
Control and Cybernetics

vol. 39 (2010) No. 3

Shifts of the term structure of interest rates against which

a given portfolio is preimmunized∗

by

Grzegorz Rzadkowski1 and Leszek S. Zaremba2

1 Institute of Information Systems, Polish Open University
ul. Domaniewska 37A, 02-672 Warszawa, Poland

2 Institute of Finance, Polish Open University
ul. Domaniewska 37A, 02-672 Warszawa, Poland

Abstract: In this paper we formulate an immunization problem,
which is rarely stated. Instead of reconstructing an existing bond
portfolio B with the aim of securing a desired amount of, say L dol-
lars, q years from now, against uncertain future interest rates shifts
(under various, sometimes strong assumptions), we identify the shifts
of the current term structure of interest rates against which portfolio
B is already preimmunized. We state this problem in two different
mathematical settings, and solve it with the help of Proposition 2
from Barber (1999), or, equivalently, Theorem 1 from Rzadkowski
and Zaremba (2000). In the first part of this paper shifts are sup-
posed to be polynomials of degree less than a certain number n, while
in the second part, where we employ a Hilbert space approach, the
shifts are allowed to be continuous functions.
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1. Problem formulation

Suppose a decision maker possessing C dollars today must achieve an invest-
ment goal of L > C dollars q years from now by means of a purchase of an
appropriately selected bond portfolio B. If not successful he/she will incur a
severe penalty, while achieving more than L dollars will result in no rewards.
Such investors are said to be bond immunizers. Several strategies aimed at the
construction of such bond portfolio B have been advocated for immunization
purposes (see references).

By the term structure of interest rates (TSIR) one understands a schedule
of spot interest rates. The term structure as a function, say s(t), can be flat,
rising, declining, or humped. Analysts try to estimate it from the yields for
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coupon-bearing bonds. We will be concerned with discrete time models, when
either coupons or par values, to be denoted thereafter by ci, are payable at some
instances ti ∈ [0, T ]. If PV (t) stands for the present value of a zero-coupon bond
with the par value of 1 dollar maturing at time t (after t years), then the formula

PV (t) = e−s(t)t (1)

holds, provided interest rates are continuously compounded. The mapping t →
PV (t) is said to be a discount function, while e−s(t)t are called discount factors.
Let

s∗(t) = s(t) + λa(t) (2)

be a new yield curve, which is the result of changes in bond prices caused by
various market forces. The random parameter λ, whose probability distribution
does not play any role in our approach, represents the unknown today magnitude
of the shifts to occur in TSIR, while a(t) stands for the postulated shifts. In
this paper a(t) is not an apriori specified function as is usually the case, but is
allowed to be any shift from a specified class of functions, either polynomials
(Section 2) or continuous functions (Section 3).

Our goal is to identify those shifts a(t) in the current TSIR, against which
the value of a given portfolio B, which we either already possess or are going to
purchase today, is immunized q years from now for all λ.

2. Model 1: shift can be any polynomial

Suppose we possess a bond portfolio B consisting of bonds generating payments
ci at instances ti, i = 1, 2, . . . , m. A liability of L dollars has to be discharged
at a future date q by means of B irrespective of shifts in the TSIR, which may
take place in the meantime, as long as the new TSIR is of the form (2). The
immunization means that if FVB(t) stands for the future value of B at time
t, then FVB(q) ≥ L, that is, the value of B at time q will be no less than the
liability to be paid off at time q.

Theorem 2.1 Assume that shifts in the TSIR are of the form

a(t) = a0 + a1t + a2t
2 + a3t

3 + ... + an−1t
n−1 =

n
∑

j=1

aj−1t
j−1 .

The family of those polynomials a(t) of the form given above, which ensure
the immunization at time q is an (n − 1) dimensional linear subspace (denoted
thereafter by IMMU) of the space of all polynomials of degree ≤ (n − 1), which
itself has dimension n.

Before proving this theorem, let us remark that under the current TSIR,
which we are denoting by s(t), the inequality FVB(q) ≥ L can be rewritten as

FVB(q) = es(q)qPV (B) =

m
∑

i=1

cie
s(q)q−s(ti)ti ≥ L, (3)
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where PV (B), standing for the present value of portfolio B, is given by the
formula

PV (B) =

m
∑

i=1

cie
−s(ti)ti . (4)

Classical results (proved under simplifying assumptions) assert that immuniza-
tion takes place if the so called portfolio “duration” TP is equal to q, where

TP =

m
∑

i=1

wti
ti. (5)

Here the weights wti
of payoffs ci are given either by

wti
=

ci

[1 + s(ti)]ti

/PV (B) or by wti
= cie

−s(ti)ti/PV (B) (6)

depending on the way the interest rate is compounded.

Definition 2.1 A set S of vectors/elements is said to be a linear space if the
sum of arbitrary two elements a ∈ S and b ∈ S belongs to S (a + b ∈ S), and
for any real number r the product of r and a belongs to S as well (ra ∈ S).

Proposition 2 from Barber (1999), as well as Theorem 1 from Rzadkowski
and Zaremba (2000), says that immunization of portfolio B at time q will be
secured provided the following sufficient condition holds

a(q)q

m
∑

i=1

cie
−s(ti)ti =

m
∑

i=1

cie
−s(ti)tia(ti)ti. (7)

Fact 2.1 The family of all piecewise continuous shocks a(t) satisfying (7) is a
linear space. Similarly, the family of all continuous functions (or polynomials
of degree less than an arbitrary natural number k), which satisfy (7) is a linear
space.

Proof of Theorem 2.1 Let us start with the observation that condition (7) is
a generalization of the mentioned above classical immunization result (corre-
sponding to a(t) ≡ 1) which claims that immunization holds if TP = q, where
TP is given by (5) and (6). Our aim is to identify and characterize all poly-
nomials of degree ≤ (n − 1) satisfying (7). We know from Fact 2.1 that these
polynomials constitute a linear subspace, say IMMU. Once we identify all func-
tions belonging to IMMU, we will know which polynomials (shifts) the portfolio
B is already immunized against. Since all shifts in the TSIR are of the form

a(t) = a0 + a1t + a2t
2 + a3t

3 + ... + an−1t
n−1 =

n
∑

j=1

aj−1t
j−1, (8)
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we substitute (8) into (7) to arrive at

LS = (
n

∑

j=1

aj−1q
j)

m
∑

i=1

cie
−s(ti)ti =

m
∑

i=1

cie
−s(ti)ti(

n
∑

j=1

aj−1(ti)
j) = RS, (9)

where LS(RS) stand for the value of the left (respectively right) hand side of
the above equality. RS can be rearranged, by first fixing index j, and then
multiplying aj−1 by all terms dependent on index i. The result of this will be
the equality

RS =

n
∑

j=1

aj−1(

m
∑

i=1

cie
−s(ti)ti(ti)

j). (10)

Next, by subtracting RS from LS we get a single linear equation

0 = LS − RS =
n

∑

j=1

aj−1

m
∑

i=1

cie
−s(ti)ti [qj − (ti)

j ] =
n

∑

j=1

aj−1Aj−1, (11)

where

Aj−1 =

m
∑

i=1

cie
−s(ti)ti [qj − (ti)

j ],

with n unknown variables a0, a1, ..., an−1, which may naturally be viewed as
elements of Rn, the latter being n-dimensional linear space. Let us note that
Aj−1 depend solely on the cash flow generated by portfolio B and the parameters
ti determined by the market. The well known in matrix algebra Kronecker-
Capelli theorem applied to (11) asserts that the set of solutions a0, a1, ..., an−1

of (11) constitutes an (n − 1)-dimensional linear space. In this way we have
proved that IMMU consists of all polynomials of the form (8), whose coefficients
a0, a1, ..., an−1 belong to this linear space, and consequently IMMU is an (n−1)-
dimensional subspace of the space of all polynomials of degree ≤ (n − 1).

Definition 2.2 A set of vectors l1, l2, ...lm from a linear space S is said to
be linearly independent if α1l1 + α2l2 + ... + αmlm 6= 0 whenever real numbers
α1, α2, ...αm are not all equal to zero.

Definition 2.3 A set of linearly independent vectors l1, l2, ...lm from a linear
space S is said to be a base for S if each element (vector) of S is a linear com-
bination of l1, l2, ...lm, and this property does not hold any longer after removal
of any of the vectors li.

Fact 2.2 Each base for a k-dimensional linear subspace S must be a set of k
linearly independent vectors, and conversely, each set of k linearly independent
vectors belonging to S is a base for S.
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Fact 2.3 If Aj−1 6= 0 for j = 1, 2, . . . , n, then the following polynomials

a1(t) =
−A1

A0
+ t, a2(t) =

−A2

A0
+ t2, . . . , an−1(t) =

−An−1

A0
+ tn−1, (12)

constitute a base for the subspace IMMU.

Proof. Based on Theorem 2.1 and Fact 2.2, it is enough to demonstrate that
each of these (n − 1) polynomials solves (11) and that these polynomials are
linearly independent, the latter being a trivial observation. Let us assume that
a2 = a3 = ... = an−1 = 0 and next solve (11) for a0, a1. Let us first notice that
a1 6= 0 because otherwise a0 would have to be equal to zero due to the inequality
A0 6= 0, and the equation

∑n

j=1 aj−1Aj−1 = 0. Seeking for a non-zero solution
of (11), we may assume without loss of generality that a1 = 1, and hence
a0 = −A1/A0, which implies that polynomial a1(t), given above, solves (11).
To show that the specified above polynomial a2(t) is also a solution to (11), we
argue similarly, supposing that a1 = 0 as well as a3 = a4 = a5 = ... = an−1 = 0,
which leads to a linear equation for a0, a2, whose solution will appear to be
the polynomial a2(t). In the same manner we demonstrate that all remaining
polynomials are solutions to (11).

3. Model 2: shift can be any continuous function defined

on [0, T ]

This time, our aim is to identify all continuous shifts/shocks a(t) to the TSIR,
which our portfolio B is already immunized against with the new term structure
of the form (2). We start with a definition of Hilbert space, naming it H . As
such, H must be a linear space of vectors/elements, that is, a set of elements that
can be summed up and multiplied by a scalar without leaving the set. Secondly,
H must be equipped with a norm and a scalar product of two arbitrary vectors
from H . Let us define H as the set of all continuous functions defined on the
interval [0, T ], representing the life span for bonds available on a given debt
market. Given two elements of H , that is, two continuous functions f(t) and
g(t), defined on [0, T ], let us define their scalar product as

〈f, g〉 =

m
∑

i=1

cie
−s(ti)titif(ti)g(ti). (13)

The norm of an arbitrary element f ∈ H must then be defined as ‖f‖ =
√

〈f, f〉,
the latter implying that ‖f‖ = 0 if and only if f(ti) = 0 for each ti,
i = 1, 2, . . . , m. Two functions, f(t) and g(t) are identical as elements of H ,
when ‖f − g‖ = 0, that is, f(ti) = g(ti) for all instances ti when portfolio B
generates payments. Our nearest goal is to determine a base in H consisting
of orthonormal polynomials Pk(t) of degree k, where k = 0, 1, 2, ..., m − 1. It
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means that all of them will have length 1 and be mutually perpendicular, that
is, ‖Pk(t)‖ = 1 and 〈Pk(t), Pl(t)〉 = δkl, with δkl = 0 for k 6= l and δkl = 1 for
k = l. If we do this, each element of H , that is, each continuous function a(t)
will be identifiable with a certain linear combination a∗(t) of base polynomials
Pk(t). One will then have ‖a(t) − a∗(t)‖ = 0 and

a(t) ≈ a∗(t) = a0P0(t) + a1P1(t) + a2P2(t) + ... + am−1Pm−1(t). (14)

The identification above means that those two functions coincide at all instances
ti. Let us underline that as of that moment we do not know these polynomials,
but later on we will say how to determine them. Similarly as in Section 2,
portfolio B will be immunized under the new TSIR of the form s∗(t) = s(t) +
λa(t) if condition (7) is satisfied. To make sure it is, we substitute a∗(t) for a(t)
into (7), to obtain the relationship

[a0P0(q) + a1P1(q) + ... + am−1Pm−1(q)]q

m
∑

i=1

cie
−s(ti)ti

=

m
∑

i=1

cie
−s(ti)tia∗(ti)ti. (15)

The right hand side of (3) can be substantially simplified. As a matter of fact,
since polynomials Pi(t), 0 ≤ i ≤ m − 1, are mutually orthogonal, the first
of them, P0(t), which is a polynomial of degree zero, has to be orthogonal to
P1(t), P2(t), ..., Pm−1(t), which implies P1(t), P2(t), ..., Pm−1(t) are also orthog-
onal to the function identically equal to 1, that is,

〈ajPj(t), 1〉 =
m

∑

i=1

cie
−s(ti)ti [ajPj(ti)1]ti = 0, j = 1, 2, ..., m− 1, (16)

the latter significantly simplifying Eq. (3) because the right hand side of (3)
will then reduce to the number

m
∑

i=1

cie
−s(ti)tia0P0ti,

leading consequently to the equation

[a0P0 + a1P1(q) + ... + am−1Pm−1(q)]q
m

∑

i=1

cie
−s(ti)ti

=

m
∑

i=1

cie
−s(ti)titi(a0P0). (17)

Using next the so-called Gram-Schmidt orthogonalization procedure (Example 2
shows how this method works) one can determine polynomials Pi(t), 0 ≤ i ≤
m − 1. After having done this, (3) becomes a linear equation with m unknown
coefficients a0, a1, ..., am−1, whose solution gives rise to an (m− 1) dimensional
subspace of coefficients. In this way we have proven the theorem below.
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Theorem 3.1 Suppose a bond portfolio B is given and shifts in the TSIR are
continuous functions defined on [0, T ]. Then the set of these shifts equipped with
the scalar product defined by (14) constitutes an m-dimensional Hilbert space,
where m is the number of instances when portfolio B generates payments. The
subset of those shifts, which portfolio B is already immunized against at time q
is an (m − 1)-dimensional subspace (depending on B) of the form

a0P0(t) + a1P1(t) + a2P2(t) + . . . + am−1Pm−1(t), (18)

where the m linearly independent polynomials Pi(t), i = 0, 1, ..., m − 1 consti-
tute a base which may be determined by the Gram-Schmidt orthogonalization
procedure, while the coefficients a0, a1, ..., am−1 can be found as solutions of Eq.
(17).

In practical terms this means that bond portfolio B is immunized against
a shift a(t) if ‖a(t) − a∗(t)‖ = 0 holds for some a∗(t) = a0P0(t) + a1P1(t) +
a2P2(t) + ... + am−1Pm−1(t). We know that a(t) coincides with a∗(t) at all
instances ti when B generates its payments.

4. Examples

Example 4.1 (Shift can be any polynomial of degree ≤ 4)

Let the TSIR be of the form s(t) = 0.065− 0.0005t for 0 ≤ t ≤ 5 with shifts
being polynomials

a(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4. (19)

Let our portfolio B reduce to a single bond which pays 5 coupons ci = 10 at
instances ti = i with i = 1, 2, 3, 4, 5, and the par value of c5 = 100 at the
maturity (t5 = 5). Let moreover our liability of L dollars (the present value of
L is equal to the present value of B) have to be discharged q = 4.5 years from

now. Based on (11) the coefficients aj−1 of each shift a(t) =
∑5

j=1 aj−1t
j−1,

against which our bond B is “automatically” preimmunized q = 4.5 years from
now must fulfill the linear equation

30.86a0 + 67.2a1 − 409a2 − 6078.1a3 − 50116.87a4 = 0, (20)

which leads to the base polynomials

a1(t)=−2.18+t, a2(t)=13.26+t2, a3(t)=196.96+t3, a4(t)=1624.01+t4, (21)

being of the form (12) according to Fact 2.3.

Example 4.2 (Shift can be any continuous function defined on [0, T ])

Let the TSIR, bond B and liability L be the same as in Example 4.1. The-
orem 3.1 asserts that the subset of these shifts against which bond B is already
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preimmunized at time q = 4.5 is a 4-dimensional subspace of continuous func-
tions H of the form

a∗(t) = a0P0(t) + a1P1(t) + a2P2(t) + ... + a5−1P5−1(t), (22)

where polynomials Pi(t),i = 0, 1, 2, 3, 4, may be determined by the Gram-
Schmidt orthogonalization procedure, while the coefficients a0, a1, ..., am−1 can
be found as solutions of Eq. (17). Let us therefore find a base consisting of five
polynomials Pk(t) of degree k (k = 0, 1, 2, 3, 4), which satisfy

〈Pk(t), Pl(t)〉 = δkl, 0 ≤ k, l ≤ 4,

δkl = 0 for k 6= l, δkl = 1 for k = l (0 ≤ k ≤ 4). (23)

In order to determine polynomial P0 (of degree zero), we make use of the
relationship 〈P0, P0〉 = 1 occurring in (23). Having determined P0, we identify
polynomial P1 of degree 1 with two unknown coefficients, by making use of
the relationships 〈P1, P1〉= 1 and 〈P0, P1〉 = 0 occurring in (23). Knowing P0

and P1, we are in a position to identify polynomial P2 with three unknown
coefficients, by means of the three relationships:

〈P2, P 2〉 = 1, 〈P2, P1〉 = 0, 〈P2, P0〉 = 0. (24)

Proceeding in this way with the help of a Solver, one arrives at the polyno-
mials

P0(t) = 0.04721

P1(t) = 0.23899− 0.05174t

P2(t) = 0.52437− 0.36629t + 0.05267t2 (25)

P3(t) = −1.14161 + 1.46274t− 0.5215t2 + 0.05496t3

P4(t) = 3.39874− 6.23373t + 3.70313t2 − 0.8784t3 + 0.07199t4.

Now one can rewrite Eq. (17) in the form

1.62941a0 + 2.97331a1 − 27.7354a2 − 53.8486a3 − 91.2228a4 = 0. (26)

Based on Theorem 3.1, the set of shifts against which B is preimmunized
q = 4.5 years from now consists of all functions of the form

a∗(t) = a0P0(t) + a1P1(t) + a2P2(t) + ... + a5−1P5−1(t), (27)

where the polynomials Pi(t), i = 0, 1, 2, 3, 4, are given by (25), while
a0, a1, ..., am−1 satisfy Equation (26). In fact, P is immunized against each
shift a = a(t) if ‖a − a∗‖ = 0 for some a∗(t) described by (27), what means that
a(t) coincides with a∗(t) at all instances ti = 1, 2, 3, 4, 5..
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