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1. Introduction

Lyapunov quadratic functionals are used to test the stability of systems, to
compute the critical delay values for time delay systems, to compute the expo-
nential estimates for the solutions of time delay systems, to calculate the ro-
bustness bounds for uncertain time delay systems, and to calculate a quadratic
performance index for the process of parametric optimization for time delay
systems. We construct the Lyapunov functionals for the systems with time de-
lay with a given time derivative. For the first time such Lyapunov functional
was introduced by Repin (1965) for the case of retarded time delay linear sys-
tems with one delay. Repin (1965) provided also the procedure for determining
the coefficients of functional. Duda (1986) used the Lyapunov functional for
the calculation of the value of a quadratic performance index in the process
of parametric optimization for systems with time delay of retarded type and
extended the results to the case of neutral type time delay systems in Duda
(1988). In Infante and Castelan (1978), construction of the Lyapunov func-
tional is based on a solution of a matrix differential-difference equation on a
finite time interval. This solution satisfies symmetry and boundary conditions.
Kharitonov and Zhabko (2003) extended the results of Infante and Castelan
(1978) and proposed a procedure of constructing quadratic functionals for lin-
ear retarded type delay systems, which could be used for the robust stability
analysis of time delay systems. This functional was expressed by means of the
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Lyapunov matrix, which depended on the fundamental matrix of the time delay
system. Kharitonov (2005) extended some basic results obtained for the case
of retarded type time delay systems to the case of neutral type time delay sys-
tems, and then, in Kharitonov (2008), to the neutral type time delay systems
with discrete and distributed delay. Kharitonov and Hinrichsen (2004) used the
Lyapunov matrix to derive exponential estimates for the solutions of exponen-
tially stable time delay systems. Kharitonov and Plischke (2006) obtained the
necessary and sufficient conditions for the existence and uniqueness of the delay
Lyapunov matrix for the case of retarded system with one delay.

A numerical scheme for construction of the Lyapunov functionals has been
proposed in Gu (1997). The method starts with the discretisation of the Lya-
punov functional. The scheme is based on linear matrix inequality (LMI) tech-
niques. Fridman (2001) introduced the Lyapunov-Krasovskii functionals for sta-
bility of linear retarded and neutral type systems with discrete and distributed
delays, which were based on equivalent descriptor form of the original system
and obtained delay-dependent and delay-independent conditions in terms of
LMI. Ivanescu et al. (2003) proceeded with the delay-depended stability analysis
for linear neutral systems, constructed the Lyapunov functional and derived suf-
ficient delay-dependent conditions in terms of linear matrix inequalities (LMIs).
Han (2004a) obtained a delay-dependent stability criterion for neutral systems
with time varying discrete delay. This criterion was expressed in the form of
LMI and was obtained using the Lyapunov direct method. Han (2004b) investi-
gated robust stability of uncertain neutral systems with discrete and distributed
delays, basing on the descriptor model transformation and the decomposition
technique, and formulated the stability criteria in the form of LMIs. Han (2005)
developed the discretized Lyapunov functional approach to investigation of sta-
bility of linear neutral systems with mixed neutral and discrete delays. Stability
criteria, which are applicable to linear neutral systems with both small and non-

small discrete delays are formulated in the form of LMIs. Han (2009) studied
the problem of stability of linear time delay systems of both retarded and neu-
tral types, using the discrete delay N-decomposition approach to derive some
new more general discrete delay dependent stability criteria. Gu and Liu (2009)
investigated the stability of coupled differential-functional equations using the
discretized Lyapunov functional method and delivered the stability condition in
the form of LMI, suitable for numerical computation.

This paper presents a method of determining the Lyapunov functional
for a linear dynamic system with two delays in the general case with non-
commensurate delays and presents a special case with commensurate delays in
which the Lyapunov functional can be determined by solving a set of ordinary
differential equations. The novelty of the result lies in the extension of the
Repin’s method to the system with two delays. To the best of the author’s
knowledge, such extension has not been reported in the literature. An example,
illustrating the new method, is also presented.
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2. Formulation of the problem

Let us consider the linear system with two delays τ and r, whose dynamics is
described by equations



















dx(t)

dt
= A · x(t) + B · xt(−r) + C · xt(−τ)

x(t0) = x0 ∈ Rn

xt0 = Φ ∈ L2([−r, 0), Rn)

(1)

r > τ > 0; x(t) ∈ Rn; A, B, C ∈ Rn×n; xt ∈ L2([−r, 0), Rn)

xt(θ) = x(t + θ), t ≥ t0, θ ∈ [−r, 0) .

The state of the system (1) is a vector

S(t) =

[

x(t)
xt

]

for t ≥ t0 . (2)

The state space is defined by the formula

X = Rn × L2([−r, 0), Rn) . (3)

On the state space X we define a Lyapunov functional, positively defined, dif-
ferentiable, with the derivative computed on the trajectory of the system (1)
being negatively defined.

V (S(t)) = xT (t) · α · x(t) +

∫ 0

−r

xT (t) · β(θ) · xt(θ)dθ+

+

∫ 0

−r

xT
t (θ) · γ1(θ) · xt(θ)dθ +

∫ 0

−τ

xT (t) · κ(σ) · xt(σ)dσ+

+

∫ 0

−τ

xT
t (σ) · γ2(σ) · xt(σ)dσ +

∫ 0

−r

∫ 0

θ

xT
t (θ) · δ1(θ, ξ) · xt(ξ)dξdθ+ (4)

+

∫ 0

−τ

∫ 0

σ

xT
t (σ) · δ2(σ, ζ) · xt(ζ)dζdσ +

∫ 0

−r

∫ 0

−τ

xT
t (θ) · δ3(θ, σ) · xt(σ)dσdθ

α = αT ∈ Rn×n; β, γ1 ∈ C1([−r, 0), Rn×n); κ, γ2 ∈ C1([−τ, 0), Rn×n);

δ1 ∈ C1(Ω1, R
n×n); δ2 ∈ C1(Ω2, R

n×n); δ3 ∈ C1(Ω3, R
n×n);

Ω1 = {(θ, ξ) : θ ∈ [−r, 0), θ ≤ ξ ≤ 0}; Ω2 = {(σ, ζ) : σ ∈ [−τ, 0), σ ≤ ζ ≤ 0};

Ω3 = {(θ, σ) : θ ∈ [−r, 0), σ ∈ [−τ, 0)} .

3. Determination of the coefficients of the functional (4)

We compute the derivative of the functional (4) on the trajectory of the system
(1) according to the formula

dV (S(t))

dt
= grad(V (S(t)) ·

dS(t)

dt
for t ≥ t0 . (5)



800 J. DUDA

The derivative of the functional (4), calculated on the basis of the formula (5),
is given by the formula

dV (S(t))

dt
= xT (t) · [AT · α + α · A +

β(0) + βT (0)

2
+ γ1(0) +

κ(0) + κT (0)

2

+γ2(0)] · x(t) + xT (t)[2α · B − β(−r)] · xt(−r) + xT (t)[2α · C − κ(−τ)]xt(−τ)

−xT
t (−r) · γ1(−r) · xt(−r) − xT

t (−τ) · γ2(−τ) · xt(−τ)

+

∫ 0

−r

xT (t) · [AT β(θ) −
dβ(θ)

dθ
+ δT

1 (θ, 0) + δT
3 (θ, 0)]xt(θ)dθ

+

∫ 0

−r

xT
t (−r)[CT β(θ) − δT

3 (θ,−τ)]xt(θ)dθ −

∫ 0

−r

xT
t (θ) ·

dγ1(θ)

dθ
· xt(θ)dθ

+

∫ 0

−τ

xT (t) · [AT · κ(σ) −
dκ(σ)

dσ
+ δT

2 (σ, 0) + δ3(0, σ)] · xt(σ)dσ

+

∫ 0

−τ

xT
t (−τ) · [BT · κ(σ) − δ3(−r, σ)] · xt(σ)dσ

−

∫ 0

−τ

xT
t (σ) ·

dγ2(σ)

dσ
· xt(σ)dσ−

∫ 0

−r

∫ 0

θ

xT
t (θ) · [

∂δ1(θ, ξ)

∂θ
+

∂δ1(θ, ξ)

∂ξ
]xt(ξ)dξdθ

−

∫ 0

−τ

∫ 0

σ

xT
t (σ) · [

∂δ2(σ, ζ)

∂σ
+

∂δ2(σ, ζ)

∂ζ
] · xt(ζ)dζdσ

−

∫ 0

−r

∫ 0

−τ

xT
t (θ) · [

∂δ3(θ, σ)

∂θ
+

∂δ3(θ, σ)

∂σ
] · xt(σ)dσdθ t ≥ t0 . (6)

We identify the coefficients of the functional (4), assuming that the derivative
(6) satisfies the relationship

dV (S(t))

dt
= −xT (t) · x(t) for t ≥ t0 . (7)

When the system (1) is asymptotically stable and the relationship (7) holds,
one can easily determine the value of a square indicator of quality of parametric
optimization, knowing the Lyapunov functional (4), because

J =

∫

∞

t0

xT (t)x(t)dt = V (S(t0)) . (8)

From equations (6) and (7) we obtain the system of equations (9) to (24):

AT · α + α · A +
β(0) + βT (0)

2
+ γ1(0) +

κT (0) + κ(0)

2
+ γ2(0) = −I (9)

2α · B − β(−r) = 0 (10)

2α · C − κ(−τ) = 0 (11)
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γ1(−r) = 0 (12)

γ2(−τ) = 0 (13)

AT · β(θ) −
dβ(θ)

dθ
+ δT

1 (θ, 0) + δT
3 (θ, 0) = 0 (14)

BT · β(θ) − δ1(−r, θ) = 0 (15)

CT · β(θ) − δT
3 (θ,−τ) = 0 (16)

dγ1(θ)

dθ
= 0 (17)

AT · κ(σ) −
dκ(σ)

dσ
+ δT

2 (σ, 0) + δ3(0, σ) = 0 (18)

CT · κ(σ) − δ2(−τ, σ) = 0 (19)

BT · κ(σ) − δ3(−r, σ) = 0 (20)

dγ2(σ)

dσ
= 0 (21)

∂δ1(θ, ξ)

∂θ
+

∂δ1(θ, ξ)

∂ξ
= 0 (22)

∂δ2(σ, η)

∂σ
+

∂δ2(σ, η)

∂η
= 0 (23)

∂δ3(θ, σ)

∂θ
+

∂δ3(θ, σ)

∂σ
= 0 (24)

for θ ∈ [−r, 0], σ ∈ [−τ, 0], ξ ∈ [θ, 0], η ∈ [σ, 0] .

From equations (12) and (17) it results that

γ1(θ) = 0 for θ ∈ [−r, 0] . (25)

From equations (13) and (21) we get that

γ2(σ) = 0 for σ ∈ [−τ, 0] . (26)

The solutions of equations (22)–(24) are functions of

δi(θ, σ) = ϕi(θ − σ) where ϕi ∈ C1( [−r, τ ] ) for i = 1, 2, 3 . (27)

From equations (15) and (27) we obtain

δ1(−r, θ) = ϕ1(−θ − r) = BT · β(θ) . (28)

Hence

δT
1 (θ, 0) = ϕT

1 (θ) = βT (−θ − r) · B . (29)

From equations (16) and (27) we obtain

δT
3 (θ,−τ) = ϕT

3 (θ + τ) = CT · β(θ) . (30)
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Hence

δT
3 (θ, 0) = ϕT

3 (θ) = CT · β(θ − τ) . (31)

When we put (29) and (31) into (14), we get the formula

dβ(θ)

dθ
= AT β(θ) + βT (−θ − r) · B + CT β(θ − τ) for θ ∈ [−r, 0] . (32)

From equation (19) we obtain

δ2(−τ, σ) = ϕ2(−σ − τ) = CT · κ(σ) . (33)

Hence

δT
2 (σ, 0) = ϕT

2 (σ) = κT (−σ − τ) · C . (34)

From equation (20) we obtain

δ3(−r, σ) = ϕ3(−σ − r) = BT · κ(σ) . (35)

Hence

δ3(0, σ) = ϕ3(−σ) = BT · κ(σ − r) . (36)

When we put (34) and (36) into (18), we get the formula

dκ(σ)

dσ
= AT κ(σ) + κT (−σ − τ)C + BT κ(σ − r) for σ ∈ [−τ, 0] . (37)

We introduce two new functions

η(θ) = β(−θ−r) for θ ∈ [−r, 0] (38)

ϑ(σ) = κ(−σ − τ) for σ ∈ [−τ, 0] . (39)

We calculate the derivatives of (38) and (39)

dη(θ)

dθ
= −βT (θ)B − AT η(θ) − CT η(θ + τ) for θ ∈ [−r, 0] (40)

dϑ(σ)

dσ
= −κT (σ)C − AT ϑ(σ) − BT ϑ(σ + r) for σ ∈ [−τ, 0] . (41)

We obtained the system of differential equations


























































dβ(θ)

dθ
= AT · β(θ) + ηT (θ) · B + CT · β(θ − τ)

dη(θ)

dθ
= −βT (θ) · B − AT · η(θ) − CT · η(θ + τ)

dκ(σ)

dσ
= AT · κ(σ) + ϑT (σ) · C + BT · κ(σ − r)

dϑ(σ)

dσ
= −κT (σ) · C − AT · ϑ(σ) − BT · ϑ(σ + r)

θ ∈ [−r, 0] , σ ∈ [−τ, 0] .

(42)
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Functions β, η, κ, ϑ are not independent, β and η are linked by formula
(38), κ and ϑ by formula (39). The functions β and κ are also combined. This
is implied by formulas (31) and (35). From (31) we obtain

ϕ3(θ) = βT (θ − τ)C

and from (35) we have

ϕ3(σ) = BT κ(−σ − r) .

According to (27), function ϕ3 is defined on the interval [−r, τ ].
Now we can write down the following functional interdependences between

the functions β, η, κ, ϑ

CT · β(θ − τ) = ϑT (θ + r − τ) · B for θ ∈ [−r,−r + τ ] (43)

CT · η(θ + τ) = κT (θ) · B for θ ∈ [−τ, 0] (44)

BT · κ(σ − r) = ηT (σ − r + τ) · C for σ ∈ [−τ,−τ + r − τ ] (45)

BT · ϑ(σ + r) = βT (σ) · C for σ ∈ [−τ, 0] . (46)

Upon taking the relations (25), (26) and (38), (39) into account, equations (9)–
(11) take the form of

AT · α + α · A +
β(0) + βT (0)

2
+

κ(0) + κT (0)

2
= −I (47)

2α · B = η(0) (48)

2α · C = ϑ(0) . (49)

The solution of the differential equations (42) with regard to relations (43)–
(46) satisfies the conditions

β

(

−r

2

)

= η

(

−r

2

)

(50)

κ

(

−τ

2

)

= ϑ

(

−τ

2

)

. (51)

Formula (50) was obtained from (38) and formula (51) from (39).
The set of algebraic equations (47)–(51) allows for determination of the

matrix α and the initial conditions of the functions β(θ), η(θ), κ(σ), ϑ(σ) for

θ ∈ [−r, 0], σ ∈ [−τ, 0].
From equations (27), (29) and (38) we get the formula

δ1(θ, σ) = BT · η(θ − σ) for θ ∈ [−r, 0], σ ∈ [−τ, 0] . (52)

From equations (27), (34), (39) we obtain the formula

δ2(θ, σ) = CT · ϑ(θ − σ) for θ ∈ [−r, 0], σ ∈ [−τ, 0] . (53)
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From equations (27), (31), (36) we obtain the formula

δ3(θ, σ) = βT (θ − σ − τ) · C = BT · κ(σ − θ − r) (54)

for θ ∈ [−r, 0], σ ∈ [−τ, 0] .

In this way we obtained all parameters of the Lyapunov functional.

4. A specific case, the system with two commensurate

delays

Let us consider a special case, in which the system of equations (42) will be
transformed into the set of ordinary differential equations. We assume that the
quotient of delays τ and r is a positive rational number which is less than or
equal to 1. Hence, there exist two natural numbers m and n such that there
does not exist a natural number not equal to 1 that divides the numbers m and
n. The following relationships hold

τ = m · h; r = n · h; m, n ∈ N ; 0 < h ∈ R . (55)

We introduce the functions







































βi(ξ), ηi(ξ), κj(ξ), ϑj(ξ)

for ξ ∈ [−h, 0]; i = 1, ..., n; j = 1, ..., m

β(θ) = βi(θ), η(θ) = ηi(θ)

for θ ∈ [−r + (i − 1) · h, −r + i · h]; i = 1, ..., n

κ(σ) = κj(σ), ϑ(σ) = ϑj(σ)

for σ ∈ [−τ + (j−1) · h, −τ + j · h]; j = 1, ..., m .

(56)

These functions satisfy the following set of conditions



























































β1(−h) = β(−r) = η(0)

βi(−h) = βi−1(0) for i = 2, ..., n

η1(−h) = η(−r) = β(0)

ηi(−h) = ηi−1(0) for i = 2, ..., n

κ1(−h) = κ(−τ) = ϑ(0)

κj(−h) = κj−1(0) for j = 2, ..., m

ϑ1(−h) = ϑ(−τ) = κ(0)

ϑj(−h) = ϑj−1(0) for j = 2, ..., m .

(57)

We can write equations (42) with regard to dependencies (43)–(46) for the
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functions (56) in the form



























































































































































dβi(ξ)

dξ
= AT · βi(ξ) + ηT

i (ξ) · B + ϑT
i (ξ) · B

for i = 1, ..., m

dβi(ξ)

dξ
= AT · βi(ξ) + ηT

i (ξ) · B + CT · βi−m(ξ)

for i = m + 1, ..., n

dηi(ξ)

dξ
= −βT

i (ξ) · B − AT · ηi(ξ) − CT · ηi+m(ξ)

for i = 1, ..., n − m

dηi(ξ)

dξ
= −βT

i (ξ) · B − AT · ηi(ξ) − κT
i−(n−m)(ξ) · B

for i = n − m + 1, ..., n

dκj(ξ)

dξ
= AT · κj(ξ) + ϑT

j (ξ) · C + ηT
j (ξ) · C

for j = 1, ..., n − m

dκj(ξ)

dξ
= AT · κj(ξ) + ϑT

j (ξ) · C + BT · κj−(n−m)(ξ)

for j = n − m + 1, ..., m

dϑj(ξ)

dξ
= −κT

j (ξ) · C − AT · ϑj(ξ) − βT
j+n−m(ξ) · C

for j = 1, ..., m ξ ∈ [−h, 0] .

(58)

There are relationships between the initial conditions of the system (58) as
below



















βi(0) = ηn−i(0) for i = 1, ..., n − 1

βn(0) = β(0)

ϑj(0) = κm−j(0) for j = 1, ..., m − 1

ϑm(0) = ϑ(0) .

(59)

We obtain matrix α and the initial conditions of the system (58) by solving
the set of algebraic equations



















































AT · α + α · A +
β(0) + βT (0)

2
+

κ(0) + κT (0)

2
= −I

2α · B = η(0)

2α · C = ϑ(0)

βi

(

−
h

2

)

= ηn+1−i

(

−
h

2

)

for i = 1, ..., n

κj

(

−
h

2

)

= ϑm+1−j

(

−
h

2

)

for j = 1, ..., m .

(60)
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Having a solution of the set of equations (58) we can obtain the matrices
β(θ), η(θ), κ(σ), ϑ(σ) from equations (56) and the matrices δ1(θ, σ), δ2(θ, σ),
δ3(θ, σ) from equations (52)–(54).

5. An example

Let us consider the system described by equation















dx(t)

dt
= a · x(t) + b · xt(−2h) + c · xt(−h)

x(0) = x0 ∈ R

xt(0) = Φ ∈ L2([−2h, 0), R)

(61)

t ≥ 0; x(t) ∈ R; xt ∈ L2([−2h, 0), R); xt(θ) = x(t + θ); (62)

a, b, c ∈ R; h > 0 .

The Lyapunov functional is defined by the formula

V (S(t)) = α · x2(t) +

∫ 0

−2h

x(t) · β(θ) · xt(θ)dθ +

∫ 0

−2h

γ1(θ) · x
2
t (θ)dθ+

+

∫ 0

−h

x(t) · κ(σ) · xt(σ)dσ +

∫ 0

−h

γ2(σ) · x2
t (σ)dσ+

+

∫ 0

−2h

∫ 0

θ

xt(θ) · δ1(θ, ξ) · xt(ξ)dξdθ +

∫ 0

−h

∫ 0

σ

xt(σ) · δ2(σ, ζ) · xt(ζ)dζdσ+

+

∫ 0

−2h

∫ 0

−h

xt(θ) · δ3(θ, σ) · xt(σ)dσdθ . (63)

The set of equations (58) becomes







































dβ1(ξ)

dξ
dβ2(ξ)

dξ
dη1(ξ)

dξ
dη2(ξ)

dξ
dκ(ξ)

dξ
dϑ(ξ)

dξ







































=

















a 0 b 0 0 b

c a 0 b 0 0
−b 0 −a −c 0 0
0 −b 0 −a −b 0
0 0 c 0 a c

0 −c 0 0 −c −a

















·

















β1(ξ)
β2(ξ)
η1(ξ)
η2(ξ)
κ(ξ)
ϑ(ξ)

















, (64)

ξ ∈ [−h, 0] .
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Eigenvalues of the matrix of equation (64) are as follows

λ1 = a λ2 = −a λ3 =
√

g + d λ4 = −
√

g + d λ5 =
√

g − d

λ6 = −
√

g − d where g = a2 − b2 −
c2

2
, d = c ·

√

c2

4
+ 2b2 − 2a · b .

Now we give the formulas for determination of the set of initial conditions
of equation (64). Relations (57) take the form as below:







































β1(−h) = η(0)

β2(−h) = β1(0)

η1(−h) = β(0)

η2(−h) = η1(0)

κ(−h) = ϑ(0)

ϑ(−h) = κ(0)

. (65)

Among the initial conditions there are relations as below:

{

β1(0) = η1(0)

β2(0) = β(0)
. (66)

Relations (60) become







































2α · a + β(0) + κ(0) = −1

2α · b = η(0)

2α · c = ϑ(0)

η1(−
h
2 ) = β2(−

h
2 )

β1(−
h
2 ) = η2(−

h
2 )

κ(−h
2 ) = ϑ(−h

2 )

. (67)

Having the solution of equations (64)

β1(ξ), β2(ξ), η1(ξ), η2(ξ), κ(ξ), ϑ(ξ), ξ ∈ [−h, 0] and the matrix α

we obtain

β(θ), η(θ), κ(σ), ϑ(σ) and δ1(θ, σ) = b · η(θ − σ),

δ2(θ, σ) = c · ϑ(θ − σ), δ3(θ, σ) = c · β(θ − σ − τ) .

The figure below shows the graphs of functions β(θ), η(θ), κ(σ), ϑ(σ) and
α, obtained with the Matlab code, for given values of parameters a, b and c of
the system (61).
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6. Conclusions

The paper presents the procedure for determining of the coefficients of the Lya-
punov functional, given by the formula (4), for the linear system with two delays,
described by equation (1). This paper extended the method due to Repin to the
systems with two delays. The method presented allows for obtaining the ana-
lytical formula for the factors occurring in the Lyapunov functional, which can
be used to examine the stability and in the process of parametric optimization
to determine the square quality index, given by formula (8).
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