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1. Introduction

David Gale (1960) proved a version of the Samuelson nonsubstitution theorem
by means of a result (Lemma 9.3 in Gale, 1960) on sensitivity in linear program-
ming problems. This result, also considered in a similar way by Hadley (1962),
is not generally valid, as its conclusion requires some additional assumptions to
those made by Gale. Due to the autonomous interest of Gale’s sensitivity result,
we first point out a mistake in Gale’s proof and present a counterexample. This
mistake was also noted in an unpublished paper by Maiti (1971). Finally, we
shall give an elementary proof of Gale’s version of Samuelson nonsubstitution
theorem.

We now introduce some notations and definitions.
Let A be a real matrix of order (m, n), with rows Ai , i = 1, . . . , m and

columns Aj , j = 1, . . . , n; b is a column-vector of Rm; c is a row-vector of Rn,
x ≧ [0] is a non-negative column-vector of Rn.

The standard linear programming problem considered by Gale is the follow-
ing:

P (A, b, c) :






min
x

cx

Ax = b
x ≧ [0].
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A vector x is said to be a feasible solution for P (A, b, c) if Ax = b, x̄ ≧ [0]. Let
B be a subset of the set of columns Aj of A, B the matrix formed with Aj ∈ B,
and cB the vector whose components are cj with Aj ∈ B. A feasible solution x
of P (A, b, c) depends on the set B if xj = 0 for Aj /∈ B.

The basis B is said to be a feasible basis for P (A, b, c) if:

(i) There is a feasible solution x of P (A, b, c) depending on B ;

(ii) The columns Aj ∈ B are linearly independent.

The same terminology applies to matrix B.
We note that it is always possible to assume that rank(A) = m and that

the matrix B (of rank m) is formed by the first m columns of A. The same
permutations must be performed both on columns of A and on the vector x.

A feasible basis B for P (A, b, c) is degenerate if for the feasible solution x of
P (A, b, c) depending on B we have xj = 0 for some Aj ∈ B. Otherwise, B is a
nondegenerate basis.

A feasible basis B is an optimal basis for P (A, b, c) if the feasible solution x
of P (A, b, c) depending on B is optimal for P (A, b, c), i.e. minimizes cx subject
to Ax = b, x ≧ [0]. So, an optimal solution x depending on an optimal basis B
is called a basic solution, and if B is degenerate, x is a degenerate solution.

We now describe Gale’s result on sensitivity for P (A, b, c).
Let B be an optimal basis for P (A, b, c). Consider a new problem P ′(A, b′, c),

obtained by replacing b in P (A, b, c) by another vector b′ 6= b. Gale’s lemma
asserts that if B remains a feasible basis for P ′(A, b′, c), it is also optimal for
it.

For the proof of this assertion, Gale considers a vector x as an optimal
solution of P (A, b, c) depending on B, a vector y as an optimal solution of
D(A, b, c), the dual of P (A, b, c), and x′, as a feasible solution of P ′(A, b′, c),
depending on B.

Therefore, since x and y are optimal for P (A, b, c) and D(A, b, c) respectively,
by the canonical equilibrium theorem (Theorem 3.2 in Gale 1960, p. 82), we have

(i) xj = 0 whenever yAj < cj and, “since by hypothesis x′
j = 0 whenever

x̄j = 0”, one has also

(ii) x′
j = 0 whenever yAj < cj ,

so that by the same theorem, x′ and ȳ are optimal for P ′(A, b′, c) and its dual
D′(A, b′, c) respectively.

Now, the assertion quoted in (i) is false. Indeed, the hypothesis that B is an
optimal basis for P (A, b, c) and a feasible basis for P ′(A, b′, c) only implies that,
if Aj /∈ B, then xj = x′

j = 0, and not that x′
j = 0 whenever xj = 0. Clearly,

if B is degenerate for P (A, b, c), then xj = 0, for some Aj ∈ B, so we cannot
assert that for this Aj , x′

j = 0. Hence, there is no reason why (ii) should be
satisfied even when ( i) is satisfied. On the other hand, if B is a nondegenerate
optimal basis for P (A, b, c), then xj = 0 is equivalent to the statement that
Aj /∈ B. Thus, Gale’s conclusion is valid under some assumptions, i.e. that B is
a nondegenerate optimal basis for P (A, b, c) or some other (weaker) assumptions.
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We remark that the incorrect version of Gale’s lemma is quoted also in
Hadley (1962), Heal et al. (1974), Lancaster (1968), Murata (1977) and Nicola
(2000).

2. Counterexample to Gale’s result and new versions

The following example (see De Giuli, 1995) shows that the conclusion of Gale’s
lemma may fail. We note that Gale’s lemma has a general validity and is not
therefore restricted to nonnegative matrices. The same holds for vector b and c.

Let

A =




10 5 0 0 −120
110 111 118 0 0
0 1 0 147 0





b =
[

10 110 0
]T

, b
′

=
[

10 220 1
]T

c =
[
−90 −90 −90 −90 100

]
.

Then, both P (A, b, c) and P ′(A, b′, c) admit one optimal solution, namely

x =
[

1 0 0 0 0
]T

for P (A, b, c)

x′ =
[

1
2 1 27

59 0 0
]T

for P ′(A, b′, c)

x is degenerate and may be associated with the following five bases:

B(1) =
[

A1 A2 A3
]
, B(2) =

[
A1 A2 A4

]
,

B(3) =
[

A1 A2 A5
]
, B(4) =

[
A1 A3 A4

]
,

B(5) =
[

A1 A4 A5
]
,

whereas x′ is nondegenerate and may be associated with B(1) only. All five
bases above, except for B(2), are feasible. Therefore, Gale’s lemma leads to
stating that each vector depending on a feasible basis, namely

x1 =
[

1
2 1 27

59 0 0
]T

x3 =
[

100
110 1 0 0 9

220

]T

x4 =
[

1 0 55
59

1
147 0

]T
x5 =

[
2 0 0 1

147
1
12

]T
,

is optimal for P ′(A, b′, c), whereas only the first one is optimal.
Here we put forward some theorems which overcome these drawbacks.

Theorem 1 Let x∗ and y∗ be optimal vectors, respectively, for the canonical
problem P (A, b, c) and for its dual. We denote by F the matrix made of all
columns Aj of A associated with the constraints of the dual which y∗ makes
active:

Aj ∈ F ⇐⇒ y∗Aj = cj . (1)
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Choose a vector b′ 6= b and assume that the system

{
Fq = b′

q ≧ [0]
(2)

admits a solution q. Then the following propositions hold:
i) Each vector x′ ∈ Rn obtained by filling with zeroes a solution q of system (2)
is optimal for P ′(A, b′, c);
ii) y∗ is optimal for the dual of P ′(A, b′, c) also;
iii) when b turns into b′, the optimal value of the objective function exhibits the
variation

(cx′ − cx∗) = y∗(b′ − b).

Proof. After a suitable permutation of its columns, A displays first the columns
of F , followed by those of the matrix G, which collects together the other
columns of A :

A =
[

F G
]
.

Apply the same perturbation to the entries of x and consider the vector

x∗ =

[
q
[0]

]
, (3)

which is feasible for P ′(A, b′, c), as the relations

x′ ≧ [0], Ax′ =
[

F G
] [

q
[0]

]
= Fq = b′ (4)

obviously hold.
The dual problems of P (A, b, c) and of P ′(A, b′, c) have the same feasible set,
hence y∗ is feasible for both. Relation (1) states that (y∗Aj−cj) vanishes as soon
as Aj ∈ F , whereas relation (3) shows that Aj /∈ F implies x′

j = 0. Therefore

(y∗A − c)x′ =
∑

Aj∈F

(y∗Aj − cj)x
′
j +

∑

Aj /∈F

(y∗Aj − cj)x
′
j = 0. (5)

As (4) gives (Ax′ − b′) = [0], this yields

y∗(Ax′ − b′) = (y∗A − c)x′ = [0]. (6)

As x′ and y∗ are feasible for P ′(A, b′, c) and its dual, respectively, the comple-
mentarity theorem shows their optimality for these problems. Item (iii) directly
follows from the duality theorem.
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Theorem 1 holds for a maximization problem and only provides a sufficient
condition for the validity of its thesis.

Theorem 2 reported below is taken from an unpublished report by Maiti
(1971). Maiti also pointed out the flaw in Gale’s proof of Lemma 9.3.

Let cB be the vector, whose components are cj , for those j such that Aj ∈ B,
therefore the next theorem holds.

Theorem 2 Assume that B is a feasible basis for both problems P (A, b, c) and
P ′(A, b′, c). Let

cBB−1A ≦ c. (7)

Then, B is an optimal basis for both problems.

Proof. Let x∗ and x′ be the solutions of P (A, b, c), and P ′(A, b′, c), respectively,
depending on B. Define y∗ = cBB−1. Due to (7), y∗ is a feasible solution of the
dual problem of both P (A, b, c) and P ′(A, b′, c). Further, if Aj ∈ B, we have
y∗Aj =cBB−1Aj =cj. Therefore y∗Aj < cj implies that Aj /∈ B, which in turn,
implies x∗

j =x′
j =0. By the canonical equilibrium theorem, (x∗, y∗) and (x′, y∗)

are optimal for P (A, b, c) and its dual and for P ′(A, b′, c) and its dual.

We observe that if B is a nondegenerate optimal basis for P (A, b, c), then
the optimal solution of the dual problem is unique and is equal to cBB−1.
Hence relation (7) holds in this case, as it is implied by the assumption of a
nondegenerate optimal basis. The converse need not be true, thus Theorem 2
is a weaker version of Gale’s lemma.

We now consider the following example suggested by one of the two referees
in order to show that Theorem 1 does not work, whereas Theorem 2 works, or
vice-versa.

Suppose x =
[

x1 x2 x3

]T
is a column vector representing levels of

operation of the three activities

a1 =

[
1
0

]
, a2 =

[
1
1

]
, a3 =

[
0
1

]
.

Upon solving the primal problem P (A, b, c) we have an x ≧ [0] such that x1 +
x2 + x3 is a minimum subject to

[
1
0

]
x1 +

[
1
1

]
x2 +

[
0
1

]
x3 = b,

where b =
[

1 1
]T

.

Upon solving the corresponding dual we have a row vector y =
[

y1 y2

]

such that y1 + y2 is a maximum subject to

y1 ≤ 1, y1 + y2 ≤ 1, and y2 ≤ 1.
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Problem P has a unique optimal solution, x∗
2 = 1, x∗

1 = x∗
3 = 0, while its dual has

an infinite number of optimal solutions: any point (within the first quadrant)
on the line y1 + y2 = 1, including the two extreme points, ye1

=
[

1 0
]

and

ye2
=

[
0 1

]
is an optimal solution. Let us now take a non-basic optimal

solution y∗ =
[

1
2

1
2

]
, so y∗

1a1 < 1, y∗a3 < 1 while y∗a2 = 1. Following
Theorem 1 the subsystem

S : a2x2 = b

has a unique solution x∗
2 = 1. If, instead, we consider another primal problem P ′

in which b is replaced by b′ =
[

1 2
]T

, since the subsystem S does not admit
any solution for b′, Theorem 1 cannot be applied here. If P had a basic solution,
x∗

2 = 1, x∗
3 = 0, depending on the basis [a2, a3], then this basis would be feasible

and optimal for P ′, yielding a unique optimal solution x′
2 = 1, x′

3 = 1. According
to Theorem 2, referring to this basis, we note that the dual vector is given by
cBB−1 =

[
0 1

]
and that

[
0 1

]
a1 ≤ 1,

[
0 1

]
a2 ≤ 1,

[
0 1

]
a3 ≤ 1.

Besides, if non-degeneracy is assumed, our Theorem 1 reduces into Gale’s
lemma.

In order to provide a thorough analysis, we now state a similar sensitivity
result for a linear programming problem in a general canonical form (i.e. with
inequality constraints).

Consider the problem

P1(A, b, c) :






min
x

cx

Ax ≧ b
x ≧ [0]

and let E be the index set of the constraints which makes a feasible vector x∗

active (or effective) for P1(A, b, c) :

E = {i | Aix
∗ = bi} . (8)

Theorem 3 Let x∗ and y∗ be optimal vectors, respectively, for the general prob-
lem P1(A, b, c) and for its dual. Define the matrix F and the set E of active
constraints at x∗ as in (2) and (8):

Aj ∈ F ⇐⇒ y∗Aj = cj ; E = {i | Aix
∗ = bi} .

Choose a vector b′ 6= b and assume that the system






Fq ≧ b′

Fiq = b′i ∀i ∈ E
q ≧ [0]

(9)

admits a solution q. Then all propositions of Theorem 1 hold.
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Proof. The proof follows the same steps as that of Theorem 1. We consider the
matrix A = [F ; G] and observe that the vector

x′ =

[
q
[0]

]

is feasible for P ′
1(A, b′, c), as

x′ ≧ [0], Ax′ =
[

F G
] [

q
[0]

]
= Fq ≧ b′, (10)

and that the dual of P1(A, b, c) and P ′
1(A, b′, c) both have the same feasible set.

Hence, y∗ is feasible for both. The vanishing of (y∗A − c)x′ may be proved as
it was for relation (5). Moreover, thanks to (10) the following relation holds:

y∗(Ax′ − b′) = y∗(Fq − b′) =
∑

i∈E

y∗
i (Fiq − b′i) +

∑

i/∈E

y∗
i (Fiq − b′i) = 0,

as (9) gives (Fiq − b′i) = 0, ∀i ∈ E, whereas the complementarity theorem gives
y∗

i = 0 if i /∈ E. Hence, (6) holds and the proof can be completed in the same
way as the one of Theorem 1.

For other considerations on Theorems 1 and 3 the reader is referred to De
Giuli (1995) and De Giuli and Magnani (1996). Also with reference to problem
P1(A, b, c, ), when non-degeneracy is assumed, our Theorem 3 reduces to the
result of K. Lancaster (1968), called basis theorem, and also reported by Heal
et al. (1974).

We note that Theorems 1 and 3 do not assume that x∗ is basic, nor that
A has a full row-rank (and therefore that m ≦ n). Moreover, they afford a
constructive way to get an optimum x′ for the new problems P ′(A, b′, c, ) and
P ′

1(A, b′, c, ) starting from a solution q of system (2) or (9). They also ensure
the stability of the optimum y∗ for the dual problem. Finally, they qualify y∗

as the marginal contribution of an additional unit in bi to the optimal level cx∗

of the objective function; this meaning is often summarized by the relation

y∗
i =

∂(cx∗)

∂bi

and is complementary to the classical one, deduced from the duality theorem
(cx∗ = y∗b) which identifies y∗

i as the average contribution of each unit of bi to
the same value cx∗.

3. The Gale-Samuelson nonsubstitution theorem

There are many nonsubstitution (or also substitution) theorems in economic
analysis. The first statement of these theorems was proposed by Samuelson
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(1951). Moreover, in the same collection there were both an algebraic proof
by Koopmans (1951) for the case of three industries and an algebraic proof by
Arrow (1951) for the general case. For a detailed analysis of several versions of
the nonsubstitution theorems, see Pasinetti (1977).

Here we briefly sketch the Gale’s version (1960). The classical Leontief model
is generalized by considering the possibility that more than one industry can
produce the same good, i.e. there is a certain number of alternative ways of
producing a given good. If the total number of goods produced by the system is
n, let us suppose that m (m > n) linear activities exist, each of them producing
a single good. More precisely, the set M = {1, 2, . . . , m} is partitioned into n
subsets Mk, k = 1, 2, . . . , n, such that Mk ∩ Mk′ = ∅ for k 6= k′, M = ∪n

k=1Mk.
Let us suppose that the activity j ∈ Mk produces the good k and consider the
(n, m) technological matrix Â whose column Âj

ik
are the inputs for the good

i, i = 1, 2, . . . , n, used in the activity j, to produce one unit of good k, being
j ∈ Mk.

Instead of the usual output matrix I, here the output matrix is not square,
it is denoted by Î , of dimension (n, m), and is formed by ones and zeroes:

Î =





1 . . . 1 0 . . . 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 . . . 1 1 . . . 1



 .

Let x = [x1, x2, · · · , xm]T be the vector of activity levels of the generalized

Leontief system, then the inputs of the production system are Âx and the total
production is the vector Îx. The fundamental equilibrium equation of the model
is given by

Îx − Âx = c, (11)

where c is the consumption vector. We suppose that there is one primary
factor (labour) which is used in every activity, i.e. there is a (row) vector l =
[l1, l2, · · · , lm], l > [0], whose elements are the direct labour requirements per
unit intensity of each activity, and that the available amount of labour is fixed
at l̄. The output space Y is defined as the set of all nonnegative c satisfying
(11) and using no more labour than l̄, i.e.

Y =
{
c : c =

(
Î − Â

)
x, x ≧ [0], lx ≦ l̄

}
.

We remark that the Leontief model can produce any c in the non-negative
orthant if no constraint on the amount of labour is imposed.

Let σ = [j1, j2, · · · , jn], where jk ∈ Mk, k = 1, 2, . . . , n, be a subset of the
set of indices M , formed by choosing one activity in each Mk. Aσ denotes the
matrix formed by the columns of Â indexed by the elements of σ and by the same
operation we obtain Iσ = I. The matrices Aσ and Iσ = I are square matrices
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of order n, Aσ is a usual Leontief sub-model of the generalized Leontief model
considered.

Let us assume that the model (Â, Î) is productive, i.e. there exists x > [0]
such that

(
Î − Â

)
x > [0].

The Gale-Samuelson nonsubstitution theorem can be stated as follows.

Theorem 4 (Gale-Samuelson nonsubstitution theorem). Let all the previous
assumptions hold. If in system (11), x ≧ [0] produces a strictly positive con-
sumption vector, a productive technique σ exists such that the simple Leontief
model (Aσ, I) has the same output space Y as that defined by (11).

The proof given by Gale of the above theorem relies on his (incorrect) sensi-
tivity Lemma 9.3; however, the proof works, due to the productivity assumption
made on Â, the fact that the production model is simple (each activity produces
one output) and the fact that the final demand vector is assumed nonnega-
tive (and nonzero). These assumptions are sufficient to make both problems
P (A, b, c, ) and P1(A, b, c, ) solvable for each b. This means that they admit ba-
sic non-degenerate optima. Moreover, these assumptions also ensure that the
matrix F is square and has no positive off-diagonal elements. This is enough to
get a nonnegative (nonzero) inverse F−1, which makes q = F−1b′ feasible, no
matter how b′ is chosen.

The same proof of the Gale-Samuelson nonsubstitution theorem can be found
in Heal et al. (1974), Lancaster (1968), Murata (1977) and Nicola (2000).

There are also other proofs which do not appeal to Gale’s lemma on sen-
sitivity, see e.g., Achamanov (1984), Bapat and Raghavan (1997), Bose (1972)
and Manara and Nicola (1967). However, the proof of the last two authors is
performed under the restrictive assumption of indecomposability of the matrix
Aσ. Among all these proofs, the one by Gale is the most neat and concise.

We now give a more complete version of Theorem 4, with an elementary
proof.

We first consider the linear programming problem

(P ) :






min
x

lx
(
Î − Â

)
x ≧ c

x ≧ [0]

whose straightforward economic interpretation may be to find a minimum quan-
tity of total labour requirements allowing to obtain a final demand c > [0].

Theorem 5 Let be given the generalized Leontief model (Â, Î), l > [0], Y

nonempty containing a strictly positive c and let (Â, Î) be productive. Then
for problem (P ) the following properties hold:
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i) (P ) admits solution for any c > [0];

ii) Every optimal vector x∗ is such that over-productions are excluded:

x∗ optimal for (P ) =⇒
(
Î − Â

)
x∗ = c;

iii) The optimal vectors x∗ vary with the choice of c. However the n tech-
niques which are optimal at a given vector c remain the same and they
are optimal also at every other vector of final demands. Hence, when final
demands change, there is no need to substitute any production process with
a different technique.

Proof. We recall that the productivity assumption of (Â, Î) means that there
exists x0 > [0] such that

{ (
Î − Â

)
x0 = y0 > [0]

x0 > [0].

If y0 ≧ c, (P ) is feasible; otherwise we consider αx0, α > 0 and sufficiently
large. The dual of (P ) is

(D) :






maxπc

π
(
Î − Â

)
≦ l

π ≧ [0]

and it is always feasible, as, e.g., π = [0] satisfies all the constraints and the sign
conditions. Thanks to the existence and duality theorems, (P ) and (D) both
admit solutions.

Let r be the rank of (Î − Â). Then, (P ) admits a basic optimal vector
x∗, which therefore contains at least (m − r) zero components. We denote the
optimal basis by (I+ − A+).

We now consider an optimal vector x∗ associated to a vector c > [0]. In this
case at least n components x∗

j of x∗ have to be positive. These n components
will form the vector x+ > [0]. The optimal basis (I+ − A+) associated to x∗

contains therefore at least n columns. Since m > n, we can get only r = n, so
(I+ − A+) contains n columns, i.e. every good is produced by a single activity
and x+ contains n positive components, so that (I+ − A+) is a nondegenerate
optimal basis. As every column of I+ contains one positive element, (I+ −A+)
is a Z-matrix and a K-matrix (see De Giuli et al., 2008, and Fiedler and Ptàk,
1962), so we have

{
(Î − Â)x∗ = (I+ − A+)x+ ≧ c > [0]
x+ ≧ [0].

Therefore, we have (I+ − A+)−1 ≧ [0] and so, for any c > [0], the system
{

(Î − Â)x ≧ c
x ≧ [0]
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always has the solution x = x formed by setting (m − n) components equal
to zero (the ones not associated to the basis (I+ − A+)) and n nonnegative
components equal to the vector

x+ = (I+ − A+)−1c ≧ [0]. (12)

Therefore, the matrix (Î − Â) contains a basis (I+ − A+) which is optimal for
the chosen vector c > [0] and remains feasible for any choice of c > [0]. Thanks
to Theorem 3, problem (P ) remains solvable when c > [0] varies and among its
solutions there is always the one associated with the same basis (I+ −A+). So,
i) and iii) are proved.

Let us now prove ii). We define the vector of net productions generated by
the optimal solution x:

y = (Î − Â)x = (I+ − A+)x+

and the vector of over-productions, which can be only nonnegative quantities:

z = y − c = (I+ − A+)x − c ≧ [0].

We define the vector l+, whose components are associated to the basis (I+−A+).
The total labour requirement lx is given by

lx = l+x+ = l+(I+ − A+)−1ȳ
= l+(I+ − A+)−1(c + z),

i.e., thanks to (12)

lx = l+(I+ − A+)−1c + l+(I+ − A+)−1z
= l+x+ + l+(I+ − A+)−1z.

The total labour requirement lx is the sum of l+x+, the amount of labour
requirements strictly necessary to meet the demand vector c, with l+(I+ −
A+)−1z, the requirements of labour which are not necessary, as reserved to
over-productions. This second term will be zero if the over productions z is
the zero vector. But, as problem (P ) aims only at minimizing total labour
requirements, it is obvious that in each optimal solution of (P ) there are no
over-productions.

For other considerations on the Gale-Samuelson nonsubstitution theorem,
also with regard to financial models, the reader is referred to De Giuli et al.
(2008) and De Giuli and Magnani (1996).
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