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1. Introduction

For gradient-based shape optimization methods, it is necessary to have an es-
timation of the derivatives of the discrete cost function with respect to control
parameters. When the number of control parameters is large, an adjoint equa-
tion is necessary (see Pironneau, 1984; Jameson, 1994, and Giles, 1997). It
is tempting to use a discretization of the adjoint equation of the continuous
problem; this, however, would not account for the discretization errors of the
numerical schemes (like numerical dissipation for instance). Automatic differen-
tiation produces the exact derivatives of the discrete cost function. Moreover, in
reverse mode, the cost of this evaluation is independent of the number of control
parameters as for a standard adjoint method. But, practical issues remain for
large codes.

In multi-criteria optimization sensitivity analysis it is important to discrim-
inate between Pareto points and this even if a gradient free approach is used.
Indeed, the knowledge of sensitivity permits to qualify various points of a Pareto
front from the point of view of robustness: two points on a Pareto front can be
compared if one considers the sensitivity of the functional with respect to the
independent variables which are not control parameter. The robust optimum is
the one with lowest sensitivity.

Also, sensitivity evaluation is important, because often in simulations infor-
mation on the uncertainties regarding the results is more important than the
results themselves. For instance, it is essential to be able to identify dominant
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independent variables in a system. As these will need more accurate monitoring,
precise measurements should be provided for them.

This paper is devoted to the concept of incomplete sensitivity in shape op-
timization. The aim is to avoid the linearization of the state equation. We will
see that sometimes this needs a reformulation of the initial problem.

2. Shape optimization

For the design of a shape S, consider a general situation with a geometri-
cal design or control variable x fixing S(x), auxiliary geometrical parameters
q(x) (mesh related information), a state variable u(q(x)) solution of some state
equation F (u(q(x))) = 0 and finally a cost function for optimization J(x, q(x),
u(q(x))):

J : x→ q(x) → u(q(x)) → J(x, q(x), u(q(x))). (1)

The derivative of J with respect to x is:

∇xJ = Jx + Jqqx + Juuqqx. (2)

The major part of the computing time of this evaluation is due to uqqx in the
last term. The classical approach is by adjoint variable where the last term
becomes:

Juuqqx =
(

Ju(Fu)
−1

)

Fqqx = vFqqx

where v is solution of vFu = Ju. But, Fqqx = Fx equals zero except along
the shape where it describes the dependency of the boundary conditions on
the shape with respect to shape variations. This remark is central for the
development of low complexity computational strategies for the gradient. In
particular, it means that if the parameterization is chosen such that Fx ∼ 0,
computing the adjoint variable v is useless. For instance, a typical situation with
fluid flows is with zero normal pressure gradient along the shape and admissible
shape variation normal to the shape.

3. A model problem

Let us start with a simple model problem. Consider as cost function J = ǫnuy(ǫ)
and as state equation the following Poisson equation (taking |ǫ| << 1)

−uyy = 1, on ]ǫ, 1[ u(ǫ) = 0, u(1) = 0

which has as solution u(y) = −y2/2 + (ǫ+ 1)y/2 − ǫ/2.
This is a case of a function which has a strong geometrical element and a weak
dependence on the geometry via the state u. The gradient of J with respect to
ǫ is given by

Jǫ(ǫ) = ǫn−1(nuy(ǫ) + ǫuyǫ(ǫ)) =
ǫn−1

2
(−n(ǫ− 1) − ǫ).
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The second term between parenthesis, −ǫ, is the state linearization contribution
which is neglected in incomplete sensitivities. We can see that the sign of the
gradient is always correct and the approximation is better for large n.

4. Hadamard equivalent boundary condition

Above, we mentioned the normal pressure boundary condition. Another im-
portant condition is slip or non penetration condition. The Hadamard slip
boundary condition accounts for the effects of small shape deformations on the
state and is prescribed on the un-deformed shape x1 instead of the slip condition
on the deformed shape x2.

Denote by n1 and n2 the unit normal on the un-deformed and deformed
shapes. On the later the slipping boundary condition reads: u2.n2 = 0 and
on the former, if we suppose that the variations of the geometrical quantities
dominate the physical ones:

u2.n2 ∼ u1.n1 + u1.(n2 − n1) = 0.

This defines an implicit relation for u1.n1, which can be implemented in an
iterative resolution procedure:

up+1
1 .n1 = −up1.(n2 − n1).

In the same way, an equivalent boundary condition can be derived for the tan-
gential component. These relations give satisfactory results when the shape
curvature and the amount of the deformation are not high (see Bardos and
Pironneau, 1994, and Mohammadi and Pironneau, 2001) and indicate how in-
complete sensitivities can be defined neglecting state variations in shape defor-
mation.

Another interesting situation is when one can express the state in the domain
as (denote the shape by ys):

u = w(y − ys)v(w(y − ys)). (3)

Suppose u must satisfy a homogeneous Dirichlet boundary condition on the
shape, then w tends to zero with the distance to the shape y − ys and v is
selected to satisfy the state equations. Now, sensitivity analysis for a functional
such as J = J(ys, u) gives:

∇ys
J = Jys

+ Ju(wvys
+ vwys

).

But, w(0) = 0 and one knows the dependency between w and yw. Therefore,
in cases where the near-wall dependency of the solution with respect to the
distance to the shape is known, the sensitivity with respect to shape variations
normal to the wall can be obtained without linearizing the state equation. Wall
functions for fluids give such typical dependencies.
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5. Incomplete sensitivities

Continuing the analysis above, we have observed that when the shape is regular,
the last term in (2) is small if J is of the form J(x) =

∫

shape
f(x, q(x))g(u). In

other words, it should involve a product of state by geometry quantities. In the
analysis for the injection condition we have f = n and g = u.

A middle path between full linearization of the state equation and incomplete
sensitivity is to use a reduced complexity or reduced order model ũ(x, u) ∼ u(x)
to provide an inexpensive approximation of the missing term in (2):

∇xJ = Jx + Jqqx + Juũx
u

ũ
. (4)

Reduced order models can come, for instance, from a reduction in dimension
of the state equations as in wall functions (see Mohammadi and Pironneau,
1994). They can also be built through learning, assimilation and identification
in parametric or non parametric models (see for example Krige, 1951; Chiles
and Delfiner, 1989; Hoel, 1971; Jeong et al., 2005; Kohonen, 1995; Lindman,
1974; Mandic and Chambers, 2001; Spooner et al., 2002, and Veroy and Patera,
2005) using up-to-date techniques to minimize the curse of dimensionality in
the sampling needed in building these models (see, for example, Smolyak, 1963;
Bungartz and Griebel, 2004; Finkel and Bentley, 1974; Gorban et al., 2007;
Jolliffe, 2002, and Kumano et al., 2006).

6. Level set method

Let us make a link between the two previous points and the level set method
which is an established technique to represent moving interfaces with a tremen-
dous dedicated literature (see Allaire et al., 2001; Peskin, 1998, and Osher and
Sethian, 1998).

A parameterization of a boundary Γ by the level set method is based on the
zero-level curve of a function ψ (say the signed Euclidean distance to Γ):

Γ = {x ∈ Ω : ψ(x) = 0}, ψ(x) = ± inf
y∈Γ

|x− y|

with the convention of a plus sign if x ∈ Ω and minus sign otherwise. Hence

ψ|Γ = 0, ψ|IRd\Ω < 0, ψΩ > 0. (5)

When the boundary moves with velocity V by a pseudo time step δζ, the
shape becomes:

Γ = {x : ψ(ζ + δζ, x+ V δζ) = 0}.

This motion can be described by:

∂ψ

∂ζ
+ V∇ψ = 0.
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In the context of optimization we consider V = ∇ψJ . n where the local normal
to the iso-contours of ψ is defined by n = ∇ψ/|∇ψ| (where ∇ is with respect to
space coordinate). The variation of ψ is then given by

ψζ = −∇ψJ |∇ψ|. (6)

Decomposition (3) is particularly interesting with a level set parameterization:

u = w(ψ)v.

Consider a functional of the form:

J = J(ψ, u(ψ))

with a gradient with respect to ψ given by:

∇ψJ = Jψ + Juuψ

with

uψ = w′v + w(ψ)vψ

as w(ψ = 0) = 0. Incomplete sensitivity uψ = w′v is exact in this case and
can be extended inside the domain if a low order model is known for v. This
gradient is used in (6), but it needs regularity control. On the other hand, the
loss of regularity can be useful in topology optimization (see Garreau et al.,
2001) as it permits for holes to appear. In Mohammadi (2007) examples of this
loss of regularity are shown for constrained shape optimization problems with
level set parameterizations.

6.1. Multi-criteria problems

This is a situation where incomplete sensitivity has an edge over full gradient
calculation. Suppose p functionals ji, i = 1, .., p are involved in a design problem
(as the one presented below):

min
x
j1(u(x)), such that jj(u(x)) = 0, j = 2, .., p.

The low-complexity of incomplete sensitivity permits to avoid use of penalty
in J =

∑

i αiji. Indeed, to get J ′ we evaluate individual incomplete sensi-
tivities j′i and use a projection over the subspace orthogonal to constraints:
{(.., j′⊥j , ..), j 6= i}. For instance, one can use:

j̃′i = j′i −
∑

j 6=i

(j′i, j
′
j)j

′
j

then J ′ = j̃′imax
where imax = Argmini‖j̃

′
i‖. With a full gradient this would

have implied calculating an adjoint variable for each of the constraints viFu =
(ji)u.
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7. Application

An important class of functionals concerns the aerodynamic force on the shape
along an arbitrary direction s:

J =

∫

shape

[T · n] · s dσ (7)

with T = p I − ν(∇u + ∇uT ) the Newtonian stress tensor. This enters the
validity domain of incomplete sensitivities.

We present the application of incomplete sensitivity concept to the design
of axial blades under geometric and state constraints. Two quantities define the
blade functioning: the flow rateQ and the pressure rise △p between in and outlet
boundaries. The optimization is necessary to improve the fan performances
while maintaining strong constraints such as low axial packaging and low sound
level emitted. The fan efficiency is defined as:

η =
Q△p

ΩTr
(8)

where Tr =
∫

shape
r [T · n] · eθ dσ is the torque and Ω the rotation rate. The

problem of interest is therefore to minimize the torque Tr at given Q, Ω and
volume. We would like also to increase ∆p. Ω is an independent variable and is
given. The volume constraint can be transformed into a boundary integral by
denoting ~X = (x, y, z)t:

V =

∫

Ω

1dv =

∫

Ω

1

3
∇.( ~X)dv =

∫

∂Ω

~X.~ndσ.

But, Q and ∆p are not defined on the shape and are therefore outside the
application domain of incomplete sensitivity. Q is easy to enforce through the
inlet velocity conditions, which can be frozen during the design. ∆p, on the
other hand, needs more workout to maintain. This is a typical situation where
the original problem is not in the application domain of incomplete sensitivity,
but can be brought in using the state equations, here the Navier-Stokes system
for incompressible flows.

Consider a computation domain with the boundary in three parts: inlet Γi,
outlet Γo and solid wall Γw. Using Stokes formula for the steady momentum
equation we have:

∫

Γ

(u(u.n) + T.n)dσ = 0.

A first classical approximation is to neglect viscous effects at inlet and outlet
boundaries. Then, using periodicity conditions for lateral boundaries we have:

∫

Γi

u(u.n)dσ +

∫

Γo

u(u.n)dσ +

∫

Γi

pndσ +

∫

Γo

pndσ +

∫

Γw

Tnwdσ = 0. (9)
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Let us denote mean value quantities at inlet and outlet boundaries by ui,
uo, pi, po. The inlet and outlet boundaries have the same length L. From the
continuity equation (∇.u = 0) and due to periodicity on lateral boundaries and
slip condition on the shape, we have ui.ni = −uo.ni.

The first component (along x axis) of (9) is therefore reduced to:

△p = po − pi = −Cx
1

2
ρ∞|u∞|2

c

L
(10)

where Cx = Cd cos(β) − Cl sin(β) is the horizontal aerodynamic force. Hence,
the pressure difference between inlet and outlet boundaries can be expressed
through the horizontal aerodynamic force on the blade, which is a boundary
integral making possible the application of incomplete sensitivities.

This analysis has been used for blade design for geometries provided by Valeo
Motors and Actuators (see Stanciu et al., 2002, and Mohammadi and Pironneau,
2001) where one observes an increase in both efficiency and pressure rise together
with a decrease in torque. This makes us confident of the fact that the analysis
above linking pressure rise to aerodynamic coefficients is valid, making possible
the use of incomplete sensitivity in this design. In some situations, however,
the geometrical derivative of the drag functional can be zero, as it is shown in a
recent paper for the compressible Navier-Stokes equations in bounded domains
(see Plotnikov and Sokolowski, 2010).

8. Time dependent problems

Another situation, where incomplete sensitivities bring a real relief, is for time-
dependent applications. In these situations, incomplete sensitivities enable for
real time sensitivity definition in the sense that the state and the sensitivities
are available simultaneously without the need for solving a backward in time
adjoint problem. This avoids the difficulty of intermediate states storage. In-
deed, unlike in steady applications, where intermediate states can be replaced
by the converged state, reducing the storage to one state, in time dependent
problems one cannot make this simplification.

We distinguish two situations: when the control is stationary and when the
control is time-dependent. A shape optimization problem for unsteady flows is
in the first class, while an active flow control problem belongs to the second.

The problem of shape optimization for unsteady flows can be formulated as:

min
S∈Oad

J(S, {u(t, q(S)), t ∈ [0, T ]}) (11)

where the state u(t, q(S)) varies in time, but not S. The cost function involves
the state over a given time interval [0, T ] through, for instance:

J(S) =
1

T

∫ T

0

j(S, q(S), u(t, q(S)))dt (12)
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where j involves instantaneous pressure based lift or drag coefficients:

Cd(t) =
1

ρ∞|~u∞|2

∫

S

(~u∞.~n)p(t, q(S))ds,

Cl(t) =
1

ρ∞|~u∞|2

∫

S

(~u⊥∞.~n)p(t, q(S))ds,

where ρ∞ and ~u∞ denote reference density and velocity vector taken for external
flows as far field quantities.

The gradient of J is the averaged instantaneous gradient:

J ′(S) =
1

T

∫ T

0

j′(S, q(S), u(t, q(S)))dt

=
1

T

∫ T

0

(jS + jqqS) +
1

T

∫ T

0

juuS .

We need to accumulate the gradient over the period [0, T ]. The first term is the
incomplete sensitivity. In case full gradient is required, then an adjoint problem
is required to compute the remaining terms.

Shape optimization for unsteady flows has numerous applications. For in-
stance, noise reduction as the radiated noise is linked to lift and drag time
fluctuations.

8.1. Model problem

Let us present the incomplete sensitivity analysis on another model problem for
unsteady situations. Consider the following time dependent state equation for
u(y, t), − S ≤ y ≤ S, t ≥ 0 in a infinite channel of width 2S:

ut − uyy = F (S, y, t), u(S, t) = u(−S, t) = 0, (13)

with

F (S, y, t) = −εω sin(ωt)(S2 − y2) + 2(1 + ε cos(ωt))

inducing small perturbation in time around a parabolic solution if ε << 1.
Indeed, the exact solution for this equation is:

u(y, t) = (S2 − y2)f(t), f(t) = (1 + ε cos(ωt)).

And consider a functional of the form:

j(S, t) = Smuy(y = S, t), m ∈ IN∗ (14)

involving instantaneous state quantities. The sensitivity with respect to S is:

j
S
(S, t) = mSm−1uy(S, t) + SmuyS

(S, t). (15)
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The first term is the “instantaneous incomplete sensitivity”.
As we have:

uy(S, t) = −2Sf(t), and uyS
(S, t) = −2f(t).

one can express the different contribution in (15):

j
S
(S, t) = mSm−1(−2Sf(t)) + Sm(−2f(t)).

Comparing with −2(m+ 1)Smf(t), one sees that the approximation of the gra-
dient based on this incomplete sensitivity is accurate and its precision increases
with m. Most important, the incomplete sensitivity has always the right sign. It
is obvious that the analysis still holds if the functional involves a time integral:

J(S, T ) =

∫

(0,T )

Smuy(y = S, t) dt.

Now, if the functional involves an integral over the domain:

J(S, T ) =

∫

(0,T )×(−S,S)

j(y, t) dt dy

one can still make the analysis above and see the importance of different con-
tributions:

J
S
(S, T ) =

∫

(0,T )×(−S,S)

(mSm−1uy(S, t) + SmuyS
(y, t)) dt dy

+

∫

(0,T )

[Smuy(y, t)]±S dt.

Again, an incomplete evaluation of the sensitivity is accurate because uyS
= 0.

One also notices that if m is odd, the last integral vanishes, even though this
integral is cheap to get as it does not involve any state sensitivity with respect
to S.

Anyway, incomplete sensitivity is efficient but it only holds for special func-
tionals.

Let us now give an example where the control depends on time as well. This
is a buffeting control problem using Hadamard equivalent boundary conditions
and incomplete sensitivities. We consider the flow at transonic regime over an
airfoil. At this regime, the wake unsteadiness forces the shock to move up and
down on the upper surface of the airfoil (details of the case are given in Mo-
hammadi and Pironneau, 2001). We would like to provide active control by an
injection/suction devices placed at mid-chord on the upper and lower surfaces.
The amount of injection/suction is defined using instantaneous incomplete sen-
sitivity for J = (Cl)t which aims at removing lift fluctuations. These are set to
zero outside the support of the control:

δS(t) = −ρ∇J(t) χC
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where shape variations are linked to injection/suction by the Hadamard approx-
imation:

u.n(t+ δt) = −u.δn(t) +
δS(t)

δt
.n(t)

where n(t) is the normal to the shape at time t and δn(t) is the variation of the
normal. It is shown that with this definition of control based on an injection
defined through incomplete sensitivity evaluation the buffeting can be removed.
The approach has an extra advantage as it also tells where control devices should
be placed as sensitivity is instantaneously available everywhere along the shape.

9. Concluding remarks

Hadamard incomplete sensitivity concept has been described. As this is reduced
order modelling, it has limitations and only applies to special functionals. These
must involve product of state by geometry quantities and should be defined over
the support of the control parameters (i.e. shape for a shape optimization prob-
lem). Aerodynamic coefficients are in this class. It has been shown how to
reformulate the initial problem when not entering this validity domain. Again,
this is not always possible, but when it is so, it permits to access sensitivity at
zero cost. Beyond this, incomplete sensitivities are really helpful for time de-
pendent problems (not reported here) and for multi-criteria situations avoiding
the calculation of one adjoint by functional.
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