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Abstract: The objective of the presented research is to con-
struct a model of a patient’s health that is based on the idea of
cognitive map, a graphical knowledge-representation tool. The ap-
plication of the proposed model for medical diagnosis is the practical
goal of the research. Initially, we provide a brief review of the re-
lated works on medical decision support systems and cognitive maps.
Afterwards, we sketch the general idea of the conceptual approach
to the representation of medical knowledge and provide a new for-
mulation of the medical diagnosis problem. Then, we define our
model based on associational cognitive maps and show how it can
be applied to diagnosis support. Due to the relative ease of under-
standing of cognitive map, the model can be easily interpreted and
used, thereby making medical knowledge widely available through
computer consultation systems. The application example presented
is based on a relatively simple, real medical case.
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1. Introduction to medical decision support systems

Many medical decision support systems have been developed in recent years.
Therefore, we decided to present only a general, descriptive introduction to
this area. To relate our research to some of the existing systems, two general
approaches to their design are presented. The first approach is the attribute-
value approach represented, e.g., by traditional expert systems such as MYCIN
(Buchanan and Shortliffe, 1984). These types of systems are usually equipped
with a rule knowledge base and a corresponding inference mechanism. On the
basis of rules, it is possible to classify new instances of medical observations
by matching the set of observed symptoms (feature vector) to the conditional
part of a rule and then to use logical deduction to achieve the diagnosis or con-
struct a plan for the therapy. The diagnosis is usually understood as a crisp or
approximate classification of symptoms. Note also that, in rule-based systems,
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the association between diverse types of medical symptoms with respect to their
consequences is achieved within the conditional part of a rule. This association
is, in fact, interpreted as a possible co-occurrence of values (or subsets of values)
of the conditional attributes. The time interval, during which this co-occurrence
was experienced, is usually not considered. The inference mechanism relies on
the relationship between the conditional and decision parts of the rules. How-
ever, the semantics of this dependence is, in many cases, intuitive and formally
not clear e.g., it does not express any formal, well-defined, cause-and-effect rela-
tionship. The representation of causality (Pearl, 2000) is, in fact, left to human
intuition. Note also that mapping between rules and medical natural language
has some difficulties due to the incompatibility between the structures of infor-
mation expressed in rule knowledge base and the semantics of medical language.
The attempts to overcome some of the limitations of the traditional, rule-based
systems can lead to the use of probabilistic models (e.g., Bayesian networks),
non-classical logic, or hybrid solutions with supplemental annotation of rules
in natural language. The second approach, which is somewhat the opposite of
the attribute-based solutions approach, is the conceptual modeling approach
(Chen, Fuller and Friedman, 2005). The main premise for the representation
of conceptual knowledge is taken from the biology of the human mind and cog-
nitive science. It was inspired by the biological and psychological observations
that human knowledge is structured in the form of concepts and the associa-
tions among them. Another biologically-inspired hypothesis contends that the
human learning process is, in fact, a process of relating a new observation to
the existing structure of associations among concepts. The biological inspira-
tions led initially to the general and intuitive understanding of such terms as
‘concept’ or ‘associations among concepts,’ which later were assigned different
meanings in the computer science literature. Conceptual modeling is a research
area that has attracted increasing interest in recent years. There are knowledge-
representation methods that can be considered, in general, to exemplify the con-
ceptual modeling approach, e.g., ontologies, semantic networks, formal concept
analysis, or cognitive maps. We can mention the Unified Medical Language Sys-
tem (UMLS) (McCray, 2003), which contains a controlled medical vocabulary
and a semantic network of biomedical concepts. Due to the lexical nature of
ontologies, their automatic acquisition attempts concentrate mainly on mining
medical texts (medical corpora). A visual map of medical terms extracted from
different textual sources was presented in Lin et al. (2007). The introduction of
dynamics to conceptual modeling in medicine starts with the analysis of tempo-
ral sequences of symptoms and interventions. Temporal reasoning in medicine
has been investigated for almost three decades. Among many existing solutions,
we can mention the creation of temporal clinical databases and the possibility
of performing predictions on this basis. A review of temporal representation
and reasoning in medicine can be found in Adlassnig et al. (2006). The relation-
ship between temporal knowledge and medical natural language can be found
in Zhou and Hripcsak (2007). In addition to temporal information, a medical
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expert system has to deal with uncertain knowledge (Straszecka, 2006). The
uncertainty in medical science relates, e.g., to imprecise classification of symp-
toms or vague knowledge about temporal dependencies. The uncertainty is also
involved in linguistic descriptions (Zhou and Hripcsak, 2007) provided by a pa-
tient or physician. The above problems require the application of appropriate
methods for representing uncertain or approximate knowledge. Among many
examples, we can mention a hybrid system with fuzzy reasoning that supports
medical diagnosis proposed by Kuncheva (Kuncheva et al., 1993). There are
also examples of expert systems (Steimann, 1997, 2001) developed on the basis
of fuzzy sets theory that combine most of the above-mentioned features, i.e.,
conceptual knowledge representation and temporal and uncertain reasoning.
Medical diagnosis, monitoring of the patient’s condition, and planning treat-
ment have been integrated in a sophisticated decision support system proposed
by Zhou and Hripscak (Zhou and Hripcsak, 2007). One contemporary direc-
tion in research related to medical decision support systems is the application
of cognitive maps (CMs), which may be a less-known conceptual approach to
the representation of medical knowledge. The main advantage of CMs is their
ability to incorporate and combine concepts, which have been heterogeneously
and approximately described, with their mutual causal relations. As opposed
to ontologies, which operate mostly on a symbolic level (i.e., using symbolic
identifiers of concepts and relations), cognitive maps can be directly related to
data. The structure of a CM is usually limited to modelling causal relations
between concepts, but they can be easier understood and then applied while
performing classification and reasoning on the basis of new observations. An
introduction to the theory of cognitive maps and the relationship of existing
CM-based systems to our model are presented in the following section.

2. Cognitive map as a knowledge representation - related

works

Cognitive map is a biologically-inspired (Tolman, 1948; Okeef’e and Nadel,
1978), knowledge-representation method introduced initially in the social sci-
ences by Axelrod (Axelrod, 1976). The initial theoretical model of CMs was
targeted at the representation of cause-and-effect relationships among concepts
described in natural language. The intuitive and easy-to-interpret representa-
tion of a CM is a directed graph, consisting of concept nodes and the cause-and-
effect relations (directed arcs) among the concept nodes. The concepts, which
represent sets of observations within the domain of interest, can be described
in diverse ways. In a case, in which a particular concept has been observed,
it is assumed as activated and can afterwards influence the activation of other
concepts in the graph. This means that concepts can be activated by means of
observation or by stimulation from their neighbors in the graph of the CM. The
arcs indicate the directions of causal dependencies between source and target
concepts. In the generic model of a CM, the causal dependencies can be positive
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(the respective arc is labeled with a “+” sign) or negative (the respective arc
is labeled with a “–” sign). For positive causal dependencies, the activation of
one concept causes the activation of another concept, and for negative causal
dependencies, the activation of a concept deactivates the other concept. The
dynamics of CMs is thus expressed by arcs that can be used to represent the
behavior of the CMs over time. Note that the initial intuitive model of the CM
used in social sciences and economics did not define precisely many important
features of the CM, e.g., what does it precisely mean that a concept is active, or
what does a causal relationship among concepts mean formally. The behaviors
of generic CMs are not obvious in cases in which opposite types of influences
(positive and negative) exert impact upon one concept. It is not clear whether
or under what circumstances the compatible influences should be summed.

Among many extensions to the generic CM model, the most influential are
the fuzzy cognitive maps (FCMs) introduced by Kosko (Kosko, 1986). The
concepts in this model are mapped to the real-valued activation level from the
continuous closed interval [0, 1] ∈ R, where 0 means no activation and 1 means
full activation. In FCMs, the arcs are labeled with the weights wij ∈ [−1, 1] that
represent the strength of the causality, where −1 means fully-negative causal
influence and +1 means fully-positive causal influence. The interpretation of
the weights depends on the assumed definition of the causal relationship or
the assumed method of learning (adaptive or evolutionary). While performing
adaptive type of learning (the DHL-Differential Hebbian Learning), the so-called
activation values, ai, of all concepts are observed primarily at two consecutive
time steps. For every concept, one can compute: ∆ai = ai(t) − ai(t − 1). Af-
terwards, the modification of weights is based on the rule, i.e., wij(t + 1) =
wij(t) + c(t)[∆ai∆aj − wij(t)], where c(t) = 0.1[1 − t/1.1q], is the learning co-
efficient and q ∈ N is the parameter. While applying the evolutionary type of
learning, the weights are modified by the genetic operators during the evolu-
tionary process. The aim of the optimization is to achieve values of weights that
will enable the simulation of the changes of activation of concepts observed in
the environment. In this case, the computation of the fitness function involves
the evaluation of the entire FCM by measuring the sum of the differences be-
tween observed and actual activity values for all concepts. The above learning
methods impose some important limitations on the possible understanding of
causality, especially in the light of the sophisticated analysis presented in Pearl
(2000).

Having an activation state of concepts (with only a subset of them active at
the same time), it is possible to compute iteratively the activation values of con-
cepts in the future, using, e.g., the equation: aj(t+1) = γ(aj +

∑n

i=1,i6=j wijai),
where γ is the threshold function that serves to confine unbounded values to
a strict range. The computation of the next states of nodes is interpreted as
forward reasoning. Backward reasoning is also possible and leads to searching of
possible causes on the basis of known effects. Other features, such as the additive
combination of influences of arcs on nodes or the incorporation of time delays in
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the maps, are still being discussed among researchers. The problem of modeling
time delays between concepts has been addressed in Park and Kim (1995). The
proposal of HO-FCMs (Stach et al., 2006) overcomes the problem of modeling
high-order dynamics by adding memory to the concept nodes. The drawback
of the generic CM is its inability to deal with co-occurrence of concepts, such
as those expressed by logical ‘and’ conditions. A survey of FCM extensions is
presented in Aguilar (2005). Despite some problems with the initial model of
the FCM, it has become very influential and has been used in many successful
applications. In the last decade, the main stream of applications of cognitive
maps are decision support systems (DSSs). FCMs have already been applied
successfully in medical diagnosis support, including language impairment dis-
orders. The solution presented in Stylios and Georgopoulos (2008) assumes
that medical diagnosis is a single concept in CM. The reasoning is performed
forward, towards the stated goal of achieving the activation of one of the ex-
pected diagnosis nodes. In spite of operating with a relatively large number of
concepts compared to other known FCM applications, the system presented in
Georgopoulos, Malandraki and Stylios (2003) considers only a one-step, forward-
reasoning process. The decomposition of FCM to the group of local maps has
been proposed in Stylios and Georgopoulos (2008). The application of fuzzy
cognitive maps to medical diagnosis was also proposed by Innocent and John
(2004). The integration of FCM and case-base reasoning (CBR) in medical de-
cision support systems seems to be very promising approach (Georgopoulos and
Stylios, 2005).

3. Conceptual approach to medical knowledge represen-

tation

The first problem during medical investigations is the necessity of rapid classi-
fication of symptoms. Symptoms are manifestations of a disease and are com-
prised of the observations reported by patients or made by doctors while exam-
ining patients. The identification of the underlying causes of symptoms is crucial
and improves the chance of proper diagnosis of the disease and prescribing the
correct treatment. In many cases, however, the directly-observed symptoms
provide insufficient information for the proper identification of the underlying
cause of the symptoms. Therefore, some medical examinations and tests must
be conducted to provide additional data and information for use in providing
the appropriate diagnosis and treatment. Sometimes, the initial treatment must
be based on symptoms alone in order to treat severe symptoms, such as exces-
sive body temperature. Unfortunately, when this is done without treating the
underlying cause, the symptoms are very likely to recur. This shows the dy-
namics of the process of diagnosis and treatment that has to be embedded in
the representation of medical knowledge.

If quantitative data are available as records of measurements (e.g., the mea-
surement of the number of white cells in the patient’s blood), there is usually a
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need to map them to meaningful categories (concepts), e.g., mapping the num-
ber of actual white cells in the blood to acceptable or dangerous levels of white
cells. The classification of quantitative data to the qualitative medical con-
cept depends frequently on diverse factors, e.g., factors related to the patient’s
age or the history of the disease. These factors can be seen as the parameters
of the classification process. In some cases, a medical concept can be under-
stood as a generalization of a subset of observations (measurements), but other
concepts used in medical science may be based only on the doctor’s direct ob-
servations and can be very complex. Therefore, the heterogeneous description
of medical observations and concepts within a model of therapy is appreciated.
The identification of medical concepts on the basis of available observations (or
medical examinations) can be quite complex. The concepts can involve not only
similarity-based clusters of observations but also temporal patterns that can be
observed within data (e.g., a rapid temperature increase in a short period of
time). In medical practice, the classification problem is left to the doctors and
depends on their skills, specializations, and medical experience. On the other
hand, in many cases, the construction of medical concepts and classification of
medical data can be solved by well-known methods, e.g., by supervised learning
of classifiers on the basis of examples (extracted from disease histories). Intuitive
understanding of the relationships between concepts, the patient’s condition,
the electronic health record, and natural medical language has been sketched in
Fig. 1. Medical concepts are usually mutually associated, and the knowledge of
these associations should be represented and involved within the medical model.
The associations among medical concepts include relations that are usually tem-
poral, approximate and involve the dynamics of causes and symptoms with their
mutual positive or negative influences. It is important to distinguish two types
of concepts. One type consists of the concepts that are purely observational,
i.e., they are related to symptoms or measurements. The other type consists
of the concepts that represent medical interventions (e.g., prescribing drugs or
surgery). Interventional concepts cannot be influenced by any other concepts
within the model. Note that the concepts can be expressed by a doctor in mod-
ern language or in Latin to avoid the ambiguity of medical terms. We would
like to refer to the example that has been given in Lin et al. (2007). If we
look for terms related to the term “allergy,” we will find a large set of possible
words, e.g., “hypersensitivity,” “allergens,” “asthma,” “cytokines,” “eosinophils,”
and “occupational diseases.” The set of associated terms can include synonyms,
related diseases, and diverse types of therapies. The semantics of conceptual
knowledge can be defined by the application of fuzzy relations (Tamir and Kan-
del, 1995). It is possible to consider the relations between concepts that can be
expressed in form of symbolic terms, e.g., the cause-and-effect relationship can
be expressed by: ‘A causes B,’ where A and B denote the names assigned to
concepts, and the term ‘causes’ refers to the name of the relationship between
them.
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Figure 1. A general scheme of the conceptual approach to medical knowledge
representation

In medical praxis, it would be appreciated if concepts and their mutual re-
lationships were mapped to standardized terminology. This can be done by
the application of electronic health records (EHRs). The initiative openEHR
(Beale and Heard, 2007) provides schemes for storing medical data that can be
captured within concepts and linked to the standard vocabulary. It would be
the role of decision support system to interpret stored observations and provide
the doctor with helpful suggestions that are compatible with the EHRs. Even a
brief overview of the openEHR initiative is far beyond the scope of this paper.
The complexity of mapping from the set of available terms to medical language
depends on the assumed language (formal, controlled, or natural). In our opin-
ion, the semantic interpretation of medical language should be placed within
the conceptual space, where the construction of concepts and relations among
them can be directly interpreted within medical data.

4. A problem of medical diagnosis

The correct diagnosis of a disease should lead to prescribing an appropriate
treatment. The intent of treatment is to improve the health of the patient
and eliminate the symptoms of the disease, but, in fact, treatment may lead to
unexpected effects that require appropriate and rapid interventions. Continuous
monitoring of the patient’s health and immediate adaptation of treatment can
be crucial for the success of the entire therapy. Medical therapy can be seen as
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a complex, dynamic process that should be anticipated and planned beforehand
by doctors. As we have sketched, the problem of medical diagnosis requires the
construction of a complex representation scheme to capture static and dynamic
phenomena that can be encountered during the therapy. We would like to
emphasize that the key feature of such knowledge representation is its capability
of providing precise representations of diverse types of data and the associations
within them. This involves:

1. qualitative and quantitative descriptions of data (symptoms or interven-
tions) in the generalized form of concepts,

2. representation of relations between concepts,
3. the possibility of evidential (identification of causes on the basis of symp-

toms) and causal reasoning (simulation of effects of interventions),
4. identification of patterns within the conceptual representation scheme.

As opposed to other approaches, we take the position that a medical diagnosis is
more frequently a problem of identification of a process than the classification of
a static observation (e.g., feature vector) to the predefined class. To formalize
this idea, we assume that we have available a set of raw medical data O =
S + I, which consists of symptoms S and interventions I. Every observation or
intervention will be classified to the concept c ∈ C. For every concept, we will
assign its classification function:

ψi : O × C → [0, 1] ∈ R, (1)

where [0, 1] denotes a closed, continuous interval within R, and the subscript
i refers to a particular concept. The function ψi can operate in approximate
manner, reflecting by its value the uncertainty that can emerge during classifi-
cation (e.g., due to incomplete observational data). Note that assuming c ∈ C
as a fuzzy set and interpreting ψi as a fuzzy membership function do not auto-
matically imply the application of fuzzy logic while performing reasoning within
the concept space.

Let us now define a mapping a : C → [0, 1] ∈ R of every concept to the
so-called activation value that represents its current state. Intuitively, a(ci)
specifies whether a corresponding observation or intervention is experienced.
On the basis of ψi(o, c) we will compute the activation value a(ci) = ψi(o, c).
Let T = {t0, t1, ..., tn} be an ordered set of time labels pointing to time moments.
For the purpose of this paper, we assume discrete time flow, i.e., ti−ti−1 = △ti is
a constant equal to 1. If the time has to be considered, the respective activation
values of concepts will be complemented by the letter t. The flow of medical
observations and interventions can be represented by a temporal sequence of
concept activation values, i.e., by a subset F ⊂ T × C × A. The constraint is
that the activation values are uniquely assigned to concepts given a particular
time step. Note that any sequence from f ∈ F can reflect in its trivial form a
single static observation of one concept, e.g., f = {< ts, c1, av >}, where ts is the
time label, c1 is the concept label, and av is the corresponding activation value.
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Table 1. Activation of concepts in time
Time Activations of concepts

t1 ...
.. ...
ts a1=0.3, a2=0.6
to a4=0.4, a8= 0.82, a9=0.63
te a5= 0.92
... ...
tn ...

We can also write this in the form: a(ts, c1) = av. Assuming that every concept
label is mapped to the unique index, we have a1(ts) = av. The exemplary se-
quence of concept activations has been sketched in Table 1. In some cases, we
would like to consider only concepts with binary activation values. In such case,
the uncertainty involved in classification of symptoms is neglected. For every
active concept ci for which ai > atre holds, we will write simply ai(t) instead
of specifying the exact activation value. Thus, for atre = 0.5, the sequence
from Table 1 is reduced and can be denoted as: {a2(ts), a8(t0), a9(t0), a5(te)}.
Afterwards, we look for possible relations between concepts that govern their
activations over time. Later, we will identify the concepts that co-occur (are
active) at the same time as associated concepts. The activation of some con-
cepts can cause (in its intuitive meaning) the activation of other concepts. The
association and causality are two overlapping relations that will be assumed
within concept space C. As will be shown, both of these relations can play an
important role in analyzing the state of the patient’s health.

Now, let us present our understanding of medical diagnosis. Let D be a set
of known sequences of concept activations such that every fd ∈ D represents the
dynamics of one particular disease, from the first negative symptoms at time ts,
through the set of medical interventions that lead to the last symptoms at time te
and final recovery at te +1. The symptoms and interventions are represented as
activations of concepts. Let us assume that, at time period [ts, t0], we observed
a sequence f0 ∈ F , where t0 denotes a current time moment.

We define a medical diagnosis as the mapping δ : F → D such that δ(f0) =
fd. The problem of defining similarities or patterns for sequences within D is left
here as a challenge for future research. Note that the diagnostic sequence fd ∈ D
should extend f0 in time with the plan of therapy. Thus, the understanding
of the patient’s recovery is in accordance with our intuition and means the
elimination of symptoms and the return of the patient’s health to a stable state.
For the purposes of this paper, we assume that the diagnostic sequences from
D have to be provided by a physician.



448 W. FROELICH, A. WAKULICZ-DEJA

5. Associational cognitive maps

For the targeted medical diagnosis support system, we propose an extended
model of the cognitive map. Apart from representing causal dependencies be-
tween concepts, the proposed ACM (associational cognitive map) enables to
represent a phenomenon that is well known in medical science, i.e., the co-
occurrence of symptoms that are not linked by causal dependencies. We define
the associational cognitive map as the triple:

Definition 1

ACM =< C,α, κ >,

where C is the finite set of concepts, α is the association relation, and κ is the
causal relation.

The understanding of concepts as approximated subsets of observations was
presented in Section 4. Now, we explain the interpretation of relations α and κ.
We assume that α ⊆ C × C is a binary association relation that expresses the
co-occurrence of concepts within C. The relation ci ∝ cj holds when:

∀t ∈ T. (ai (t) > atre ) ⇔ (aj (t) > atre), (2)

where atre ∈ [0, 1] is a pre-defined constant, the activation threshold. Note
that, in comparison to the idea of association rules based on frequent itemsets
(Agrawal and Imielinski, 1993), our association relation differs according to
some essential features: 1) the association refers to concepts within the cognitive
map; 2) the α relation is symmetric; and 3) the information about time (co-
occurrence) is explicitly involved in its definition. As mentioned earlier, the
generic model of the cognitive map is intended to play the role of a causal graph
with edges representing the causal relations between concepts. However, the
formal interpretation of causal relations in CM depends to a great extent on
the approach used during setting or learning their weights. Due to existing
controversies in understanding of causality (Pearl, 2000), in our ACM we prefer
a generalized definition of the causal relationship that will be used within a
cognitive map. Let κ ⊆ C×C be a binary relationship ’is-a-cause’: c1κc2 denotes
that c1 is a cause of c2. Since the relationship κ should reflect human causal
knowledge (in a medical diagnosis problem), it should possess some of features
experienced in common reasoning. Without doubt, it should also impose some
constraints on the construction of the cognitive map. We assume that a concept
cannot be the cause of itself. If a particular concept c1 is a cause of c2, then
the reverse situation is not possible at the same time. For the two concepts c1,
c2, we assume anti-reflexivity: ∀c1 ∈ C ∽ (c1κc1) and anti-symmetry: ∀c1, c2 ∈
C c1κ c2 ⇒∽ (c2κc1). Indirect cycles through other concepts are possible.
Let us now consider the semantics of relation κ. We would like to propose its
interpretation by applying the characteristic function µ, namely:

c1κc2 ⇔ µ(c1, c2) ∈ Z, (3)
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where µ : C×C → Z is the characteristic function. The set Z is not restricted to
numerical values and can involve linguistic utterances, e.g., “weak” or “strong".
For example, if we assume Z = [−1, 1] − {0} the characteristic function can be
defined (such as in DHL algorithm) as µ(ci, cj) = γ(

∑
T ∆ai∆aj), where γ is the

normalization function and ∆ai = ai(t)− ai(t− 1) for any t ∈ T . However, the
computation of µ(ci, cj) is not restricted to taking into account only the changes
of activation values of two concepts in consecutive moments of time and can
be improved by the BDA algorithm (Huerga, 2002), for example. Depending
on the available data (type of environment, e.g., observational, temporal, or
experimental), the attempts for proper construction of µ and thus interpretation
of κ can be performed in diverse ways.

The more information that we are able to acquire from raw data, the more
relevant to our requirements is the µ we could try to construct. Based on
our assumptions, we now expect that the associational and causal relations will
influence the activation of concepts within the set of sequences F . For a concept
that is at some time active, we expect its association with or causal dependency
upon other concepts. The knowledge about these dependencies can be stored
in the proposed ACM model. On this basis, we will search for possible effects
and causes for the groups of active concepts by forward and backward reasoning
within the ACM. The intention is to use the current observations and knowledge
stored in ACM to reconstruct possible concept activations in the future or in
the past. The goal is to identify within F any matching diagnostic sequence
stored in the set D.

6. Reasoning within ACM

From the point of view of medical diagnosis, evidential reasoning is essential.
Before planning the therapy, it is necessary to find any hidden causes of the
observed symptoms. In many cases, the association of current symptoms is
the effect of a common cause. Therefore, there is a need to acquire as many
symptoms as possible in order to identify the common cause correctly. This
situation can recur while considering the diagnosis as the identification of a
dynamic process. Note that due to the nature of biological processes, many
diseases are manifested only partially by symptoms that are easily observable.
In some cases, the hidden part of the disease can last for years. Since medical
investigations and observations are usually incomplete, searches for causes that
are based only on a set of observed symptoms can, in many cases, be insufficient.
The general idea of the proposed solution is for both types of relations among
symptoms, i.e., associational (representing co-occurrence) and causal, to be used
during medical reasoning.

At time t0, let us assume that the activation values of all concepts are com-
puted on the basis of available observations (current symptoms) and the clas-
sification functions, i.e., ∀ci ∈ C(ai (t0) = ψi (o, ci)). Let Cobs = {ci ∈ C :
ai(t0) > atre} (where atre ∈ [0, 1] is the activation threshold) be the set of
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concepts (related to current symptoms) observed at t0. Initially, we would like
to use knowledge about associations stored in the ACM to extend the set Cobs.
The goal of this α-extension is to take into account symptoms that usually co-
occur with those represented in Cobs but that, in fact, were not observed. This
extension will be done on the basis of the α relationship. For all ci ∈ Cobs,
we construct Cα = {cj ∈ C : cjαci}. Thus, we achieve at time t0 the set
C0 = Cobs + Cα of concepts active within the ACM.

In fact, the cognitive map acts as a causal model, so the backward reasoning
related to the direction of the causal relation κ leads to abduction. We look
for the set Cb,κ ⊂ C of possible causes of activations of concepts from C0. For
every cj ∈ C0, we search backward for the set of causes Cb,κ ⊂ C such that,
for every ci ∈ Cb,κ, the relationship, ∀cj ∈ C0 ∃ ci ∈ Cb,κciκcj , holds. The
computation of activation values of concepts from Cb,κ must be done thought-
fully. It can be considered that the intuitive, additive mechanism of causality
used within cognitive maps can be also applied during backward reasoning. We
assume that the strength of the causality measured by the function µ remains
the same while performing reasoning in reverse direction. Under those assump-
tions, we can apply the following formula to compute the activation values:
∀ci ∈ Cb,κ(ai = γ(

∑
j (ajµ (ci, cj) )), where γ serves to reduce the unbounded

values to a strict [0, 1] range. The next step is to extend the set Cb,κ on the
basis of the α relationship, in the same way as this was done for C0. Finally,
we obtain Cb = Cb,κ + Cα, which constitutes the set of concepts anticipated
as active at a previous time step (at time t0 − 1 ). The next step of backward
reasoning can be made the same way, assuming Cb plays the role of C0.

The forward (in accordance with the direction of the relationship κ) rea-
soning within the ACM is straightforward. In fact, it is a simulation of pos-
sible effects in the future, i.e., the prediction of the possible progress of the
disease. For every ci ∈ C0, we search for the set of effects Cf,κ ⊂ C such
that ∀ci ∈ C0 ∃ cj ∈ Cf,κciκcj. Thus, the set Cf,κ specifies all possible ef-
fects of C0. The activation level of concepts from Cf,κ can be computed from
∀cj ∈ Cf,κ(aj = γ(aj +

∑
i (aiµ (ci, cj) )). Now, it is possible to extend the set

Cf,κ on the basis of the relationship α. We will obtain the set of active concepts
Cf = Cf,κ + Cα.

Above, we have shown the procedures for one-step backward and forward
reasoning processes based on the proposed ACM model. Note that, as opposed
to rule-based systems or probabilistic models based on acyclic graphs, there are
no explicit stopping conditions (a kind of goal concepts) for the reasoning process
within cognitive maps. The reasoning stops due to the limited scope of the ACM
(limited knowledge) or when the maximum number of steps of interest to the
user have been performed. Also, the backward reasoning stops when all possible
causes of symptoms are found. Performing backward reasoning, starting from
the set of currently observed symptoms, leads to the reconstruction of a possible
temporal sequence of concept activations fr = {Cb (ts) , . . . , Cb (t0 − 1) , C0}.
After such reconstruction, there is a need to make a diagnosis of fr within the
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set of diagnostic sequences D. The found sequence fr,d = δ(fr) will include
the concepts corresponding to future interventions and consequences of their
applications. In our opinion, due to the nature of medical diagnoses, the solely
automatic classification of fr is not recommended and must involve additional
medical knowledge provided by a physician. The diagnostic sequence from D
and the dynamics of concept activations within ACM, which correspond to
possible medical interventions, should be reviewed and assessed by a medical
doctor.

7. Case study

We have tested the ACM using a real, but simple, medical case. In the case we
have chosen, a patient came to the eye specialist and reported that after few days
of playing tennis he had the symptom of corneal ulcer. The patient had reported
also allergic reactions to various allergens in the past. He did not have a fever.
The doctor suspected three probable causes: an injury after the tennis match,
an allergy based on previous knowledge of the patient, and a bacterial infection
of the eye. The first proposed treatment was related to the suspected injury,
i.e., a simple surgical removal of the ulcer. Because the patient denied having
sustained an injury to his eye, he was given alergocon, an anti-allergy drug in
the form of eye drops and dicortinef, a mixture of antibiotics also in the form of
eye drops. Unfortunately, all the diagnoses and treatments were wrong. After
three weeks, there was no improvement in the patient’s symptoms. Where was
the mistake? The physician did not examine the patient’s state. Subsequently,
the patient went to another doctor, who conducted a bacterial examination of
the patient’s throat with negative results. The examination was repeated a
few times without identifying any bacteria in the throat, in spite of the fact
that visual examination clearly suggested a bacterial infection in the patient’s
throat. Even blood analyses detected no bacteria that could be causing the
sore throat. In spite of the disappointing investigations, this time the diagnosis
was right. There was a body-wide bacterial infection that had caused both
the sore throat that were reported few days later and the corneal ulcer. The
lack of fever also suggested a bacterial infection as opposed to a viral infection,
which usually causes high fever. The first proposed medicine was biotraxon, an
antibiotic from the third generation of the cephalosporin group of antibiotics,
but, unfortunately, this was another mistake. The patient had a severe allergic
reaction to the antibiotic, including high fever, muscle pain, and rigor. Note that
the patient had reported his past allergies, but this information was neglected by
the physician. Surprisingly, the physician did not want to accept the fact he had
made a mistake and that the antibiotic had caused the patient’s allergic reaction.
The third doctor made a simple decision and changed the prescribed medicine
to xorimax, an antibiotic in the second generation group of cephalosporin, which
was known to be an excellent antibiotic that could easily be tolerated by most
patients. This turned out to be a very good choice, taking into account lack
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Figure 2. Associational cognitive map as a knowledge base used for medical
diagnosis

of identification of particular bacteria. The medical case described above was
simulated in our system. The set of concepts C was divided into symptoms
S and interventions I. The set S consists of M (quantitative measurements)
and Q (qualitative observations). We assigned symbolic labels to all considered
concepts, in particular: M = { m1 - ‘bacteria in throat’, m2 - ‘bacteria in eye’,
and m3 - ‘bacteria in blood’}; Q = {q1 – ‘sore throat’, q2 – ‘allergic reaction’,
q3 – ‘injury’, q4 – ‘corneal ulcer’, and q5 – ‘allergy’}; and I = {i1 – ‘xorimax’,
i2 – ‘biotraxon’, i3 – ‘dicortineff’ (acetil cefuroxim), i4 – ‘surgical intervention’,
and i5 – ‘alergocon’}. The drugs (of the given trade names) are available in
pharmacies in Poland.

The ACM used for the considered medical case is presented in Fig. 2. In
order to show the advantage of our associational extension in comparison to
traditional (used only as a causal graph) cognitive maps, we performed the
simulation of the previously described medical history. The set of initially re-
ported symptoms were Cobs = {q4, q5}. The doctor expected three activation
sequences of concepts. The first one was f1 = {q3(t0−1), q4(t0)}. The diagnosis
δ(f1) led to the diagnostic sequence f1,d = {q3(t0 − 1), q4(t0), i4(t0 + 1)}. The
activation of the concept i4 - ‘surgical intervention’ led to direct deactivation of
the concept q4 - ‘corneal ulcer’ and recovery. The reported association between
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q4 and q5 was not considered by the doctor. The next analyzed alternative led
to the diagnostic sequence f2,d = {q2(t0 − 1), q4(t0), q5(t0), i5(t0 + 1)}. Due to
consideration of the known association q4αq5, the activation value of q2 was
high. The application of i5 – ‘alergocon’ led to the recovery of the patient. The
third considered diagnostic sequence f3,d = {m2(t0−1), q4(t0), q5(t0), i3(t0 +1)}
suspected the possible isolated infection in eye with the prescription of dicortin-
eff eye drops. Note that the found causes of ‘corneal ulcer’ are not associated in
our ACM, therefore every diagnostic sequence of f1,d, f2,d, f3,d was considered
separately, as has been done by physicians. Assuming we do not have addi-
tional knowledge on the features of the disease, it could be really difficult to
find any reason to search backward within the ACM for all possible causes of
allergy or bacteria in the eye. There is also no reason for a physician to per-
form numerous additional investigations, because, as in our case, some of these
investigations do not provide any helpful information. Another problem is the
growing specialization of medical doctors (e.g., eye specialists do not usually
investigate throat problems). On the basis of analysis of other medical cases
not described in this paper, we would like to stress the fact that the lack of
the associational knowledge is in many cases the main cause of diagnostic fail-
ure and leads to serious health consequences. Note that the ACM sketched in
Fig. 2 is substantially limited and without doubt does not involve many pos-
sible causes and associations. The above-described simple case is only used as
an illustration of a possibly complex problem. Now let us consider that the
physician takes into account the additional information on possible association
between q4 - ‘corneal ulcer’ and m1 - ‘bacteria in throat.’ The α-extension of
Cobs is performed and the set Cα(t0) = {m1}. After activating concepts from
C0 = Cobs +Cα = {q4, q5,m1}, backward reasoning within ACM was performed
until the corresponding sequence of concepts was found. The diagnoses were
performed and led to the right diagnostic sequence f4,d = {m3(t0−2),m2(t0−
1), q4(t0), q5(t0),m1(t0), q1(t0+1), i1(t0+1)}. Note that the alternative sequence
fd = {m3(t0 − 2),m2(t0 − 1), q4(t0), q5(t0),m1(t0), q1(t0 + 1), i2(t0 + 1)} with
prescription of biotraxon was eliminated due to the high risk of allergic reaction
and leading to an unstable state of the ACM. Unfortunately, as you may recall,
this alternative sequence was applied by one of the doctors and caused a really
dangerous health situation for the patient.

In the preliminary version of the implemented application, we assumed that
the observed symptoms were given by a physician. The physician decides in
a crisp way whether a particular symptom occurs or not. The physician uses
natural language, e.g. he writes “This patient has got corneal ulcer”. The above
assumption simplified the implementation in different ways. First, the clas-
sification functions psii were constructed on the basis of simple matching of
string patterns between input text given by a doctor and corresponding labels
of concepts stored in knowledge base. Thus, the results of the classification of
symptoms are binary i.e. ∀ci ∈ C0 ai = 0 ∨ ai = 1, the threshold atre = 1. The
consequence of the above simplification is such that the set of concepts C can
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be represented by the simple table in relational database with two fields, the
name of symptoms and the binary classification result, respectively. Note that
the construction of approximate medical concept on the basis of raw data is a
sophisticated problem involving also medical domain knowledge. In the prelim-
inary application we did not addressed this problem (the concepts were crisp
and the measurement data were not used). We prepared only the application
for the future use of the approximated classification method by involving the
thresholding process.

In order to test the proposed reasoning process we filled the table of con-
cepts with symptoms of several diseases including those presented in this paper.
The pairs of concepts belonging to the relations (α, κ) are also stored in the
table within relational database. Every pair of concepts is complemented by
the corresponding weight that reflects the strength of the relation, i.e. the set
Z =< −1, 1 > that is used for the computation of µ is a continuous interval.
For the experiments we used the weights given by physicians. We also decided
to store the state of the reasoning process (and the data for thresholding) as
tables in relational database. On the one hand, such solution decreased sub-
stantially the speed of reasoning process, on the other hand it enabled testing
in a convenient way. The result of the reasoning process is the sequence f . The
final diagnosis δ : F → D was made in a crisp way. The reconstructed sequence
f was simply matched to the set of sequences stored in D. The content of D was
prepared using available medical knowledge. We are aware of the fact that the
above sketched assumptions i.e. the mixture of crisp concepts and approximate
reasoning, led without doubt to the partial solution of the addressed problem.
The other issue is whether all classes of medical diagnostic tasks can be solved
using the proposed solution. Without doubt, incorporation of more uncertainty
in the classification an reasoning can decrease the applicability of the proposed
method. The answer to this question seems to be impossible without acquisition
of more medical data. Unfortunately, at this stage of research, the scalability of
the proposed method cannot be practically verified. The main problem with the
analysis of larger medical problems is the availability of reliable medical knowl-
edge. It should involve concepts, relations and the diagnostic sequences, and
therefore is hardly available. Development of automatic acquisition method
of the required knowledge from textual and numerical data sources might be
considered.

8. Conclusions

The presented solution has been motivated by some of the requirements im-
posed by the targeted application: the temporal and causal association of dis-
ease symptoms that seem to be crucial for the right medical diagnosis. We
have proposed the associational extension of cognitive maps and a correspond-
ing model called ACM. In the ACM, we introduced the possibility of associating
co–occurring concepts that can be identified as a kind of higher-level concept
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within a cognitive map. We showed how the reasoning within the ACM is per-
formed. We have also sketched the exemplary illustrative problem of medical
diagnosis and its simulation using a preliminary version of the targeted applica-
tion. Due to the complexity of medical knowledge, we have decided to impose
several simplifications to the presented analysis. Given the imposed simplifica-
tions and problems we have mentioned, it is apparent that some of them are
challenges for future research.
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