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1. Introduction

Many problems of design, planning and management in technical and orga-
nizational systems have a pronounced multicriteria character. Multiobjective
models appearing in these cases are reduced to the choice of “best” (in a certain
sense) values of variable parameters from some discrete aggregate of the given
quantities. Therefore, recent interest of mathematicians to multicriteria discrete
optimization problems has been very high, as confirmed by the intensive pub-
lishing activity (see, e.g., the bibliography by Ehrgott and Gandibleux, 2000,
which contains 234 references).

While solving practical optimization problems, it is necessary to take into
account various kinds of uncertainty such as lack of input data, inadequacy
of mathematical models to real processes, rounding off, calculating errors etc.
Therefore, widespread use of discrete optimization models in the last decades
stimulated many experts to investigate various aspects of problems under un-
certainties and, in particular, the questions of stability.

Stability of a multicriteria optimization problem in a classical sense is usu-
ally understood as a property of continuity or semicontinuity of a multi-valued
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mapping, which determines the choice function. Numerous studies are devoted
to the analysis of conditions, under which a problem possesses one or another
property of stability (see, e.g., Sawaragi et al., 1985; Tanino, 1988; Fiacco, 1998;
Tanino and Sawaragi, 1980). Such good properties as continuity, convexity, con-
nectivity, which make solving many problems easier, are usually not applicable
to discrete optimization problems. However, in the study of stability of discrete
problems such concepts find their application, since the set of initial data of a
problem can be endowed with a nontrivial, non-discrete topology.

Many publications are devoted to the investigation of stability of scalar
or multicriteria discrete optimization problems (see, e.g., Sotskov et al., 1995;
Chakravarti and Wagelmans, 1998; Greenberg, 1998; Libura et al., 1998, 2004,
2007; van Hoesel and Wagelmans, 1999; Sergienko and Shilo, 2003; Kozeratska
et al., 2004). This paper continues our study of various types of stability for
the problems with different kinds of partial criteria and optimality principles
(see, e.g., Emelichev et al., 2002, 2004, 2005, 2006, 2007, 2007b; Bukhtoyarov
and Emelichev, 2006). Stability of the lexicographic set for a multicriteria in-
teger problem of minimizing absolute values of linear functions is investigated
in this work. Necessary and sufficient conditions for five best known (see, e.g.,
Emelichev et al., 2002; Sergienko and Shilo, 2003) types of stability are obtained.
In this paper we show that the structure of the lexicographic set and the image
of this set in the criterion space are closely connected with the solvability of
some corresponding system of integer linear equations (SILE). In other words,
each element of such lexicographic set can be considered as an approximation
in the case of unsolvability of such SILE or a solution otherwise. Our research
is related to the behavior analysis of this kind of approximations (solutions)
under small changes of SILE parameters. The estimations of stability radius
for an analogous Boolean problem with lexicographic and Pareto principles of
optimality were obtained earlier in Emelichev and Gurevsky (2007a), Gurevskii
and Emelichev (2006), respectively. The formula of the stability radius for a
fixed Pareto-optimal Boolean solution was given in Gurevskii and Emelichev
(2007).

2. Basic definitions and notations

Let us consider a multicriteria integer programming problem in the following
formulation.

Let m be the number of criteria, n be the number of variables, Ci denote the
i-th row of matrix C = [cij ]m×n ∈ Rmn, m ≥ 1, n ≥ 2, i ∈ Nm = {1, 2, . . . , m}.
Let X ⊂ Zn be the set of (feasible) solutions, 1 < |X | < ∞. We define a vector
objective function f(x, C) = (f1(x, C1), f2(x, C2), . . . , fm(x, Cm))T on X with
criteria

fi(x, Ci) = |Cix| → min
x∈X

,

where x = (x1, x2, . . . , xn)T .
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In the criterion space Rm we define the binary relation of lexicographic order
≺ between any pair of vectors y = (y1, y2, . . . , ym)T and y′ = (y′

1, y
′

2, . . . , y
′

m)T ,
as follows

y ≺ y′ ⇐⇒ ∃k ∈ Nm (yk < y′

k & k = min{i ∈ Nm : yi 6= y′

i}).

Under the lexicographic integer optimization problem

Zm(C) : lex min{f(x, C) : x ∈ X}

we understand the problem of finding the set of lexicographic optima, which is
defined by the following formula:

Lm(C) = {x ∈ X : ∀x′ ∈ X (f(x′, C) ≺ f(x, C))},

where ≺ is the negation of ≺. It is easy to see that this set is a subset of the
Pareto set and is nonempty for any C ∈ Rmn.

It is obvious that f(x, C) can serve as a measure of inconsistency of the
following homogenous system of linear equations

Cx = 0(m), x ∈ X, (1)

where 0(m) = (0, 0, . . . , 0)T ∈ Rm. Since f(x, C) is a discrepancy function
of system (1), then this system is consistent if and only if the set of vector
estimations of Lm(C) defined by

F (Lm(C)) = {y ∈ Rm : y = f(x, C), x ∈ Lm(C)}

contains 0(m) only.
It is easy to see that a partial case of homogenous system (1) is the hetero-

geneous system

Ax = b, x ∈ X,

where X ⊂ Zn−1, A ∈ Rm(n−1), b ∈ Rm. Therefore all the results obtained in
this paper also hold for the problem with vector function

f(x, A, b) =
(

|A1x + b1|, |A2x + b2|, . . . , |Amx + bm|
)T

.

It is known (see, e.g., Ehrgott, 2005) that Lm(C) can be defined as the result
of solving the sequence of m scalar problems:

Lm
i (C) = Argmin{|Cix| : x ∈ Lm

i−1(C)}, i ∈ Nm, (2)

where Lm
0 (C) = X , Argmin{·} is as usual the set of all optimal solutions of the

respective minimization problem. Thus, we have a sequence of sets

X ⊇ Lm
1 (C) ⊇ Lm

2 (C) ⊇ . . . ⊇ Lm
m(C) = Lm(C). (3)
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Therefore, the problem of finding Lm(C) can be considered as a problem of
sequential optimization.

We investigate five types of stability of the problem Zm(C) under indepen-
dent perturbations of the parameters of vector function f(x, C), i.e. the elements
of C. To do that we define the norm l∞ in Rk for an arbitrary dimension k ∈ N:

||z|| = max
j∈Nk

|zj |, z = (z1, z2, . . . , zk) ∈ Rk.

Under the norm of a matrix we will understand the norm l∞ of the vector
composed of all elements of a matrix.

3. Stability and strong stability

The most frequently used definition of stability of discrete problems (see, e.g.,
Sotskov et al., 1995; Emelichev et al., 2002, 2007a, 2007b; Sergienko and Shilo,
2003; Libura and Nikulin, 2004; Bukhtoyarov and Emelichev, 2006; Gurevskii
and Emelichev, 2006) is the following one.

Problem Zm(C), m ≥ 1, is called stable (under perturbations of the elements
of C) if the set

{ε > 0 : ∀C′ ∈ Ω(ε) (Lm(C + C′) ⊆ Lm(C))}

is nonempty, where Ω(ε) = {C′ ∈ Rmn : ||C′|| < ε}.
In other words, stability of Zm(C) is the property of nonappearance of new

lexicographic optima under any small perturbations of the parameters of the
problem. Therefore stability of Zm(C) is a discrete analogue of the Hausdorff
upper semicontinuity (Tanino, 1988) at point C of the multi-valued optimal
mapping

Lm : Rmn → 2X , (4)

which assigns the set of lexicographic optima to each matrix of Rmn. Here
and hereafter a problem Zm(C + C′) will be called a perturbed problem, and a
matrix C′ ∈ Ω(ε) a perturbing matrix.

Relaxing the requirement of nonappearance of new lexicographic optima, we
logically come to the concept of strong stability of the problem. According to
Emelichev et al. (2002), Zm(C) is called strongly stable if the set

{ε > 0 : ∀C′ ∈ Ω(ε) (Lm(C + C′) ∩ Lm(C) 6= ∅)}

is nonempty. Thus, Zm(C) is strongly stable only in the case where for any
small perturbations of parameters at least one solution of Lm(C) preserves its
lexicographic optimality (not necessarily the same solution for different pertur-
bations). It is obvious that Zm(C) is strongly stable if it is stable. Below we
will show (see Theorem 1) that the inverse statement also holds.
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Let us introduce the set

V m(C) = {x ∈ Lm
1 (C) : ∃x′ ∈ Lm(C) ∃p ∈ R (x′ = px)}.

Thus, V m(C) is the set of solutions of Lm
1 (C) each of which has at least one

collinear solution in Lm(C). It is easy to see that any x ∈ Lm(C) ⊆ Lm
1 (C)

belongs to V m(C). So, for any C ∈ Rmn we have

Lm(C) ⊆ V m(C) ⊆ Lm
1 (C). (5)

Let us use the following notation

Lm(C) = X\Lm(C).

Theorem 1 For lexicographic problem Zm(C), m ≥ 1, the following statements
are equivalent:

(i) Zm(C) is stable,

(ii) Zm(C) is strongly stable,

(iii) V m(C) = Lm
1 (C).

Proof. (i)⇒(ii). This implication is evident.

(ii)⇒(iii). Assume the contrary. Let Zm(C) be strongly stable, but V m(C) 6=
Lm

1 (C). Then 0(n) 6∈ X . Let x0 ∈ Lm
1 (C)\V m(C). Then, in view of (5) we have

x0 ∈ Lm(C), and therefore for any x ∈ Lm(C) we obtain f(x, C) ≺ f(x0, C).
Taking into account x0 ∈ Lm

1 (C) we derive

∀x ∈ Lm(C) ∃k = k(x) ∈ Nm\{1} ∀i ∈ Nk−1
(

|Cix| = |Cix
0| & |Ckx| < |Ckx0|

)

.

Using the fact that f(x, C) = f(x′, C) for any x, x′ ∈ Lm(C) we can write this
formula in the form

∃k ∈ Nm\{1} ∀i ∈ Nk−1 ∀x ∈ Lm(C)
(

|Cix| = |Cix
0| & |Ckx| < |Ckx0|

)

. (6)

It follows that Ck 6= 0T
(n), i.e.

||Ck|| > 0. (7)

We use inclusion x0 ∈ Lm
1 (C) \ V m(C) to construct a perturbing matrix C∗

to show that Zm(C) is not strongly stable.

Let ε > 0. In view of (6) two cases are possible.

Case 1: for any x ∈ Lm(C) the following equalities hold

C1x
0 = C1x = 0. (8)



816 V.A. EMELICHEV, E.E. GUREVSKY, K.G. KUZMIN

Since x0 6∈ V m(C), x0 does not have a collinear vector in Lm(C). Therefore,
there is a hyperplane

H = {x ∈ Rn : ax = 0},

such that (in view of 0(n) 6∈ X)

∀x ∈ Lm(C) (0 = ax0 6= ax). (9)

Next, we assign ||a|| = 1, and define the rows of C∗ ∈ Rmn by

C∗

i =

{

δa, if i = 1,

0T
(n), if i 6= 1,

where 0 < δ < ε. Then, C∗ ∈ Ω(ε). Moreover, (8) and (9) imply

|(C1 + C∗

1 )x0| = |δax0| = 0 < |δax| = |(C1 + C∗

1 )x|, (10)

which is true for any x ∈ Lm(C).

Case 2: for any x ∈ Lm(C) we have

|C1x
0| = |C1x| > 0. (11)

Then define the rows C∗

i , i ∈ Nm, by

C∗

i =

{

δCk, if i = 1,

0T
(n), if i 6= 1,

(here and hereafter, k is the same as in (6)), and set δ such that

||δCk|| < ε,

sign δ =

{

1, if sign C1x
0 6= sign Ckx0,

−1, if sign C1x
0 = sign Ckx0,

(12)

0 < |δ| <
|C1x

0|

|Ckx0|
. (13)

From this, using (7) and ||δCk|| > 0, we obtain C∗ ∈ Ω(ε). Moreover, taking
into account (by virtue of (6) and (11)) that C1x

0 and Ckx0 are nonzero, by
(12) and (13) we derive

|C1x
0 + δCkx0| = |C1x

0| − |δ| · |Ckx0|.

Taking into account the construction of matrix C∗, we conclude that

|(C1 + C∗

1 )x0| − |(C1 + C∗

1 )x| = |C1x
0 + δCkx0| − |(C1 + C∗

1 )x| ≤

≤ |C1x
0| − |δ| · |Ckx0| − |C1x| + |C∗

1x| = −|δ| · |Ckx0| + |δ| · |Ckx| < 0,
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for any x ∈ Lm(C), which, together with (10), implies

∀ε > 0 ∃C∗ ∈ Ω(ε) ∀x ∈ Lm(C) (|(C1 + C∗

1 )x0| < |(C1 + C∗

1 )x|).

Therefore, we have

Lm(C) ∩ Lm
1 (C + C∗) = ∅,

and in view of

Lm(C + C∗) ⊆ Lm
1 (C + C∗),

which holds due to (3), we conclude that Lm(C) ∩ Lm(C + C∗) = ∅. Hence,
Zm(C) is not strongly stable. The obtained contradiction proves that implica-
tion (ii)⇒(iii) is true.

(iii)⇒(i). If Lm(C) = ∅, then it is obvious that Zm(C) is stable. Let x ∈ Lm(C).
Then there are two possible cases: x ∈ V m(C) and x ∈ Lm(C) \ V m(C).

Case 1: x ∈ V m(C). According to the definition of V m(C), we have

∃x0 ∈ Lm(C) ∃p ∈ R (x0 = px). (14)

In view of x ∈ Lm(C) there exists k ∈ Nm \ {1} such that

|Ckx| > |Ckx0| = |Ckpx|. (15)

Consequently, we obtain

|p| < 1.

Using (14), for any C′ ∈ Rmn we derive

|(C + C′)x0| − |(C + C′)x| = (|p| − 1)|(C + C′)x| ≤ 0. (16)

By virtue of the continuity of function |Ckx| over Rn and taking into account
(15), we conclude that there exists ε1(x) > 0, such that

|(Ck + C′

k)x0| < |(Ck + C′

k)x|

for any C′ ∈ Ω(ε1(x)).
Then, (16) implies

f(x0, C + C′) ≺ f(x, C + C′).

As a result we obtain

∀x ∈ V m(C) ∃ε1(x) > 0 ∀C′ ∈ Ω(ε1(x)) (x ∈ Lm(C + C′)). (17)
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Case 2: x ∈ Lm(C) \ V m(C). In view of (iii) we have

|C1x
0| < |C1x|,

where x0 ∈ Lm(C). Therefore, there exists ε2(x) > 0 such that for any C′ ∈
Ω(ε2(x)) the following inequality holds:

|(C1 + C′

1)x
0| < |(C1 + C′

1)x|,

it follows that f(x0, C + C′) ≺ f(x, C + C′). Thus, we have

∀x ∈ Lm(C)\V m(C) ∃ε2(x) > 0 ∀C′ ∈ Ω(ε2(x)) (x ∈ Lm(C +C′)). (18)

Let

ε∗ = min{ε1, ε2},

where

ε1 = min{ε1(x) : x ∈ V m(C)},

ε2 = min{ε2(x) : x ∈ Lm(C) \ V m(C)}.

Then, (17) and (18) imply

∀C′ ∈ Ω(ε∗) (Lm(C) ⊆ Lm(C + C′)),

which implies that Zm(C) is stable.

Theorem 1 is proved.

Theorem 1 implies several evident corollaries.

Corollary 1 Problem Zm(C) is stable (strongly stable) if at least one of the
following conditions holds:

(i) 0(n) ∈ X,

(ii) Lm(C) = Lm
1 (C).

Corollary 2 Scalar problem Z1(C) is stable (strongly stable) for any row C ∈
Rn.

We call problem Zm(C) Boolean and denote by Zm
B (C) if X ⊆ {0, 1}n.

Corollary 3 (Emelichev and Gurevsky, 2007b) Let 0(n) 6∈ X, m ≥ 1. Then
the following statements are equivalent:

(i) Zm
B (C) is stable,

(ii) Zm
B (C) is strongly stable,

(iii) Lm(C) = Lm
1 (C).

Corollary 4 (Emelichev and Gurevsky, 2007b) If 0(n) ∈ X, then Zm
B (C),

m ≥ 1, is stable (strongly stable) for any C ∈ Rmn.
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4. Quasi-stability and unalterability

By analogy with Emelichev et al. (2002, 2005), we call the problem Zm(C)
quasi-stable if the set

{ε > 0 : ∀C′ ∈ Ω(ε) (Lm(C) ⊆ Lm(C + C′))}

is nonempty, where Ω(ε) = {C′ ∈ Rmn : ||C′|| < ε}, as before.
In other words, the problem is quasi-stable if the lexicographic optima of the

initial problem do not disappear for any small perturbations of the initial data,
but new optima can appear. Thus, quasi-stability of the problem Zm(C) is a
discrete analogue of the Hausdorff lower semicontinuity (Tanino, 1988) at C of
the multi-valued optimal mapping (4).

Let us also introduce the concept of unalterability of the problem. Problem
Zm(C) is called unalterable if the set

{ε > 0 : ∀C′ ∈ Ω(ε) (Lm(C) = Lm(C + C′))}

is nonempty. Thus, unalterability of Zm(C) is a discrete analogue of the Haus-
dorff continuity at C of the multi-valued optimal mapping (4). It is evident that
Zm(C) is unalterable if and only if it is stable and quasi-stable at once. Below
(see Theorem 2) we will prove that unalterability is equivalent to quasi-stability
for the problem Zm(C).

Suppose

Wm(C) = {x ∈ Lm(C) : ∀x′ ∈ Lm
1 (C) ∃p ∈ [−1, 1] (x = px′)}.

Thus, Wm(C) is the set of solutions of Lm(C), each of which is collinear to
any solution of Lm

1 (C). It is evident that Wm(C) ⊆ Lm(C) for any C ∈ Rmn.
Note that Wm(C) can be empty, but Lm(C) 6= ∅ for any C ∈ Rmn. It is easy
to see that Wm(C) is nonempty if and only if the elements of set Lm

1 (C) are
pairwise collinear or 0(n) ∈ X .

Theorem 2 For lexicographic problem Zm(C), m ≥ 1, the following statements
are equivalent:

(i) Zm(C) is unalterable,

(ii) Zm(C) is quasi-stable,

(iii) Wm(C) = Lm(C).

Proof. (i)⇒(ii). This implication is evident.

(ii)⇒(iii). Let Zm(C) be quasi-stable. Then, for any x ∈ Lm(C) we have

∃ε > 0 ∀C′ ∈ Ω(ε) (x ∈ Lm(C + C′)). (19)

Assume the contrary, i.e. that (iii) does not hold. Then there exists a solution
x0 ∈ Lm(C) \ Wm(C), which means that

∃x0 ∈ Lm(C) ∃x∗ ∈ Lm
1 (C) ∀p ∈ [−1, 1] (x0 6= px∗). (20)
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Besides that, from (2) and i = 1 we have

|C1x
0| = |C1x

∗|. (21)

We will construct a matrix C∗, which contradicts the formula (19). Let
ε > 0. Taking into account (20) there are two possible cases.

Case 1: x0 6= px∗ for any p ∈ R. Then there exists a vector-row a ∈ Rn such
that

ax0 6= ax∗ = 0, ||a|| = 1. (22)

Due to (21) two subcases are possible.

Subcase 1.1: C1x
0 = C1x

∗ = 0. Define the rows C∗

i , i ∈ Nm, of C∗ ∈ Rmn by

C∗

i =

{

δa, if i = 1,

0T
(n), if i 6= 1,

(23)

where 0 < δ < ε. Taking into account (22), we obtain

|(C1 + C∗

1 )x∗| = |δax∗| = 0 < |δax0| = |(C1 + C∗

1 )x0|, C∗ ∈ Ω(ε).

Subcase 1.2: |C1x
0| = |C1x

∗| > 0. Then, setting the rows of C∗ ∈ Rmn by (23)
and taking δ such that

0 < |δ| < ε,

sign δax0 = sign C1x
0,

we have

|(C1 + C∗

1 )x∗| − |(C1 + C∗

1 )x0| = |C1x
∗| − |C1x

0| − |δax0| = −|δax0| < 0.

Resuming the two subcases, we conclude that in Case 1 the following formula
is true:

∀ε > 0 ∃C∗ ∈ Ω(ε) (x0 ∈ Lm(C + C∗)), (24)

which contradicts (19).

Case 2: there exists p, |p| > 1, such that x0 = px∗. In view of (21) we obtain

C1x
0 = C1x

∗ = 0, (25)

and from (20) we have

x0 6= 0(n). (26)
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Define the rows C∗

i , i ∈ Nm, of C∗ ∈ Rmn by

C∗

i =

{

δy, if i = 1,

0T
(n), if i 6= 1,

where 0 < δ||x0|| < ε, y = x0T
. Then, using (25) and (26), we have

|(C1 + C∗

1 )x∗| = |δyx∗| =
δ

|p|
|yx0| < δ|yx0| = |(C1 + C∗

1 )x0|, C∗ ∈ Ω(ε).

It follows that in Case 2 formula (24) is true, which contradicts (19).

(iii)⇒(i). Let Wm(C) = Lm(C). Then any two solutions x ∈ Lm(C) and
x′ ∈ Lm

1 (C) are collinear to each other and according to the definition of V m(C)
we have V m(C) = Lm

1 (C). In view of Theorem 1, problem Zm(C) is stable.
Moreover, Wm(C) = Lm(C) implies that either |Lm(C)| = 1 or Lm(C) con-

tains only two solutions, which differ from each other only by a sign. Therefore,
|F (Lm(C))| = 1 and hence problem Zm(C) is quasi-stable.

Resuming the said above, we conclude that Zm(C) is unalterable.

Theorem 2 is proved.

Theorem 2 implies a few following evident corollaries.

Corollary 5 If |Lm
1 (C)| = 1, then Zm(C) is unalterable.

Corollary 6 If Zm(C) is quasi-stable, then it is stable (strongly stable).

Corollary 7 If Zm(C) has more than two lexicographic optima, then it is not
quasi-stable.

Corollary 8 Scalar problem Z1(C) is quasi-stable (unalterable) if and only if
at least one of the following conditions holds:

(i) Z1(C) has a unique optimal solution,

(ii) Z1(C) has two optimal solutions that differ from each other only by a sign.

Corollary 9 (Emelichev and Gurevsky, 2007b) Let 0(n) ∈ X. Then, the
Boolean problem Zm

B (C), m ≥ 1, is quasi-stable (unalterable) if and only if
Lm(C) = {0(n)}.

Corollary 10 (Emelichev and Gurevsky, 2007b) Let 0(n) 6∈ X. Then, for the
Boolean problem Zm

B (C), m ≥ 1, the following statements are equivalent:

(i) Zm
B (C) is unalterable,

(ii) Zm
B (C) is quasi-stable,

(iii)
∣

∣Arg min{|C1x| : x ∈ X}
∣

∣ = 1.
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5. Strong quasi-stability

The quasi-stability of the problem Zm(C) introduced in Section 4 requires pre-
serving the whole set of lexicographic optima under small perturbations of the
initial data. By relaxing this demand we obtain the concept of strong quasi-
stability. This type of stability means preserving the lexicographic optimality
for at least one of the solutions for any small perturbations of the parameters.
Thus, the problem Zm(C) is called strongly quasi-stable (Emelichev et al., 2002)
if the set

{ε > 0 : ∃x0 ∈ Lm(C) ∀C′ ∈ Ω(ε) (x0 ∈ Lm(C + C′))}

is nonempty. It is evident that any quasi-stable problem is strongly quasi-stable.

Theorem 3 Lexicographic problem Zm(C), m ≥ 1, is strongly quasi-stable if
and only if Wm(C) 6= ∅.

Proof. Necessity. Assume the contrary, i.e. that Zm(C) is strongly quasi-stable,
but Wm(C) = ∅. Then for any x ∈ Lm(C) we have

∃x∗ ∈ Lm
1 (C) ∀p ∈ [−1, 1] (x 6= px∗).

Using the same reasoning as when proving the implication (ii)⇒(iii) in Theo-
rem 2, we conclude

∀x ∈ Lm(C) ∀ε > 0 ∃C∗ ∈ Ω(ε) (x ∈ Lm(C + C∗)),

which contradicts the strong quasi-stability of Zm(C).
Sufficiency. Let x0 ∈ Wm(C). We will show that

∃ε0 > 0 ∀C′ ∈ Ω(ε0) (x0 ∈ Lm(C + C′)), (27)

which implies the strong quasi-stability of Zm(C).

Let x ∈ X . Consider two possible cases.

Case 1: x ∈ Lm
1 (C). Then, in view of x0 ∈ Wm(C), there exists p ∈ [−1, 1] such

that x0 = px. Taking into account C′ ∈ Rmn, we derive

|(C + C′)x0| − |(C + C′)x| = (|p| − 1)|(C + C′)x| ≤ 0,

i.e.

∀x ∈ Lm
1 (C) ∀C′ ∈ Rmn (f(x, C + C′) ≺ f(x0, C + C′)).

Case 2: x ∈ X \ Lm
1 (C). Then

|C1x
0| < |C1x|.

Therefore, there exists ε = ε(x) > 0 such that for any C′ ∈ Ω(ε) the following
inequality is true:

|(C1 + C′

1)x
0| < |(C1 + C′

1)x|,
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which implies f(x0, C + C′) ≺ f(x, C + C′). Thus, we have

∃ε = ε(x) > 0 ∀C′ ∈ Ω(ε) (f(x, C + C′) ≺ f(x0, C + C′)).

From this we derive

∃ε0 > 0 ∀x ∈ X\Lm
1 (C) ∀C′ ∈ Ω(ε0) (f(x, C + C′) ≺ f(x0, C + C′)),

where ε0 = min{ε(x) : x ∈ X \ Lm
1 (C)}.

Resuming the considered cases, we conclude that formula (27) holds.

Theorem 3 is proved.

The following corollaries follow directly from Theorems 1, 2 and 3.

Corollary 11 Problem Zm(C) is strongly quasi-stable if at least one of the
following conditions holds:

(i) 0(n) ∈ X,

(ii) |Lm
1 (C)| = 1,

(iii) elements of Lm
1 (C) are pairwise collinear.

Corollary 12 If Zm(C) is strongly quasi-stable, then it is stable.

Corollary 13 (Emelichev and Gurevsky, 2007b) Let 0(n) 6∈ X. Then, for the
Boolean problem Zm

B (C), m ≥ 1, the following statements are equivalent:

(i) Zm
B (C) is quasi-stable,

(ii) Zm
B (C) is strongly quasi-stable,

(iii) |Lm(C)| = |Lm
1 (C)| = 1.

Corollary 14 (Emelichev and Gurevsky, 2007b) If 0(n) ∈ X, then the Boolean
problem Zm

B (C), m ≥ 1, is strongly quasi-stable for any C ∈ Rmn.

6. Conclusions

Resuming the results obtained in Theorems 1, 2 and 3, we conclude that the re-
lations between various types of stability of the problem Zm(C) can be described
by the following scheme (Fig. 1):

Strong Quasi-Stability

⇑ ⇓

=⇒
Quasi-Stability

m
Unalterability

Stability
m

Strong Stability

Figure 1. Scheme of relations between various types of stability of Zm(C)
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Remark 1 In view of the equivalence of any two norms in a finite-dimensional
linear space (see, e.g., Suhubi, 2003), all the propositions formulated in this
paper (Theorems 1, 2, 3 and Corollaries 1–4, 5–10, 11–14) hold for any norm
in the space of matrices Rmn.

7. Examples

The following examples illustrate that the inverse implications of the scheme
are not true.

Example 1 shows that a stable (strongly stable) problem is not strongly
quasi-stable, and consequently, not quasi-stable (unalterable).

Example 1 Let m = n = 2, X = {x1, x2, x3}, x1 = (2, 1)T , x2 = (−4, 0)T ,
x3 = (0, 2)T ,

C =

(

0 0
1 2

)

.

Then, L2(C) = L2
1(C) = {x1, x2, x3}, W 2(C) = ∅. According to Corollary 1,

problem Z2(C) is stable, but in view of Theorem 3 it is not strongly quasi-stable.

The following example shows that a problem can be strongly quasi-stable
not being quasi-stable (unalterable).

Example 2 Let m = 2, n = 3, X = {x1, x2, x3}, x1 = 0(3), x2 = (1, 1,−1)T ,
x3 = (−2,−2, 2)T ,

C =

(

0 1 1
3 4 7

)

.

Then, L2(C) = X. Therefore, |L2(C)| = 3. It follows from Corollary 7 that
Z2(C) is not quasi-stable. On the other hand, taking into account Corollary 11
and 0(3) ∈ X, we obtain that Z2(C) is strongly quasi-stable.
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