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1. Introduction and related works

A fundamental difference between a computer system and a human being, when
processing a text document, is that the computer perceives it as a formal set
of meaningless symbols, while the human being attaches meaning to it imme-
diately.

Technically, the meaning of a piece of text is described by its “semantics”,
albeit the specific usage of this term does not necessarily cover its intended
understanding, and is rather a more or less accurate approximation.

The current state of information technology does not permit computers to
grasp a meaning out of the human readable information present on the Web, just
because this meaning is not applicable to computer “awareness”, as it usually
neither acts nor perceives anything in the “real world”. However, this defi-
ciency can be slightly reduced. Namely, a web-application should be designed
in such a way that instead of acting upon a human-readable information itself,
it preprocesses available information in an intelligent way. The result of such
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preprocessing should support the human recipient in his/her decision making —
particularly through context-aware presentation of information®.

In order to support human decision making, based on natural language texts,
approximations of its semantics are necessary, which by now are restricted more
or less to interrelationships between concepts (related to words, phrases etc.).
Typically, is-a-part-of hierarchies (see Winston et al., 1987) are used, though
more sophisticated relations may be captured. These relationships may be crisp
or fuzzy in nature, depending on the logic applied.

In this sense, inclusion of information on semantics into search engine mech-
anisms is a subject of increased interest of the scientific community. By 2006,
for example, the US National Science Foundation awarded almost 500 grants
for research in this and related domains.

Generally, semantic search is understood as an extension of traditional
document information retrieval with the semantic web technology, exploiting
ontology-based metadata. In particular “the Semantic Web is an extension of
the current web in which information is given well-defined meaning (semantics),
better enabling computers and people to work in cooperation.”?.

This subarea of Semantic Web is referred to in this paper.

Within this context, we can speak of “semantic content” as a kind of “unsa-
turated information”, that is, the queries that one can pose to a set of data. We
will speak about “semantic information” as the “saturated information”, that is,
the query plus the true answer to it. See Floridi (2005) for a more elaborate
presentation of understanding of semantic information.

The semantic information about a document stems from three distinct
sources: (a) the text of the document itself, (b) the link information, and (c) the
user inserted semantic tags. Depending on the way this information is exploited,
we distinguish three main paradigms:

Context Based Semantic Search Engines, intended to enhance performance of
traditional search engines (measured e.g. in terms of their precision and
recall, see Baeza-Yates and Ribeiro-Neto, 1999). For this purpose, the
context information (in terms of domain ontology and metadata) is used.
After having retrieved the documents using word matching, RDF graphs
are used to enrich their content, and so to obtain better quality of results.
An overview of different approaches developed within this paradigm can
be found in Esmaili and Abolhassani (2006). Among the systems de-
veloped within this area we can mention: OWLIR (Ding et al., 2004),
QuizRDF (Davies, Weeks and Krohn, 2002), InWiss (Priebe, Schlaeger
and Pernul, 2004), Corese (Corby, Dieng-Kuntz and Faron-Zucker, 2004),
SHOE (Heflin and Hendler, 2000), DOSE (Bonino, Corno and Farinetti,
2003), SERSE (Tamma et al., 2004), OntoWeb (Spyuns et al., 2002), Score
(Sheth et al., 2002, and Zhu et al., 2002).

1Consult http://reasoningweb.org/2006/0bjectives.html.
2See http://wuw.u3.org/RDF/Metalog/docs/sw-easy



Semantic information within the BEATCA framework 379

Supplementary Search Engines, supporting the process of collecting informa-
tion on specific topic, and expanding traditional search with directions
to include external sources of additional information (e.g. while looking
for a singer, biography, posters, albums etc.). External meta data is pre-
dominantly used (e.g. CDNow, Amazon, IMDB as mentioned in Guha,
McCool and Miller, 2003). Sample systems are W3C Semantic Search
(Guha, McCool and Miller, 2003) and ABC (Guha, McCool and Miller,
2003).

Semantic Query Expansion Engines, which use an ontology like WordNet, for
query expansion to modify user queries targeted at, e.g., Google search
engine. An example of such an approach is Semantic Search Facilita-
tor/assistant (Terziyan et al., 2004).

However, the experiments performed with these engines are usually limited
to carefully selected well-defined sets of documents. Such restrictions allow
for elaborated representations of the domain knowledge in terms of ontological
languages like OWLS3.

Our goal is to provide a framework enabling exploitation of domain knowl-
edge for large-scale searches, with documents collections assigned explicitly
(with diversified degree of membership) to different semantic categories. There-
fore, we try to incorporate the semantic information right into the whole search
process, starting from grasping the documents by the spider (crawler) and end-
ing at the query answering module. To get manageable results, we restricted
the permitted representation of semantic information to tags (attributes being
simple terms) attached to documents either manually or via an extraction pro-
cess, to additionally provided hierarchies of these terms, and natural language
texts eventually attached to terms in these hierarchies (ontologies).

We allow coexistence of semantically tagged and un-tagged documents?* as
well as multiple ontologies for representing content of the documents. The repre-
sentation of search results extends beyond typical lists of results, namely to the
maps of document collections (Becks, 2001). Both the content and the semantic
tags may be used for document collection indexing in terms of a document map.

Our framework is based on the so-called contextual model of a document
collection. The contextual model nay be viewed as a method of clustering doc-
uments. Clustering may be viewed as a data compression method. Well known
limitation on encoding efficiency for loseless compression states that at least
221 —n;log ¢ bits are necessary to encode a sequence of N symbols from an
alphabet of cardinality m, where the “letter” i occurs n; times in the sequence.
In our case, the “alphabet” are the terms, the sequence is the contents of doc-
uments. This efficiency is approximately reached by the so-called arithmetic
encoding. But this lower bound holds for an unpredictable sequence of symbols.

3Consult e.g. http://www.w3.org/TR/2004/REC- owl-features-20040210/.
4We did not consider tagging of parts of documents yet.
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If we know the order, the bounds can be changed downwards. So the contextual
model means recursive approach to clustering.

While the impact of our proposal is multifold, we concentrate in this paper
on the clustering aspect of map-based search engine operation. High quality of
clustering is crucial for the successful response to user queries. We will in partic-
ular demonstrate that inclusion of semantic information for a part of documents
increases the quality of final grouping of the whole collection. Furthermore, the
user may influence the clustering by providing a (partial) outline of his vision of
clustering. We will also show that the time complexity for clustering documents
with semantic information is feasible even for larger collections.

The paper is organized as follows: Section 2 provides brief overview of the
role and the use of semantic information in information retrieval. One possible
way of representing such an information is described. Details concerning ex-
ploitation of semantic information in so-called semantic clustering are given in
Section 3, and the whole procedure of constructing contextual models is pro-
vided in Section 4. Performed experiments are described in Section 5. Lastly,
Section 6 concludes the paper.

2. Semantic information in information retrieval
2.1. Sources of semantic information

The search process can be enhanced by smart exploitation of knowledge coming
from various sources. In case of searching for documents we distinguish at least
three such sources.

First, semantic information about the end-user may be available, including
demographic information collected automatically (e.g. when the user IP and/or
hardware and software features can be mapped to a geographic location, or to a
branch of business, or to income category etc.), or via questionnaires, filled by
the user. It may also stem from the analysis of the user’s past behavior (earlier
queries, other activities like purchase, reaction to advertisement etc.).

Second, diverse semantic information is available about documents in collec-
tions. It includes categorizations of Web pages or Web sites, product catalogues,
library categories etc. Semantic information may be also derived automatically
from textual or structural document content itself, via so called Information
Extraction (Grishman, 1997). It may have a simple form, e.g. identification
that the document contains a phone number, an authoring information, proper
names (of people, firms, geographic locations etc.), extraction of keywords or
assignment to thesaurus. Even hyponym/hypernym hierarchies may be created
automatically under some circumstances for a document collection (Tjong, Sang
and Hofmann, 2007).

Lastly, semantic information may be extracted from the links between Web
pages. The address of the Web page (the directory hierarchy) may contain
indications of broader/narrower concepts (Han and Kamber, 2001). The per-
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sonalized random walks starting at given page may, for instance, identify the
cluster it belongs to, so that one gets perhaps other pages tagged semantically
to transfer to the given page (though there exist obvious difficulties when es-
tablishing relation between links and content, see Bjérneborn, 2004).

2.2. Impact of semantics on document clustering and classification

One would wish to have self-contained documents, since their content can then
be easily understood. However, in practice, this requirement is rarely, or even
never, satisfied and to understand properly a given document we have to refer
to some wider context. This context may be explicitly or implicitly expressed in
terms of semantic information, which is provided in a way substantially different
from the text of the document as such. In other words, semantic information,
although associated with the document, has to be stored and handled in a
different way than the entire document.

Frequently, the documents collected by a Web crawler are represented as
the points in the vector space spanned by the terms (words, word stems or
phrases) occurring in the document collection. Physically, each such a point is
implemented as a vector, or list, whose entries represent quantitative (statistical)
properties of the terms from this document. Then, the so-called tfidf, i.e. term
frequency — inverse document frequency (Baeza-Yates and Ribeiro-Neto, 1999;
Jones, 1972) approach is used. Namely, the weight U’Ed of the term ¢ from the
document d belonging to a collection D of all documents is computed as

tfidf (t,d) = wP, = fr.a- 1Dl
@) = Wy g = ft.a - log fD (1)
i
where f; 4 is the number of occurrences of term ¢ in document d, f specifies
how many documents from D contain the term ¢ and |D| is the total number of
documents in D.?
This way each document d € D is represented by (rather sparse) vector

d: (wgyd,wgyd,...7wt’iy“_’d) (2)

where T is the set of terms, or dictionary, taken into account, and |T'| stands
for the cardinality of the dictionary.

To attach semantic information to the documents we enrich their representa-
tion. The simplest approach is to introduce additional attributes of documents
(of the form: <attribute name, attribute value>, for example <"document
about","graph theory">, <"document contains a phone number" "yes">,
<"phone number in the document","+-+4822634567"> ) that will represent

manually assigned categories, to which the document belongs (taken from a

5This representation is subject to diverse normalization operations, e.g. one may require
that f; 4 sums up to 1 within the document, that the ¢fidf weights form a unit vector for a
document etc.
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subject index, topics index, the list of authors, etc.), or other information. In
other words, each document d is represented now as a vector in extended space
(T, C), where C stands for the additional attributes. These attributes them-
selves may be grouped into broader categories (e.g. one can define a group of
attributes concerning authors, a group of attributes concerning topics in math-
ematics etc.). Further, the relationships among the attributes can be modeled
via crisp or fuzzy relations. The attributes may be accompanied by additional
textual information, explaining in more detail the meaning of the attribute.

When operating with such extended representation, we must design proper
similarity measure between documents reflecting both the statistical information
about the document (expressed in terms of its tfidf’s) and semantic information®
associated with analyzed documents.

The statistical and semantical points of view can be integrated under the
so-called contextual view of the document collection (Ciesielski and Klopotek,
2006, 2007). It says that the term importance in the document space should
not be evaluated by taking into account all collected documents, but rather by
considering a subset G C D of documents representing a particular topic. By a
"topic" we mean here uniform clusters obtained during an initial clustering of
documents, using the standard tfidf representation (1) of documents. Having
identified the clusters G, called hereafter "contexts", we look at the context
when further processing the documents. Thus, the inverse document frequency
is computed within a context GG, implied by specific topic, i.e. the quotient
|D|/fP in equation (1) has to be replaced by |G|/ f<. This leads to substantial
diversification of importance of terms in different contexts.

More precisely, the contextual model consists of the following steps: (1) clus-
ter the original document set, using e.g. fuzzy-c-means, supported by CF-trees,
into clusters of size manageable by structure-generating clustering algorithms
(that is, by WebSOM, Kohonen et al., 2003; GNG, Fritzke, 1997; aiNet, de
Castro and Timmis, 2002), that are later used as contexts, (2) create docu-
ment maps for each context, (3) create whole-collection document map using
representatives of each context.

In this way, a small hierarchy of clusters is created. The contexts are the
groups of documents at the highest level. Within each context we create a
document map for the context documents, which means that the documents
within a cluster are put together into groups being cells of the document map.
In some versions of our method we group also documents within a cell within a
context via e.g. GNG or alnet.

Note that this approach to the issues of clustering differs from the hierar-
chical approach in Jing, Ng and Huang (2007), Frigui and Nasraoui (2004),
because we allow for different clustering strategies for the whole collection and
within the identified contexts, while Jing, Ng and Huang (2007) insist on having

6Though the tfidf may be viewed as a simple form of semantic information, we will refer
to "semantic information" as to the more elaborate information about the document.
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a unified process of cluster identification in the whole space and in the sub-
spaces, and allow for k-means only. The approach of Cheung and Zeng (2007)
is restricted to Gaussian mixtures. Beside this, in our approach, the resulting
clusters are structured, either in terms of a WebSOM map, or GNG or aiNet
network. Therefore, subsequently we will reserve the term "hierarchical" to the
approaches using the same clustering methods at all hierarchy levels, while our
concept with differentiation of them will be termed "contextual".

So, by enabling extended representation, we can distinguish between hierar-
chical and contextual model. In the former, the set of terms, with tfidf weights
defined in equation (1), is identical for each subgroup of documents, while in
the latter each subgroup is represented by different subset of terms weighted in
accordance with equation (6). Finally, when we do not split the entire set of
documents and we construct a single, "flat", representation for whole collection
— we will speak of a global model.

2.3. Representation of semantic information within the BEATCA system

The approach described above was successfully implemented in the search engine
BEATCA (Ciesielski and Ktopotek, 2007; Ktopotek et al., 2007) equipped with a
map visualization of the content of collected documents. Such a map consists
of a set of cells (usually hexagonal or rectangular) tiled in a plane or another
surface in Euclidean or other space. Each cell is assigned a set of documents (in
fact, the set of cells represents a clustering of documents) in such a way that
the documents close on the map (same cell, neighboring cells etc.) are close by
their content.

A well known representative of such a paradigm is WebSOM?, although other
systems are available — consult Becks (2001) or Klopotek et al. (2007) for more
detailed discussion of this subject. It is important to notice that the process of
map creation with the help of WebSOM, as applied in WebS0W, is time consum-
ing. Hence, other self-organizing models, like GNG (growing neural gas®), aiNet
(an artificial immune network technique, Ciesielski, Wierzchon and Klopotek,
2006) as well as their hierarchical and contextual versions, were implemented
and tested within the BEATCA (Klopotek et al., 2007) framework.

All these techniques operate on the vector representation of the documents,
mentioned in previous subsection and proper definition of the distance, or sim-
ilarity measure between the documents determines their efficiency. We discuss
this problem shortly in what follows.

3. Semantic-based clustering approach

The approach to clustering a collection of documents, as performed by the
BEATCA system, relies upon effective exploitation of specific information about

"See e.g. http://websom.hut.fi/websom/
8See e.g. http://www.ki.inf.tu-dresden.de/ fritzke/research/incremental .html
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the document content and context. It is a multistage process exploiting the
extended representation over the space (T, C), as described in Subsection 2.2.

First, the document collection is split into smaller, more homogenous sub-
sets, called "contexts". Conventional clustering methods are applied at this
stage, i.e. k-means or its fuzzy variant Fuzzy-ISODATA (Bezdek and Pal, 1991)
for small contexts, or fuzzified versions of the BIRCH algorithm (Zhang, Ra-
makrishnan and Livny, 1996) in case of large collections. Next, treating each
context separately, its clustering is performed, and results of this clustering are
represented in the form of an appropriate sub-map.

The term "representative" does not mean here the traditional cluster cen-
troid or medoid, because we have the option to use histograms of term weights
within each context (see Ciesielski and Klopotek, 2007), as they reflect better
the content of the respective document group.

3.1. k-means algorithm with modified similarity measure

k-means clustering is a popular method of splitting data into disjoint subsets.
To fit it into our framework two essential modifications are needed. First, we
replace the traditional concept of centroid as an averaged point in vector space
by term weight histograms. A much richer characterization of the importance
of a term for a context becomes possible, so that a group representative is not
just a point in vector space, but each dimension is equipped with a distribution.
Given this, we need next to create a method of calculating the distance between
documents and the new type of centroid must be proposed. In this section
we describe the second topic only. The first issue was handled extensively in
Ciesielski and Klopotek (2007).

With the extended representation d = (w, ¢), where w is the vector with tfidf
entries and c represents semantic information, we define supervised similarity
simg of the two documents d;, d; simply as cosine of the angle between the two
above-defined vectors:

simg(d;, d;) = cos{(wy, ci), (Wj, cj)}. (3)

According to Heaps’ law (Baeza-Yates and Ribeiro-Neto, 1999), the number of
different content terms in the collection usually surpasses the number of assigned
categories. Thus, we control the impact of the two subspaces — unsupervised
(textual content) T and supervised (multilabel categorization) C' on the joint
similarity of two documents by defining simg as the weighted sum of two com-
ponents:

simg(d;,d;) = (1 — W) - cos(w;, w;) + W - cos(c;, c;) (4)

where W € [0,1] is a user-defined parameter. For W = 0 we obtain standard
unsupervised cosine similarity measure, while for W = 1 we ignore textual
similarity, focusing on the semantic attributes only. From our experiments it
follows that in general, the weight W should be proportional to the quotient
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|T|/|C| (cardinality of the set of terms divided by the cardinality of the set
of attributes). Particularly, in the experiments described in Section 5 we set
W = 0.9, focusing primarily on the attributes, not on the terms occurring in
the documents.

3.2. Semantic-based competitive clustering algorithms

Competitive clustering algorithms, like WebSOM or GNG, are attractive be-
cause of at least two reasons. First, they adaptively fit to the internal structure
of the data. Second, they offer natural possibility of visualizing this structure by
projecting high-dimensional input vectors to a two-dimensional grid structure,
called a map. This map preserves most of the topological information of the
input data.

Each cell of the map is described by the so-called reference vector, or "cen-
troid", being a concise characterisation of the microgroup, defined by such a
cell. These centroids attract other input vectors with the force proportional to
their mutual similarity. In effect, weight vectors are ordered according to their
similarity to the cells of the map. Further, the distribution of weight vectors
reflects the density of the input space. Reference vectors of cells neighboring
on the map are also closer (in original data space) to one another than those of
distant cells.

The centroids are in fact "averaged" documents, i.e. they represent rather
abstract entities. In our approach we use "typical" (for a given cluster) instead
of "averaged" documents. The typicality is defined by means of the histogram of
terms occurrence in the cluster. More precisely, the quantity H¢ () defines the
fraction of documents, for which the value of the weighting function wtcfd belongs
to the i-th subinterval [a;, a;41] € [0,1]. Of course, to use such histograms, we
have to normalize the document vectors d first, and next, we split the domain
[0, 1] into appropriate number of subintervals I. Details describing full procedure
can be found in Ciesielski and Ktopotek (2007).

To justify the use of the histograms, note that the weight of a term in a
document depends usually on three factors: the number of its occurrences in
the document, the number of documents containing this term, and the length
of the document. The term which occurred several times in a short document
and does occur in only a few other documents, is awarded by high weight, as
it is characteristic for such a group. Terms that occur everywhere, or those
occurring one time in a very long document, will have low weight.

The histogram then reflects the probability distribution that a particular
term occurs with a given weight in the documents forming particular context.
The terms, that have only low weights in the documents, are not important
within the context. Those with strong share of high weight occurrences can be
considered important in discriminating the documents within the context. Now,
as "typical" we understand the document containing only those terms that are
labeled as important for a given context.
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Analogously to content terms, one can build histograms of the distribution
of additional semantic attributes within the context and the "typical" document
can be defined now as the one sharing important (typical) semantic attributes
with this context.

4. Contextual models

The text documents are not uniformly distributed in the space of terms. Fre-
quency distribution of a particular term depends strongly on document location
(and is expected to be similar for the neighboring documents) in the vector
space. As already stated, in our approach, the set of documents is initially
divided automatically into a number of homogenous and disjoint subgroups,
each of which is described by unique (but usually overlapping) subset of terms.
Then the selection of significant and insignificant terms for efficient calculation
of similarity measures during map formation step appears to be more robust
(Ciesielski and Klopotek, 2007).

It has to be stressed that when producing contextual models we operate
simultaneously in two spaces: the space of documents and (extended) space of
terms. The whole algorithm iteratively adapts: (a) document representation,
(b) description of contexts by means of the histograms, and (c) the degrees of
membership of documents in the contexts as well as weights of the terms wtcfd.
As a result of such a procedure we obtain homogenous groups of documents
together with the description fitted individually to each group (Ciesielski and
Ktlopotek, 2007).

At the beginning, the whole document set D is split arbitrarily into a few,
say 2-5, groups. Next, each group is recursively divided until the documents
inside a group meet required homogeneity or quantity criteria. After such a
process we obtain hierarchy, represented by a tree of clusters and each cluster
corresponds to a context. In the last stage, the groups with cardinality smaller
than a predefined value, are merged with the closest group. Similarity measure
is defined as a single-linkage cosine angle between the vectors representing both
cluster centroids.

The second, crucial, phase of contextual document processing is the division
of terms space (dictionary) into — possibly overlapping — subspaces. In this case
it is important to calculate fuzzy membership values representing importance of
a particular term in different contexts (and implicitly, ambiguity of its meaning).
The fuzzy within-group membership of the term, m¢, is estimated according to
the equation

mG o ZdEG ft-,d ' mg (5)
&= et

fP Y aeam
where de denotes the degree of membership of document d in the group G.

Next, vector-space representation of a document is modified so as to take
into account the document context. This representation increases the weights
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of terms which are significant for a given contextual group and decreases the
weights of insignificant terms. In the extreme case, insignificant terms are ig-
nored, what leads to the (topic-sensitive) reduction of representation space di-

mensionality. The significance of the term in a given context is computed as
wiy =m§ - fraq-log (@) : (6)

i

The main idea behind the proposed approach is to replace a single flat model
by a set of independently created contextual models and to merge them together
into a hierarchical model. Training data for each model is a single contextual
group. Each document is represented as a standard referential vector in the
terms space. However, tfidf weights (1) in vector components are replaced by

G
Wy

5. Experimental results

The experiments reported in this section have several goals. First of all, we
show that exploiting semantic information (in our case — partially labelled, mul-
ticategorical data) increases the quality of clustering, both in terms of textual
content clustering as well as grouping of other attributes (even those not present
in vectors representing documents, but only implicitly correlated with semantic
information we used, e.g. book authors).

Second, we argue that semi-supervised clustering (e.g. exploiting manually
labeled subset of the document collection) enables more control on the clustering
process, and produces results that are agreeable with user expectations and also
with user’s subjective view on what is "natural clustering” (results profiling).

Finally, we verify that a combination of the contextual approach with se-
mantic information, represented as additional dimensions (attributes) in vector
space, is admissible from the computational point of view, i.e. its time complex-
ity is quite acceptable even in the case of larger collection of documents, and
leads to high-quality results (Klopotek et al., 2007; Ciesielski and Klopotek,
2006, 2007).

The experiments were conducted on the real dataset, consisting of data on

5615 books from the library of the Institute of Computer Science®.

5.1. Library dataset

Library dataset contains brief textual information on each book: title, authors,
publisher, publication year, ISBN, etc. Publication abstracts are not available.
5449 out of 5615 books have been manually classified to one or more ACM Clas-
sification categories!®. 368 book subcategories (so-called third-level categories)
are organized into taxonomy, rooted into 11 top-level categories. Basic statistics

9 Available online at http://www.ipipan.waw.pl/cgi-bin/klopotek/oj

10see http://www.acm.org/about/class
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are presented in Table 1. Please note that categories are overlapping, and so
the total number of entries in the third column is greater than the total number
of books and sums up to 16,209.

Table 1. Top-level category statistics

Top-level Category Total no. Total no.
category name books subcategories

[a] General Literature 59 5

[b] Hardware 380 56

[c] Computer Systems Organization 1541 29

[d] Software 2738 48

[e] Data 509 8

[£] Theory of Computation 2765 27

[g] Mathematics of Computing 908 24

[h] Information Systems 1868 43

[i] Computing Methodologies 4113 75

[il Computer Applications 763 10

[k] Computing Milieux 565 43

Total number of entries 16209 368

Each book may belong to more than one category. The distribution of the
number of subcategories assigned to books is presented in Table 2. Average
number of subcategories assigned to a single book is 16209/5615 ~ 2.88.

Table 2. The total number of books having a given number of the third-level
subcategories assigned

# subcategories 0 1 2 3 4 5 6 7 8
# books 166 | 1126 | 653 | 502 | 437 | 456 | 380 | 317 | 216

# subcategories 9 10 11 12 13 14 15 16 17
# books 109 36 11 20 5 10 4 2 1

For instance, the proceedings volume of the International Workshop on Ar-
tificial Neural Networks (IWANN’93) has been classified to 17 different subcat-
egories: twice to subcategories of category [b], 3 times to subcategories of [c], 3
to [f], 1 to [h], 6 to [i], 2 to [j].

As described earlier, beside standard representation of the book content via
tfidf weights one can build its representation by referring to the categories to
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which it belongs. The weight of an attribute (or category) a for book b is defined
as the product wep = fap - log(N/ fa), where fop is the weight of a for book b
(for subcategories equal to 1, for top-level categories equal to the total number
of assigned subcategories), and f, is the total number of books assigned to a
particular category.

Such a representation shares most statistical properties with standard ¢ fidf
representation of textual document content. In particular, frequency of cat-
egories follows power-law distribution (the most frequent category was [a.2]
"Artificial Intelligence", assigned to 619 books; at the other end there were 62
categories with zero frequency - usually "Miscellaneous" subcategory of various
top-level categories).

Beside librarian classification, there was another type of attributes extracted
from book descriptions, i.e. authors of each book. Intuitively, author-related
attributes should be positively correlated with their research areas and thus
also with book categories. It should be stressed that only attributes related
to ACM Classification categories (either top-level categories or subcategories)
were used by similarity measure (4). Still, as experiments showed, through
positive correlation, exploitation of supervised similarity measure affected also
the distribution of author-related attributes within clusters.

5.2. Experimental setting and quality measures

When presenting experimental results, we focused only on standard supervised
and unsupervised measures used to evaluate WebSOM clustering results, al-
though other more precise measures are possible (see Ciesielski, Wierzchon
and Klopotek, 2006). The two supervised measures are average cluster purity
(ACP) and average cluster entropy (ACE) introduced by Frigui and Nasraoui
(2004). The two unsupervised measures are average distance of neighbor cells,
also known as average map quantization (AMQ) and average cluster diame-
ter (ACD), which is analogous to the average document quantization (ADQ)
measure, but is based on complete-linkage distance between books in a cluster
rather than the distance from centroid (see Kohonen et al., 2003). The lower
values of AMQ and ADQ measures correspond, respectively, to more "smooth"
inter-cluster transitions and more "compact" clusters.

In general, we search for the partitions characterized by high purity and low
entropy. High values of ACP correspond to the situation when the clustering
agrees with given criteria, while low values of ACE signalize homogenous dis-
tribution of the categories within each group. On the other hand, low values of
the unsupervised measures indicate well formed and compact clusters.

Each of the four measures was calculated for four different vector repre-
sentations of a document (i.e. single book): (a) standard, content-based repre-
sentation, (b) pure semantical representation pertaining to book subcategories,
(c) aggregated weights of top-level categories, and (d) representation restricted
to weights of author-related attributes.
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Beside different representations, subsets of books used to compute these
measures were varied, i.e. we used
full collection,
books having at least one third-level subcategory assigned
books without any third-level subcategory assigned
11 subsets consisting of books having particular top-level category ([a]-[k])
assigned (see Table 1)

The figures presented in the following sections contain four box-and-whisker
plots. Each box-and-whisker plot evaluates 10 WebSOM models, trained on
10-fold crossvalidated sample of books. Four different WebSOM models are
presented in each plot:

e cos/H: standard WebSOM model, with ¢ fidf weights and cosine similar-

ity measure,

e cos/C: contextual WebSOM model, with contextual wgd weights and co-

sine similarity measure,

e sup/H: WebSOM model with ¢fidf weights and supervised similarity

measure (4),
e sup/C: WebSOM model with contextual weights and supervised similar-
ity measure (4).

5.3. Supervised evaluation of library books
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Figure 1. Average entropy of content terms in books: (a) books without and
(b) books with assigned third-level subcategories

In both cases, i.e. of books without and with assigned third-level subcate-
gories, contextual (C) models are better than hierarchical ones (H). We have dis-
cussed this issue in our earlier papers, see, e.g., Ciesielski and Klopotek (2006).
The difference is statistically significant and quite large, especially in case of
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books with assigned third-level subcategories (Fig. 1(b)), where best models
feature mean entropy values below 0.7, while hierarchical models feature 0.9.

In case of books without assigned subcategories (Fig. 1(a)), the sup/C
model, i.e. supervised contextual model is the best among all models, while
in case of documents with subcategories assigned, the best model is unsuper-
vised one cos/C. Even though the difference of entropy between cos/C and
sup/C is quite small, this seems to be counterintuitive. We suppose that this
phenomenon is implied by the fact that significantly better clustering of book
categories in case of sup/C model (see Fig. 2) improves also clustering of the re-
maining part of the dataset, i.e. books without subcategories. At the same time,
the supervised similarity measure, which operates on the content terms, sub-
categories and author-related attributes, sacrifices content clustering for better
clustering of subcategories.
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Figure 2. Average entropy of all additional attributes describing: (a) books
without and (b) books with assigned third-level subcategories

Results in Fig. 2 are not surprising. Here we observe clustering of all addi-
tional attributes, i.e. librarian categories and book authors. The two supervised
models — hierarchical and contextual — have lower entropy and thus show better
clustering of additional attributes. There is almost no difference between hier-
archical and contextual case here (although the variance of contextual model is
lower). The worst (in terms of mean entropy as well as its variance in cross-
validated samples) model is provided by the standard cos/H approach, i.e.
hierarchical WebSOM model with cosine similarity measure.

A similar, although not presented graphically, behavior is observed when the
entropy of only book category attributes (without author-related attributes) is
computed. There is statistically significant (and large) difference in favor of the
supervised measure. But in this case the difference between the two supervised
cases — hierarchical and contextual one — is also statistically significant.
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Figure 3. Average entropy of aggregated (top-level) categories: (a) books with-
out and (b) books with assigned third-level subcategories

When aggregating attributes related to book third-level subcategories and
computing the entropy of the distribution of top-level categories within clusters
(Fig. 3), we observe significant difference between hierarchical (H) and contex-
tual (C) models. The absolute values of the entropy of aggregated top-level cat-
egories are lower than the entropy of third-level subcategories (mainly because
the number of different attributes is much lower in the former representation).
Hence, the documents from the top-level categories form well separated and
compact clusters, and these clusters occupy distinct areas of the map.

Finally, considering the entropy of the distribution of author-related at-
tributes only (Fig. 4), we state again that both supervised models (sup/H
and sup/C) show better clustering properties than models trained with cosine
measure (cos/H and cos/C). The differences between hierarchical (H) and con-
textual models (C) trained with the same similarity measure are insignificant.
One should notice quite high value of entropy in all four cases. We consider it
to be partially due to the fact that a handful of authors appear in more than
one book. The other reason might be the fact that we parsed author-related
information from textual content by a set of approximate parsing rules, and we
found several mistakes afterwards.

The results for cluster purity are analogous to those for cluster entropy and
due to the lack of space, we do not present all plots here.

It should also be noted that in case of aggregated (top-level category) at-
tributes, purity results above 0.5 (with very low variance) indicate very good
clustering of categories (Fig. 5). This applies particularly to the case when it is
not possible to attain maximal, equal 1, value of purity, mainly because most
of the books have more than one subcategory assigned (see Table 2).
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5.4. TUnsupervised evaluation of library books

We just briefly conclude on experiments with analysis of unsupervised measures
for WebSOM clustering models. Recall, that this kind of evaluation does not
allow comparing the distribution of categories with respect to different similarity
measures applied. However, some interesting properties of the resulting models
can also be noticed here.

The lower value of map quantization means that adjacent cells on a map are
similar to each other, thus the distribution of particular entities (e.g. content
terms or additional semantic attributes) is smooth, when translocating from one
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Figure 6. Average map quantization of content terms: (a) books without and
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cell to another. The best map quantization with respect to document content
terms is achieved by contextual models (Fig. 6(a)), and particularly by the
cosine contextual model cos/C. This supports observations we made earlier
(see Ciesielski and Klopotek, 2006) concerning crucial role of identification of
important terms in contextual document vector subspaces and their impact on
text clustering. Particularly, in case of books with additional semantic attributes
(i.e. book categories or authors), the best quantization is achieved for sup/C
model; this value is almost half of cos/C — the second-best model (Fig. 6(b)).

Surprisingly, quite opposite situation is observed in case of additional at-
tribute quantization (Fig. 7). Here the lowest value of this measure is 0.8 for
cos/H model. We suppose it is caused by the very high sparsity of attribute
information, which leads to almost-orthogonal vectors representing attribute
distribution in adjacent cells. This claim is supported by the observation of
aggregated 11 top-level categories. In this case, average map quantization is
0.33 for cos/H model, and around 0.55 in the other three cases. In case of book
author-related attributes, quantization value is again near 1, meaning orthogo-
nal vectors (the best of four models is cos/C, with map quantization 0.96).

Summarizing, we can say that the analysis of average document quantization,
measuring compactness of clusters represented by a set of books assigned to a
single cell, confirms that additional semantic information affects the quality of
text clustering. The difference of document quantization values is the biggest
in case of aggregated (top-level) book categories, where both supervised models
have quantization around 2.5, versus 3.0 for the models with cosine similarity
(Fig. 8). Similar advantage of supervised models is observed also in case of
unaggregated, third-level categories; in this case the difference is not so radical
but still statistically significant (about 2.2 for supervised models, and 2.5 for
the models with cosine similarity).
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6. Conclusions and future research

A general conclusion is that by introducing semantic information we can improve
the whole process of gathering and representing information about a domain.

First of all, we gain an extension of the search engine possibilities by clus-
tering with human-readable and human-controllable criteria, such as good dis-
tribution of book categories or book authors within clusters.

Implicit integration of well-defined clustering criteria via exploitation of man-
ually prepared supervised information substantially improves the quality of clus-
ters. This is particularly useful in cases where textual-only information is of
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low-quality and/or unavailable (as in the case of book descriptions mentioned
earlier). Furthermore, we have observed a kind of positive correlation effect be-
tween various kinds of attributes, in our case-book categories and authors. While
clustering with exploitation of book categories only, we observed improvement
of quality of clusters measured via purity of author-related attributes.

In our future research, we plan to investigate whether the user profile, de-
scribing his/her information needs, can also be taken into account as additional
dimension(s) in the document space, so that a conceptual framework for person-
alization of documents clustering and document classification is swiftly achiev-
able. Such a form of integration may be of importance, e.g., for recommender
systems, especially for content-based recommenders, that suffer badly from the
"cold start" problem of missing initial usage information of the item by the user
— see Mobasher (2005).

Lastly, let us notice that the process of learning contextual models is almost
the same as that of learning standard, non-contextual, models. But since each
constituent model (and the corresponding contextual map) can be processed in-
dependently, the whole process of acquiring contextual maps can be distributed
and calculated in parallel. Also a partial incremental update of such models
appears to be much easier to perform, both in terms of model quality, stability
and time complexity. The possibility of incremental learning stems from the
fact that the very nature of the learning process is iterative. So, if new doc-
uments come, we can consider the learning process as having been stopped at
some stage and it is resumed now with all the documents. We claim that it
is not necessary to start the learning process from scratch neither in the case
when the new documents "fit" the distribution of the previous ones nor when
their term distribution is significantly different — deeper discussion of this topic
can be found in Klopotek et al. (2007).
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