uses coarser grids 500× 50 and 1000× 80. The POD
model only needs 10 POD basis functions, which leads to a linear system of
equations of size 10 × 10 in each time step. Further settings used here are:
x = −4, x = 4, Tmax = 0.5y, S0 = 1, r = 3%, σopt ≡ 30%, λopt = 50%,
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µ
opt
J = 0%, σopt

J = 50%, σstart ≡ 40%, λstart = 70%, µstart
J = 20%, σstart

J =
70%. Both trust-region algorithms used the Matlab function fmincon to solve
the trust-region subproblems. Stopping criterion was a sufficient small function
value. The error results for the 40 different options that are fitted can be found
in Fig. 2 and are comparable to each other.

Table 2. Calibration results of three different algorithms. Comparison of run-
times and evaluations of the PIDE on different discretization levels, respective
evaluations of the POD model

Algorithm Time (sec.) Evaluations

Total FEM POD L2000 L1000 L500 POD

Line search 963 963 — 324 — — —
TRPOD 59 35 24 9 — — 328
Multi-level TRPOD 31 17 14 4 2 2 244

The interesting point here is the total computing time. As we compare the
line search algorithm and the TRPOD we see a time reduction by factor of 16
and for the multi-level algorithm even a reduction factor of 32. The last four
columns of the table show the reason for this improvement. In every algorithm
the total number of function evaluations is in the same order of magnitude
between 252 and 327, but the deciding number are the number of evaluations
on the finest grid L2000, where we have to solve a 100 systems of equations of size
2000 × 2000. Here the TRPOD approach only needs a fraction of the amount
needed by the line search algorithm. And using coarser levels in the multi-level
approach even leads to an additional improvement.

Gradient information was calculated via finite differences, what leads to
a high number of function evaluations in all algorithms. Calibrating models
with time- and space-dependent volatility function σ(x, T ) will require the use
of adjoint equations to provide gradient information, which will be a topic of
future research.

6. Conclusions

We showed an alternative way for solving a general class of PIDEs resulting from
jump-diffusion option pricing models with time- and space-dependent parame-
ters. After space and time discretization, the dense linear systems of equations
were solved by an implicit time stepping scheme using a preconditioned GMRES
algorithm for each time step. Here we made use of the fact that the dense part
of the matrix of the linear system of equations is a Toeplitz matrix and via fast
Fourier transformation the computing costs reduces to O(m · n · logn).

Since the PIDE is of parabolic type, POD is well suited to create a reduced
order model. Through the embedding in a trust-region framework a well-defined
algorithm is constructed leading to a significant speed-up in the calibration
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process. The multi-level approach further reduces the costs by avoiding the
repeated solution of the PIDE on the finest grid.
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