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Abstract: Among the many bio–inspired techniques, ant clus-
tering algorithms have received special attention, especially because
they still require much investigation to improve performance, stabil-
ity and other key features that would make such algorithms mature
tools for data mining. Clustering with swarm–based algorithms is
emerging as an alternative to more conventional clustering methods,
such as k–means algorithm. This proposed approach mimics the
clustering behavior observed in real ant colonies.

As a case study, this paper focuses on the behavior of cluster-
ing procedures in this new approach. The proposed algorithm is
evaluated on a number of well–known benchmark data sets. Em-
pirical results clearly show that the ant clustering algorithm (ACA)
performs well when compared to other techniques.

Keywords: data mining, cluster analysis, ant clustering algo-
rithm.

1. Introduction

Clustering is a form of classification imposed over a finite set of objects. The
goal of clustering is to group sets of objects into classes such that similar objects
are placed in the same cluster while dissimilar objects are in separate clusters.
Clustering (or classification) is a common form of data mining and has been
applied in many fields, including data compression, texture segmentation, vec-
tor quantization, computer vision and various business applications. Clustering
algorithms can be classified into partitioning and hierarchical algorithms. Par-
titioning algorithms create a partitioning of objects into a set of clusters. Hier-
archical algorithms construct a hierarchical decomposition of the set of objects.
The hierarchical decomposition is represented by a tree strategy that separates
the objects into small subsets until each consists only of sufficiently similar ob-
jects. There exists a large number of clustering algorithms in the literature in-
cluding k–means (MacQueen, 1967), k-medoids (Kaufman and Russeeuw, 1990),
CACTUS (Ganti, Gehrke and Ramakrishna, 1999), CURE (Guha, Rastogi and
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Shim, 1998), CHAMELEON (Karypis, Han and Kumar, 1999) and DBSCAN

(Ester et al., 1996). No single algorithm is suitable for all types of problems,
however, the k–medoids algorithms have been shown (Kaufman and Russeeuw,
1990) to be robust to outliers, compared with centroid–based clustering. The
drawback of the k–medoids algorithm is the time complexity of determining the
medoids. In this paper, a novel ant–based clustering algorithm (ACA) is pro-
posed to improve the performance of many k–medoids–based algorithms. A new
version of ACA algorithm is inspired by the behavior of real ants. The paper
is organized as follows: Section 2 gives a detailed description of the biological
inspirations and first experiments. Section 3 presents the algorithm. Section
4 presents the experiments that have been conducted to set the parameters of
ACA regardless of the data sets. The last section concludes and discusses future
evolution of ACA.

2. Biological inspirations and algorithms

Clustering and sorting behavior of ants has stimulated research in design of new
algorithms for data analysis and partitioning. Several species of ants cluster
corpses to form a “cemetery”, or sort their larvae into several piles. This behavior
is still not fully understood, but a simple model, in which ants move randomly
in space and pick up and deposit items on the basis of local information, may
account for some of the characteristic features of clustering and sorting in ants
(Bonabeau, Dorigo and Theraulaz, 1999).

In several species of ants, workers have been reported to form piles of corpses
— cemeteries — to clean the nests. Chretien (1996) has performed experiments
with the ant Lasius niger to study the organization of cemeteries. Other ex-
periments on the ant Phaidole pallidula are also reported in Deneubourg et al.
(1991). Brood sorting was observed by Franks and Sendova-Franks (1992) in the
ant Leptothorax unifasciatus. Workers of this species gather the larvae accord-
ing to their size. Franks and Sendova-Franks (1992) have intensively analyzed
the distribution of brood within the brood cluster.

Deneubourg et al. (1991) have proposed two closely related models to account
for the two above–mentioned phenomena of corpse clustering and larval sorting
in ants. General idea is that isolated items should be picked up and dropped at
some other location where more items of that type are present. Let us assume
that there is only one type of item in the environment. The probability pp for
a randomly moving, unladen agent to pick up an item is given by

pp =

(

k1

k1 + f

)2

where:
• f is the perceived fraction of items in the neighborhood of the agent,
• k1 — is a threshold value.
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The probability pd for a randomly moving loaded agent to deposit an item
is given by:

pd =

(

f

k2 + f

)2

where:
• k2 is another threshold constant.

Franks and Sendova-Franks (1992) have assumed that f is computed through
a short–term memory that each agent possesses, it is simply the number N of
items encountered during the last T time units, divided by the largest possible
number of items that can be encountered during this time.

Gutowitz (1993) suggested the use of spatial entropy to track the dynamics
of clustering. The spatial entropy Es at scale s is defined by:

Es =
∑

I∈S

PI logPI

where PI is the fraction of all objects on the lattice that are found in s–patch I.
Oprisan, Holban and Moldoveanu (1996) proposed a variant of the Deneu-

bourg basic model (hereafter called BM), in which the influence of previously
encountered objects is discounted by a time factor.

Bonabeau (1997) also explored the influence of various weighting functions,
especially those with short–term activation and long–term inhibition.

Lumer and Faieta (1994) have generalized Deneubourg et al.’s BM to apply
it to exploratory data analysis. The idea is to define a distance or dissimilarity
d between objects in the space of object attributes:

• if two objects are identical, then d(oi, oj) = 0,

• when two objects are not identical, then d(oi, oj) = 1.

The algorithm introduced by Lumer and Faieta (herafter LF) consists of
projecting the space of attributes onto some lower dimensional space, typically
of dimension z = 2. Let us assume that an ant is located at site r at time t, and
finds an object oi at that site. The „local density” f(oi) with respect to object
oi is given by

f(oi) =







1
s2

∑

oj∈Neigh(s×s)(r)

[1 − d(oi,oj)
α

], when f > 0

0, otherwise

where:
• f(oi) is a measure of the average similarity of object oi to other objects

oj present in the neighborhood of oi,
• α is a factor defining the scale for dissimilarity: it is important as it

determines when two items should or should not be considered located
next to each other.
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Lumer and Faieta (1994) define picking up and dropping probabilities as
follows:

pp(oi) =

(

k1

k1 + f(oi)

)2

pd(oi) =

{

2f(oi) when f(oi) < k2

1, when f(oi) ≥ k2
(1)

where k1, k2 are two constants that play a role similar to k1 and k2 in the BM.

High–level description of the Lumer–Faieta algorithm is presented below:

Algorithm 1: The Lumer–Faieta algorithm

0 /*Initialization*/

1 for every object oi do

2 Place oi randomly on grid

3 end for

4 for all ants do

5 place ant at randomly selected site

6 end for

7 {*main loop*}

8 for all ants do

9 for t = 1 to tmax do

10 if ((agent unladen) and (site occupied by item oi)) then

11 Compute F (oi) and pp(oi)

12 Draw random real number R ∈ (0, 1)

13 if (R ≤ pp(oi)) then

14 Pick up item oi

15 end if

16 else

17 if (agent carrying item oi) and (site empty)) then

18 Compute f(oi) and pd(oi)

19 Draw random real number R ∈ (0, 1)

20 if (R ≤ pd(oi)) then

21 Drop item

22 end if

23 end if

24 end if

25 Move to randomly selected neighboring site not occupied by other agent

26 end for

27 end for

28 Print location of items.
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3. Ant Clustering Algorithm — ACA

The ant clustering algorithms are mainly based on versions proposed by Deneu-
bourg, Lumer and Faieta. A number of slight modifications have been intro-
duced that improve the quality of the clustering and, in particular, the spatial
separation between clusters on the grid. Recently, Handl and Meyer (2002)
extended Lumer and Faieta’s algorithm and proposed an application to clas-
sification of Web documents. The model proposed by Handl and Meyer has
inspired us to use this idea to classical cluster analysis. The basic idea is to pick
up or drop a data item on the grid.

We have employed a modified version of the „short–term memory” introduced
by Lumer and Faieta (1994). Each ant has a permission to exploit its memory
according to the following rules: if an ant is situated at grid cell p and carries
a data item i, it uses its memory to proceed to all remembered positions, one
after the other. Each of them is evaluated using the neighbourhood function
f∗(i) for finding a dropping site for the currently carried data item i.

For picking and dropping decisions the following threshold formulae are used:

p∗pick(i) =

{

1, if f∗(i) > 1
1

f∗(i)2 , otherwise

p∗drop(i) =

{

1, if f∗(i) ≥ 1
1

f∗(i)4 , otherwise,

where f∗(i) is a modified version of Lumer and Faieta’s neighbourhood function:

• f∗(i) =



















1
σ2

∑

j

[1 − d(i,j)
α

], if f∗ > 0

and (1 − d(i,j)
α

) > 0

0, otherwise

• 1
σ2 — a neighborhood scaling parameter,

• α — a parameter scaling the dissimilarities within the neighbourhood
function f∗(i),

• d(i, j) — a dissimilarity function.

The ant-based clustering algorithm requires a number of different parame-
ters to be set, which have been experimentally observed. Parameters of this
algorithm can be divided into two groups:

1. Independent of the data.

2. Being a function of the size of the data set.

The first group includes:

• the number of agents, which is set to be 10,

• the size of the agents’ short–term memory, which we also set at 10,
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• the initial clustering phase (from tstart to tend: tstart = 0.45 · N , tend =
0.55 · N , where N denotes the number of iterations),

• we replace the scaling parameter 1
σ2 by 1

Nocc
after the initial clustering

phase, where Nocc is the actual observed number of occupied grid cells
within the local neighbourhood.

The employed distance function is the Euclidean measure for the initial
testing and the Cosine and Gower measures for the real data analysis.

Several parameters should be selected depending on the size of the data set
tackled. Given a set of Nmax items, the grid should offer a sufficient amount of
“free” space to permit quick dropping of data items. This can be achieved by:

• using a square grid with resolution of
√

10 · Nmax ×
√

10 · Nmax,

• the step permitting sampling of each possible grid position within one
move, which is obtained by setting it to step size:

√
20 · Nmax,

• the numberof iterations:
√

2000·Nmax,witha minimal numberof1, 000, 000.

During the sorting process, α determines the percentage of data items on
the grid that are classified as similar, such that: a too small α prevents the
formation of clusters on the grid; on the other hand, a too large α results in the
fusion of individual clusters, and in the limit, all data items would be gathered
within one cluster.

The scheme for α–adaptation used in this application is a part of a self-
adaptation of agents activity. A heterogeneous population of ants is used — with
its own parameter α. An agent considers an adaptation of its own parameter
after it has performed Nactive moves. During this time, it keeps track of the
failed dropping operations Nfail. The rate of failure is determined as rfail =
Nfail

Nactive
where Nactive is fixed to 100. The agent’s parameter α is then updated

using the rule:

α =

{

α + 0.01, if rfail > 0.99
α − 0.01, if rfail ≤ 0.99.

High–level description of the ant clustering algorithm is presented below:

Algorithm 2: ACA algorithm

0 /*Initialization Phase*/

1 Randomly scatter oi object on the grid file

2 for each agent aj do

3 random_select_object (oi)

4 pick_up_object oi

5 place_agent aj at randomly selected empty grid location

6 end for

7 {*Main loop*}

8 for t = 1 to tmax do



Ant clustering algorithm 349

9 random_select_agent (aj)

10 move_agent aj to new location

11 i = carried_object(agentaj)

12 Compute f∗(oi) and p∗

drop(oi)

13 if drop = True then

14 while pick = False do

15 i = random_select_object o

16 Compute f∗(oi) and p∗

pick(oi)

17 Pick_up_object oi

18 end while

19 end if

20 end for

21 end

4. Experimental results

The performance of the clustering algorithm may be judged with respect to its
relative performance when compared to other algorithms. For this purpose, at
the beginning we chose the k–means algorithm. In our experiments, we ran
k–means algorithm using the correct cluster number k.

In order to evaluate the resulting partitions obtained by ACA we have set up
the following method. The first data sets used to illustrate the performance of
the algorithms were a modified version of the well–known data sets proposed to
study the standard ant–based clustering algorithm (Handl, Knowles and Dorigo,
2003). The Square data sets are the most popularly used type of data sets.
They are two–dimensional and consist of four clusters arranged as a square.
To conform to distributed data sets the data are spread uniformly among the
various sites.

Our analysis in this report has focused on studying the scheme of adapting
the α values that pose problems to ant clustering algorithms. Importantly, it
must be noted that the clustering method is very sensitive to the choice of α

and correlations over a specific thresholds are only achieved with the proper
choice of α (see the performance of ACA presented in Tables 1 and 2). The
parameter α weights the influence of the distance measure in determining the
clusters. ACA performs satisfactorily on all six data sets, in fact it is hardly
affected at all by the increasing deviations between cluster sizes (especially for
the Cosine measure). The results demonstrate that, if clear cluster structures
exist within the data, the ant clustering algorithm is quite reliable at identifying
the correct number of clusters. This is an indication that the structure within
the data is not easily pronounced.
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Table 1. Evaluation of results of the ACA (with different dissimilarity measures)
for Square datasets.

square_1 ACA (Euc. m.) ACA (cos. m.)

Clusters 4.720 (0.895) 4.560 (0.852)

Rand Index 0.959 (0.020) 0.966 (0.187)

F–measure 0.944 (0.038) 0.951 (0.421)

Dunn Index 0.054 (0.023) 4.634 (2.772)

Variance 5523.680 (375.048) 4.098 (1.034)

Class. err. 0.026 (0.005) 0.023 (0.036)

square_2 ACA (Euc. m.) ACA (cos. m.)

Clusters 4.620 (1.112) 5.540 (0.921)

Rand Index 0.913 (0.061) 0.929 (0.197)

F–measure 0.886 (0.070) 0.885 (0.484)

Dunn Index 0.044 (0.015) 1.976 (1.707)

Variance 6580.113 (2920.295) 4.607 (1.408)

Class. err. 0.089 (0.097) 0.039 (0.1)

square_3 ACA (Euc. m.) ACA (cos. m.)

Clusters 4.260 (0.795) 7.080 (1.181)

Rand Index 0.902 (0.039) 0.903 (0.197)

F–measure 0.878 (0.058) 0.846 (0.473)

Dunn Index 0.051 (0.017) 0.954 (0.469)

Variance 6446.134 (1686.293) 4.356 (0.948)

Class. err. 0.115 (0.081) 0.056 (0.060)

square_4 ACA (Euc. m.) ACA (cos. m.)

Clusters 3.700 (0.700) 7.440 (1.169)

Rand Index 0.837 (0.081) 0.870 (0.174)

F–measure 0.814 (0.084) 0.791 (0.502)

Dunn Index 0.051 (0.015) 0.995 (0.334)

Variance 7091.038 (2546.104) 4.149 (1.261)

Class. err. 0.213 (0.122) 0.094 (0.065)
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Table 2. Evaluation of results of the ACA (with different dissimilarity measures)
for Square datasets.

square_5 ACA (Euc. m.) ACA (cos. m.)

Clusters 4.060 (0.310) 4.720 (0.775)

Rand Index 0.962 (0.018) 0.929 (0.341)

F–measure 0.961 (0.026) 0.919 (0.477)

Dunn Index 0.065 (0.011) 2.328 (1.134)

Variance 5010.055 (603.425) 4.586 (1.158)

Class. err. 0.033 (0.013) 0.035 (0.043)

halfrings ACA (Euc. m.) ACA (cos. m.)

Clusters 9.040 (1.509) 8.500 (0.900)

Rand Index 0.634 (0.043) 0.598 (0.176)

F–measure 0.522 (0.096) 0.469 (0.614)

Dunn Index 0.131 (0.033) 1.062 (0.454)

Variance 204.645 (81.438) 3.951 (1.233)

Class. err. 0.010 (0.003) 0.087 (0.077)

We have also applied ACA to the real world databases from the Machine
Learning repository, which are often used as benchmarks. It is useful to show ex-
perimentally the efficiency of ACA on data with known properties and difficulty.
The real data collections used were the Iris data, the Wine Recognition, Iono-
sphere and Pima data. Each dataset was permuted and randomly distributed
in the sites. Different evaluation functions, proposed by Handl, Knowles and
Dorigo (2003) are adapted for comparing the clustering results obtained from
applying the two clustering algorithms on the test sets. The F–measure (Rijsber-
gen, 1979), Dunn Index (Halkidi, Vazirgiannis and Batistakis, 2000) and Rand
Index (Rijsbergen, 1979) are the three measures and their respective definitions
also given in Handl, Knowles and Dorigo (2003), and each should be maximized.
We have also analyzed the Inner Cluster variance — the sum of squared devia-
tions between all data items of their associated cluster centre (Handl, Knowles
and Dorigo, 2003). It is to be minimized.

All runs have been performed for three different dissimilarity measures: Eu-
clidean, Cosine and Gower measures. All presented results have been averaged
over 10 runs. Ants (10 agents) were simulated during 1,000,000 iterations when
clustering objects.

The results are provided in Tables 3 through 6. The tables show mean and
standard deviations (in brackets) for 1,000,000 runs, averaged over 10 runs.
The results of the experimental study are reported in details in Skinderowicz
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(2007). The so high number of iterations is a common characteristic for differ-
ent ant–based clustering algorithms. The obtained partitions of ant clustering
algorithms and statistics are very close to those of k–means approach on the
analyzed data sets. The reader should keep in mind that, different from its
competitor, ant–based clustering algorithms have not been provided with the
correct number of clusters. We also observed the sensitivity to unequally–sized
clusters in analyzed data sets. We show the algorithms’ performance on these
data sets as reflected by F–measure.

The Iris data sets results are presented in Table 3. The k–means approach
outperforms the results obtained by ACA. Similarly to the results presented in
the previous experiment, the ant–based clustering algorithm consistently found
almost always the correct number of clusters with satisfying values of statistical
measures.

Table 4 summarizes the performance of the ant–based clustering algorithm
when applied to the Wine data. The best result presented in the context of
Wine recognition belongs to the k–means algorithm. Classification error reached
maximum value for the ACA approach, equal to 0.142.

Table 5 shows the results for applying the ant–based algorithms in compari-
son to k–means for the Ionosphere data set as well as the best results according
to the Rand Index. It can be seen that these algorithms have very similar be-
havior in most of the analysed measures. Both algorithms identify good number
of clusters and ACA yields a smaller classification error than the k–means algo-
rithm.

The results presented in Table 6 suggest that these investigations are not
very satisfying and the difficulties lie in the fact that the relationship between
the attributes may not be directly detectable from their encoding, thus not
presuming any metric relations even when the symbols represent similar items
(Variance). Finally, the good performance of the ACA presents the correct
number of clusters obtained during this investigation (Classification error).

The results obtained when different measures were used for decision mak-
ing show that the more suitable measure available to the agents, the better
the performance is. The results confirm the intuition which says that binary
representation of objects (in some data sets) is really difficult for ant–based
clustering algorithm. In this case the algorithm needs more experiments with
different methods of changing the parameter α.

The projection of data into a bi–dimensional output grid and position the
items in neighboor regions gives an advantage of the visual data exploration (see
Fig. 1). By doing this, the algorithm is capable of clustering together objects
that are similar to each other and presenting the result of this process on a bi–
dimensional display that can be easily inspected visually helping the user to deal
with the overload of information. The advantage of the visual data exploration
is that the user is directly involved in the data mining process.

Most importantly, ACA demonstrated good robustness in terms of finding
the correct number of clusters in some synthetic data sets, low variations of
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Table 3. Evaluation of results of the k–means and ACA algorithms for the Iris
dataset.

Iris 150 k–means ACA

Clusters 3.000 2.960

Rand Index 0.824 (0.002) 0.785 (0.022)

F–measure 0.821 (0.003) 0.773 (0.022)

Dunn Index 2.866 (0.188) 2.120 (0.628)

Variance 0.861 (0.049) 4.213 (1.609)

Class. err. 0.176 (0.004) 0.230 (0.053)

The best results (according to Rand Index)

Clusters 3.000 3.000

Rand Index 0.829 0.814

F–measure 0.830 0.811

Dunn Index 2.939 2.306

Variance 0.899 1.486

Class. err. 0.167 0.187

Table 4. Evaluation of results of the k–means and ACA algorithms for the Wine
dataset.

Wine k–means ACA

Clusters 3.000 (0.000) 2.980 (1.140)

Rand Index 0.903 (0.008) 0.832 (0.021)

F–measure 0.928 (0.007) 0.855 (0.023)

Dunn Index 1.395 (0.022) 1.384 (0.101)

Variance 6.290 (0.020) 8.521 (0.991)

Class. err. 0.071(0.007) 0.142 (0.030)

The best results (according to Rand Index)

Clusters 3.000 3.000

Rand Index 0.926 0.872

F–measure 0.943 0.896

Dunn Index 1.327 1.436

Variance 6.336 8.157

Class. err. 0.056 0.101
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Table 5. Evaluation of results of the k–means and ACA algorithms for the
Ionosphere dataset.

Ionosphere k–means ACA

Clusters 2.000 (0.000) 2.560 (0.535)

Rand Index 0.578 (0.002) 0.563 (0.017)

F–measure 0.705 (0.002) 0.676 (0.037)

Dunn Index 1.211 (0.003) 1.031 (0.198)

Variance 23.167 (0.001) 23.224 (2.224)

Class. err. 0.301(0.002) 0.300 (0.017)

The best results (according to Rand Index)

Clusters 2.000 2.000

Rand Index 0.582 0.586

F–measure 0.710 0.700

Dunn Index 1.212 0.841

Variance 23.109 23.743

Class. err. 0.296 0.291

Table 6. Evaluation of results of the k–means and ACA algorithms for the Pima
dataset.

Pima k–means ACA

Clusters 2.000 (0.000) 6.400 (1.590)

Rand Index 0.960 (0.020) 0.504 (0.013)

F–measure 0.678 (0.029) 0.473 (0.070)

Dunn Index 0.983 (0.029) 0.752 (0.140)

Variance 74.974 (1.835) 45.226 (18.880)

Class. err. 0.324 (0.023) 0.321 (0.016)

The best results (according to Rand Index)

Clusters 2.000 5.000

Rand Index 0.581 0.536

F–measure 0.709 0.623

Dunn Index 0.975 0.776

Variance 73.808 62.971

Class. err. 0.278 0.331
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Figure 1. Visualization of clustering for the Iris data set (150 objects)

the results in terms of the number of clusters found as well as the number of
objects within clusters (see also: Iris data set). ACA does not need the number
of clusters to proceed with the clustering task and the results obtained by the
algorithm are similar or even better than those by k–means approach for some
of the metrics considered in this work.

To sum up, the proposed ant–based clustering algorithm has comparable
accuracy in solutions for almost all cases and is significantly better in data
sets with numerical attributes in solution accuracy than in data sets concerning
binary attributes. It clearly shows that the objects in clusters are close to each
other, but a small number of objects are grouped into a wrong cluster, suggesting
that the clustering results by ACA are less than satisfactory.

To bring a matter to a satisfactory conclusion we must take into account
different measures of dissimilarity or a standarization of these values (especially
for the Cosine measure). There is, however, an important drawback. The
parameters of ant behavior needed to be fine-tuned during the performance of
clustering. This is a consequence of the lack of understanding of the global
behavior of a colony of simulated insect–like agents.
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Following the conclusions from the results presented here, there are still sev-
eral avenues for investigation that deserve to be pursued. For instance, because
of too many clusters obtained by ACA, a hierarchical analysis of the data sets
can be proposed by systematically varying some of the user–defined parameters:
the use of set of objects (clusters) instead of one object on a grid position scheme
used here can be performed for an improvement.

5. Conclusions

In this paper, we have presented a new ant clustering algorithm called ACA, for
data clustering in a knowledge discovery context. ACA introduces new ideas
and modifications in Lumer and Faieta’s algorithm in order to improve the
convergence. The main features of this algorithm are the following ones. ACA

deals with numerical databases. It does not require establishing the number of
clusters nor any information about the feature of the clusters.

The ant clustering algorithm has a number of properties that make out of it
an interesting candidate for improvement in the context of applications. Firstly,
because of its linear scaling behavior it is attractive for use in large data sets,
e.g. in information retrieval systems. Secondly — this algorithm deals with the
outliers within data sets. In addition, the ant clustering algorithm is capable to
analyse different kinds of data, which can be divided into clusters of the hardly
anticipated shapes on the grid files.

The scheme of α–adaptation, proposed originally by J. Handl, is not as good
as we assumed in our approach. This scaling parameter plays an important role
in the clustering process, so the changing scheme of its values should be strongly
connected to the effectiveness of the algorithm. This parameter is responsible
for the cluster number. If the clusters on a few hierarchical levels exists, this
version of the ant clustering algorithm will identify the high level connections,
so the generated clusters could be recursively processed.

Future work consists in testing how this model with new ideas of learn-
ing process via pheromone updating rules scales with large databases. We are
also considering other biological inspirations from real ants for analysing the
clustering problem, for example learning the template and other principles of
recognition systems.
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