
Control and Cybernetics

vol. 39 (2010) No. 2

Concurrent operation of processors in the bit-byte CPU

of a PLC∗

by

Mirosław Chmiel and Edward Hrynkiewicz

Institute of Electronics, Silesian University of Technology
Akademicka 16, 44-100 Gliwice, Poland

e-mail: {Miroslaw.Chmiel, Edward.Hrynkiewicz}polsl.pl

Abstract: The paper presents some selected hardware solutions
for the PLC dual processor bit-byte CPUs, which are oriented at op-
timised data exchange between the CPU processors. The optimisa-
tion aims at maximum utilisation of capabilities of the two-processor
architecture of the CPU. The key point is preserving high speed of
instruction processing by the bit-processor, and high functionality
of the byte-processor. The structure should enable the processors to
work in concurrent mode as far as it is possible, and minimise the
situations, when one processor has to wait for the other.

Keywords: programmable logic controller, central processing
unit, bit-byte structure of CPU, scan time, throughput time, con-
current operation.

1. Introduction

One of the basic parameters that determine the performance of Programmable
Logic Controllers (PLCs) is the time needed to execute one thousand instruc-
tions (Michel, 1990). If the value of this parameter is low, a possible range of
PLC applications is wider. This is why design and development of a unit that
would enable execution of a control program during an extremely short time is
becoming a very important task. Owing to its constructional features, such a
unit should not only cover all the possible functional requirements but also make
possible taking maximum benefits from the provided features. When attempting
to propose a cost-effective solution that is fast enough and assures assumed time
limits, one should consider a bit-byte structure of a controller CPU. Thanks to
their special operational features such structures enable achieving satisfactory
results in the case of both binary signal processing, owing to the inclusion of
a dedicated bit processor, and handling the analogue signals, which is carried

∗Submitted: October 2005; Accepted: October 2009.

560 M. CHMIEL, E. HRYNKIEWICZ

out by a standard, cheap microcontroller. Such a structure includes two se-
parate components: a bit unit and a byte (word) unit. Therefore, the control
program language has to be subdivided into two parts. Such an approach is
justified by the fact that special features of instructions for the two processors
are different. The bit processor executes every instruction during a single clock
cycle, whereas for the byte processor every single instruction is equivalent to a
procedure that must be developed in an assembler or high-level programming
languages like C/C++, Pascal or other. Within the confines of this paper the
authors intended to focus their attention on analysing the possibility of concur-
rent work of both processors to get a minimum throughput time and scan time
of the central processing unit.

2. A program example

Let us consider an example, allowing for the observation of the capabilities of
the bit-byte central processing unit in a PLC. A simple belt conveyor with a
remote controlled pneumatic cylinder is considered. Objects that are delivered
by the conveyor after reaching its endpoint are pushed from the belt.

PLC

Pressure

Sensor

Vcc

LBBLKStopStart

OUT
Start

Up

Figure 1. An example of a circuit signal connection

The control program consists of fragments that are executed by the bit
processor and the byte processor. Some actions require co-operation of both
processors. There are four digital inputs connected to the controller (Fig. 1).
Two of them are connected to push-buttons and the other two are connected to
sensors:

• Start – depressing this button starts the process. The process begins
from a Start-up procedure. The Start -up procedure is completed after the
Start-up signal goes up,

• Stop – depressing this button stops the entire process immediately and
turns off the output,

• BLK – blockade. If this signal is activated, the system is out of operation,
• LB – Light Barrier. When activated, the output must be turned off.

Concurrent operation of processors in the bit-byte CPU of a PLC 561

The analogue input delivers information about pressure in the object installa-
tion.

There are also two binary outputs used:

• Start-up – is active for 5 seconds after depressing the Start button (when
BLK is active and the installation pressure is higher than the minimal
value),

• Output – a signal that controls the output. This signal is activated after
five seconds of depressing the Start button and if the BLK signal is active
as well as the satisfactory pressure is present.

The control algorithm, written in the LD graphical language for Simatic
S7-300 (Berger, 2001a) is presented in Fig. 2. Apart from symbols of switches
and coils, two block components are used. A comparator is used for the cur-
rent pressure comparison with a reference value. A time unit is used to delay
switching on the Output signal.

"Start" "Stop" "BLK"

"Start Up"

CMP>=I

IN1

IN2

"P_cur"

"P_min"

"Start Up"

S_ODT

"Timer"

TV

R

"Time"

"LB" "Out""Start Up"

Figure 2. The ladder diagram (LD) program

In Fig. 2 all places are marked where passing of logical conditions between
processors is required. As it seen, the logic condition based on signals Start,
Stop, BLK and Start-up activates the comparison operation. The comparison
result drives the Start-up signal. When the Start-up signal is activated, it trig-
gers time counting in the timer block. The timer output in conjunction with
the optic sensor signal determines the Out signal value. There are four differ-
ent places, where information is passed between processors in the CPU. Each
block component on the Ladder Diagram is triggered from logic signals. On
the other hand, each block drives logic signals. This simple example gives an
overview of logic state transfer in the bit-byte PLC CPU between two proces-
sors. Another problem concerns the control program instruction ordering and
instruction fetching and passing between the processors as well as operation
synchronization.

562 M. CHMIEL, E. HRYNKIEWICZ

3. The single processor CPU

The simplest PLC CPUs are designed with the use of a single general-purpose
microprocessor or microcontroller. The following approach allows for obtaining
a simple and inexpensive solution with a greatly improved performance. The
performance is limited by the lack of a bit operation unit. The operation on
bit variables requires performing several instructions. In fact, most of them are
used to extract bit variables from a byte or a word in order to perform the
operation. Finally, some additional operations are required in order to store the
result in an appropriate place. Bit procedures executed by a byte (or a word)
processor require much more time than a similar operation performed on entire
words or bytes.

Let us consider a byte and a bit operation performed with the use of the
8051 microcontroller (Gałka, 1995).

The byte operation adds binary contents of two cells with symbolic addresses
MB0 and MB2 and places the result in the cell MB4. All memory cells are
located in external memory (Fig. 3).

Program for

MCS’51

Description Cycles

MOV DPTR,#MB0
MOVX A,@DPTR
MOV TMP,A
MOV DPTR,#MB2
MOVX A,@DPTR
ADD A,TMP
MOV DPTR,#MB4
MOVX @DPTR,A

MB0 DPTR
(DPTR) A
A TMP

MB2 DPTR
(DPTR) A

A + TMP A
MB4 DPTR
A (DPTR)

2
2
1
2
2
1
2
2

14

Figure 3. Byte operation example in the MCS-51 assembler

The second operation is AND operation performed on two bits located in
M0.0 and M2.0. The result should be stored in M4.0 (Fig. 4).

As it was presented, an operation on bits, even though the variable size is
reduced, requires executing more instructions than the typical byte operation.

In Fig. 5 a control program for the belt conveyor, written with the use of
Instruction List language is shown. The presented program is based on instruc-
tions and semantics from Siemens (Berger, 2001b). An important fact is that a
logic instruction takes only one argument. This makes them very simple in use
and increases readability of the program. There are also combined instructions
that perform bit and byte operations, like value comparison, which is combined
with logical AND operations.

Concurrent operation of processors in the bit-byte CPU of a PLC 563

Program for

MCS’51

Description CLK

MOV DPTR,#MB0
MOVX A,@DPTR
MOV TMP,A
MOV DPTR,#MB2
MOVX A,@DPTR
ANL A,TMP
ANL A,#0Eh
MOV TMP,A
MOV DPTR,#MB4
MOVX A,@DPTR
ORL A,TMP
MOVX @DPTR,A

MB0 DPTR
(DPTR) A
A TMP

MB2 DPTR
(DPTR) A

A AND TMP A
A AND #0E A

A TMP
MB4 DPTR
(DPTR) A

A OR MP A T
A (DPTR)

2
2
1
2
2
1
1
1
2
2
1
2

19

Figure 4. Bit logic operation in the MCS-51 assembler

1. TH “Start” ;Bit Instructions
2. O “Start-up”
3. A “Stop”
4. A “BLK”

5. L “P_cur” ;Byte Instructions
6. P_min” L “
7. A>=I ;Byte-Bit Instr.
8. = “Start-up” ;Bit Instruction

9. TH “Start-up” ;Bit-Byte Instr.
10. ;Byte Instruction L “Time”
11. SD “Timer” ;Byte-Bit Instr.

12. TH “Timer”

13. A “LB” ;Bit Instructions
14. = “Out”

Figure 5. Program 1 written in the Instruction List

A comparison takes two arguments that are represented by numbers while
the comparison result is represented by a bit variable that stores the logic true -
1 and false - 0. The instruction that triggers the timer function (SD) is executed
on the basis of the Start-up variable. When the execution of the SD instruction
succeeds, an initial value of a given time interval is loaded to a memory cell and
the timer starts counting.

564 M. CHMIEL, E. HRYNKIEWICZ

As it was presented in the above example, there are two precisely tailored
groups of instructions. One of them operates on numerical variables. A typical
microprocessor or microcontroller can process such variables. Bit instructions
belong to the second group. Microprocessors or microcontrollers are not opti-
mised to perform operations on such variables.

In that case the implementation of a processing unit that is able to process
bit variables much faster than a typical microprocessor is quite natural. It is
also important that such a solution should be inexpensive and simple. In order
to overcome the limitations of a general-purpose microprocessor, a specific bit
processor must be designed. It must be optimised for the fastest execution of bit
instructions. There is also a need to design additional circuitry that will allow
to synchronise the computation process in both processors and solve conflicts
in access to common resources.

4. Bit-byte dual-processor CPUs

A basic design of a bit-byte CPU has a common instruction memory. Each
processor fetches an instruction, as it is needed. In this mode the processors
operate in serial way, waiting for each other until the instruction execution is
completed.

By introducing dual-processor architecture some performance improvement
is expected even with single instruction stream. Bit operations are time consum-
ing for a general-purpose processor or microcontroller. An additional processor,
designed for bit operation greatly reduces the time and program overhead for
bit operation because bit operation can be executed very quickly (Chmiel and
Hrynkiewicz, 1999, 2001).

In simple dual-processor architecture the instruction set is similar to that
presented in Fig. 5. The bit processor executes bit instructions while the byte
processor remains idle. The byte processor executes byte instructions while
the bit processor is waiting for an instruction. Complex bit-byte instructions
are expanded into instructions for the bit and byte processor in an appropriate
order.

This basic dual processor architecture can use a bit-processor as a kind of co-
processor for specific operations (Aramaki et al., 1997). When both processor
units are equally privileged, then additional arbitration circuitry is required.
The circuit initially decodes an instruction and directs it to the proper processing
unit.

In Fig. 6 a dual-processor architecture (Getko, 1983) is presented where the
instruction decoder selects a processing unit for the execution of the current
instruction. When instruction processing is completed, the active processor
increments the instruction counter and the cycle starts over. The instruction
decoder is usually a part of the bit processor. The instructions processing is de-
terministic and controlled by a common instruction decoder for both processors.
A common instruction memory forces a serial way of the control program execu-

Concurrent operation of processors in the bit-byte CPU of a PLC 565

Program

Counter

Program

Memory

Bit

Processor

Byte

Processor

Process I/O

Image

Standard

Procedures

Memory

Instruction

Decoder

System Bus

Figure 6. Dual processor CPU with the common program memory

tion. The byte processor is typically equipped with a local standard procedures
memory. In this memory common procedures for a complex control instruction
are stored. Such functions as PID or FUZZY controllers, timers, counters, ad-
vanced arithmetic functions, network and remote communication servicing etc,
are usually implemented as standard procedures. Such a solution utilizes high
speed of the bit processor operation, however it has to execute the control pro-
gram in a fully serial way because the system is equipped only with one control
program memory, one process I/O image and one system bus. In the presented
solution the standard procedures memory is used. The procedures stored in
this memory could be executed by the byte processor concurrently with the bit
processor operation. On the basis of the above observation an idea of equipping
both processors with their own program memories may be carried out. The
appropriate part of the program is placed in bit and byte processors program
memories.

Such an approach was proposed by Donandt (1989). The computation pro-
cess is controlled by the byte processor that transfers tasks to the bit processor.
The bit processor is an autonomous calculation unit independent from the mas-
ter processor. The approach presented allows for concurrent operation of both
processors. The byte processor (master), after calculation initialisation of the
bit processor, is able to resume its operation and continue program execution
instead of waiting for the task completion in the bit processor. There are some

566 M. CHMIEL, E. HRYNKIEWICZ

architectural limitations that reduce performance and concurrency. Only the
master processor can access the process image memory. This limits a parallel
program execution.

The presented examples of bit-byte CPUs deliver guidelines and requests
for a new architecture design. A dual-processor CPU should be equipped with
a fast bit processor. This processor can be designed as custom hardware, for
example with the use of programmable logic components. The bit processor
is responsible for instruction fetching. The byte processor is equipped with a
local standard procedures memory that contains implementations of all byte
instructions that this processor is expected to perform. Each instruction for
the byte processor is a subprogram that is executed as a request from the bit
processor. In order to avoid conflicts during data memory access each processor
uses its local data memory.

The described CPU architecture is shown in Fig. 7 (Chmiel, 2004). A control
program is stored in the main program memory. The program contains instruc-
tions for the bit processor. The byte processor instructions are represented by
entry points addresses to appropriate subprograms. The byte processor, after
execution of a instruction completion transfers its ready state to the bit pro-
cessor. Then the bit processor fetches the next instruction and passes it to the
execution to the appropriate processor.

Code

Adress
Bit

Processor

Byte

Processor

Byte

Processor

Program

Memory

Adress/

Code

Buffer

NEXT

GO

Standard

Program

Memory

Main

Program

Memory

Figure 7. Bit-byte CPU with a master bit processor

A flow diagram for the program execution is shown in Fig. 8. In the pre-
sented circuit the processors are able to execute single instructions or a group
of instructions for a given processor concurrently. Such a possibility decreases
the time of control program execution.

Let us return to the previously considered example and consider, step by
step, the program execution process by the CPU from Fig. 7, which operates
according to the flow diagram presented in Fig. 8.

The control program shown in Fig. 9 consists of different types of instruc-
tions:

Concurrent operation of processors in the bit-byte CPU of a PLC 567

Byte

Instruction

?

N

Bit Processor

NEXT = 1

?

N

Byte Processor

Bit Instruction

Execution

1 NEXT

Byte Instruction

Execution

Instruction Fetching

from

Address Code Buffer

GO = 0

?

Y

N

Instruction Fetching

from

Main Program Memory

Transfer

of an Instruction

to Byte Processor

Initialisation Initialisation

0 NEXT

0 GO

1 GO

Y

Y

Figure 8. Program execution in the bit-byte CPU

• Bit instructions stored in the main program memory, executed usually in
one clock cycle;

• Byte instruction that requires byte processor program memory access;
• Complex instructions that require processor co-operation with the result

of operation depending on both processor calculations being executed in
the proper order.

Byte instructions can have the following format:

• Simple without arguments – an instruction consists of an operation code
that points to a program memory place where standard procedure can be
found (A>=I);

• Simple with a single argument – an instruction modified by the compiler.
As the result of modification the special procedure is placed in byte pro-
cessor memory (L “Time”);

• Complex instructions that require co-operation of the bit-processor. An
instruction of this type issues appropriate actions in both bit and byte
processors (SD “Timer”).

568 M. CHMIEL, E. HRYNKIEWICZ

Main

Program Memory

Byte Processor

Program Memory

Standard Procedures

Program Memory

TH "Start"

O "Start Up"

A "Stop"

A "BLK"

L "P_cur"L "P_cur" address

A>=I

L "P_min" address L "P_min"

A>=I address

= "Start Up"

L "Time" address L "Time"

SD "Timer" address SD "Timer" SD "Timer"

TH "Timer"

A "LB"

= "OUT"

TH "Start Up"

Figure 9. Instruction allocation - case 1

All bit instructions are executed very quickly (each instruction in a single
clock cycle). A byte instruction must be passed to the byte processor. The
signal NEXT is activated (Fig. 8). Bit processor enters the wait state until the
signal GO is activated.

It can be suggested that three successive byte instructions can be initiated
once by the bit processor. This approach allows for further shortening of the
instruction execution time. The same optimisation can be applied to the next
two-byte instructions. The obtained program is shown in Fig. 10. The proposed
modification results in shortening of the main program. The execution time
of the byte instruction group is also reduced, as they are stored in the byte
processor memory now. The overall execution time of the program loop is also
reduced.

Additionally, it can be noticed that the first two byte instructions are inde-
pendent of the following bit instructions. As those instructions are independent
of each other, they can be executed concurrently with these bit instructions.
The following situation is considered in Fig. 11. In this way the program exe-
cution time has been further reduced by concurrent operation of bit and byte
processors.

Concurrent operation of processors in the bit-byte CPU of a PLC 569

Main

Program Memory

Byte Processor

Program Memory

Standard Procedures

Program Memory

TH "Start"

O "Start Up"

A "Stop"

A "BLK"

L "P_cur"L "P_cur" address

A>=I

L "P_min"

A>=I adress

= "Start Up"

L "Time" address L "Time"

SD "Timer" SD "Timer"

TH "Timer"

A "LB"

= "OUT"

TH "Start Up"

Figure 10. Instruction allocation - case 2

Main

Program Memory

Byte Processor

Program Memory

Standard Procedures

Program Memory

TH "Start"

O "Start Up"

A "Stop"

A "BLK"

L "P_cur"L "P_cur" address

A>=I

L "P_min"

A>=I adress

= "Start Up"

L "Time" address L "Time"

SD "Timer" SD "Timer"

TH "Timer"

A "LB"

= "OUT"

TH "Start Up"

Figure 11. Instruction allocation - case 3

570 M. CHMIEL, E. HRYNKIEWICZ

5. Inter processor data transfer

In a single processor unit a condition flip-flop is used for calculating a logic
function that determines the execution of further operations. The two-processor
CPU is equipped with only one condition flip-flop too. This flip-flop is also
required, but it is available for both processors and is used by a particular
processor as needed. The CPU built in such a manner enables only the execution
of the serial program.

A single condition flip-flop limits the parallel operation of the CPU. In the
case of the considered construction the bit and byte processors must be able
to process and exchange logic conditions with each other without interrupting
the operation of the other processor. This requires implementation of two logic
condition flip-flops, one for each processor.

This allows for the execution of the program fragments that require a logic
function execution in each processor without influencing one another.

Let the condition flip-flops be called FB and Fb for the byte and bit processor,
respectively. The information stored in flip-flops must be transferred to the
appropriate processor. It can be done by transferring a value from FB to Fb

and also from Fb to FB. This data transfer does not require additional hardware
overhead.

There is a serious limitation in the described construction. When a processor
wants to access the condition flip-flop of the other processor, the requestor has
to wait until access is granted.

Such problems are not very important for a serial program execution, but
in the case of concurrent program execution become an important object of
interest. In order to reduce the number of synchronisation wait states, a mo-
dified construction of condition registers can be proposed, introducing specific
buffered condition flip-flops that are available for both processors.

There are two additional condition flip-flops that store a copy of the main
condition flip-flops of the appropriate processor. Each of the processors trans-
ferring the condition flip-flop to the buffer flip-flop is able to continue program
execution until the next condition flip-flop update. New information can be
written to the buffer flip-flop only if the previous content was read out by other
processor. When buffer flip-flop is empty (does not contain valid condition bit),
condition bit can be transferred and the processor can immediately resume its
operation. This requires an appropriate compiler able to insert synchronisation
instructions into the compiled code while the program designer is concentrated
on problem solving.

A schematic diagram of the proposed construction is presented in Fig. 12.
Condition buffer flip-flops are called FBb (transfer from the byte to the bit
processor) and FbB (transfer from the bit to the byte processor).

Let us return to the previously considered program presented, in Fig. 5. In
this new situation the program can be split into two independent parts. The
first part generates the signal Start-up, while second part creates the signal Out

Concurrent operation of processors in the bit-byte CPU of a PLC 571

FBb

Bit

Processor

FbB

Byte

Processor

WRFbB

EMPTYFbB

FbB

RDFbB

READYFbB

FbB

RDFBb

READYFBb

FB

WRFBb

EMPTYFBb

Fb

NEXT

GO

Instruction

TRF
bB

Instruction

READ_FbB

Instruction

WRITE_FBb

Instruction

TFBb

FB

Fb

Instruction

Buffer

Bit

Processor

Program

Memory

Bit

Processor

Data

Memory

Byte

Processor

Program

Memory

Byte

Processor

Data

Memory

Byte

Processor
Standard

Program

Memory

Byte

In/Out

Modules

Bit

In/Out

Modules

Figure 12. Block diagram of the parallel CPU structure

based on Start-up signal (see Fig. 3).
The first part of the program starts with four instructions for the bit proces-

sor that use the flip-flop Fb. Instructions number five and six are executed by the
byte processor. A critical part of the program is the instruction number seven.
Logical-AND is calculated on the result of comparison operation executed by
the byte processor and the logic result worked out by the bit processor. Finally,
a logic condition is obtained for the Start-up output.

The operation of both processors is required in the presented part. The
bit processor executes its part of program and finally performs logic-AND with
contents of the flip-flop FBb. The byte processor performs load and comparison
operations. The result of comparison operation is transferred to the flip-flop FB

and FBb.
A program listing for the dual-processor CPU is presented in Fig. 13. There

are two additional instructions that are responsible for transferring the compa-
rison result to FBb and logic-AND operation with the content of this flip-flop.

The dual-processor CPU introduces little overhead in control program. In
the presented program fragment two additional instructions appear. On the
other hand, this overhead allows parallel and concurrent operation. First four
instructions for the bit processor can be executed with the next two instructions
for the byte processor in a parallel way.

The synchronisation point is located in the 9th instruction. At this instruc-
tion the bit processor will wait for the byte processor until the comparison
operation is completed and the result is transferred to the flip-flop FBb.

572 M. CHMIEL, E. HRYNKIEWICZ

1. TH “Start” ;Bit Processor
2. O “Start-up”
3. A “Stop”
4. A “BLK”

5. L “P_cur” ;Byte Processor
6. m L “P_ in”
7. >=I ;Both Processors
8. WriteFBb ;FB to FBb

9. A FBb ; Fb AND FBb
10. Start-up” = “
11. = FbB ;Fb to FbB

12. Read FbB ;test FBb
13. L “Time”
14. SD “Timer”

15. TH “Timer”

16. A “LB”
17. = “Out”

Figure 13. Program 2 in the Instruction List

It can be noticed that the total execution time has been reduced. The exe-
cution time is mainly determined by the byte processor, which executes four
instructions (two time load, compare and transfer instructions). The bit pro-
cessor executes its instruction almost in the background of the byte processor
operation. Its operation does not extend the program loop execution time. The
presented benefits are lost in the serial-cyclic program execution. In the serial-
cyclic way of operation only one processor executes an instruction while the
other processor waits for its completion.

Continuing with the exemplary program, it can be noticed that the start of
time counting is only possible when the Start-up output is active. The bit pro-
cessor controls this output. The state of the Start-up output must be transferred
to the flip-flop FbB. On the basis of the state of FbB the byte processor is able
to trigger the timer operation. In the program, two additional instructions are
inserted that allow for the transfer and receive the Start-up bit value between
the processors (Fig. 13).

There is one additional point of the inter-processor data transfer. The bit
processor requires the status of the timer/counter while the byte processor per-
forms timer/counter procedures. Using the programming mechanism presented
above it is required to place two additional instructions for exchanging logic
conditions among the processors.

This can be avoided by a specific hardware extension dedicated for timers/
counters, which are implemented as additional registers of an external buffer that

Concurrent operation of processors in the bit-byte CPU of a PLC 573

stores timer flags. This buffer is updated by the byte processor (which services
all timers/counters) and can be read out by the bit processor. It allows to read
out the state of the timer by the bit processor without any need of logic condition
exchange. The timer register is mapped in the input space of the bit processor.
This allows for avoiding program overhead and additional synchronisation point
for timer operation (Chmiel, Ciążyński and Nowara, 1995).

The modified timer construction changes operation of the TH Timer instruc-
tion that is now executed only by the bit processor. It tests the state of the
appropriate timer register bit. The block diagram of timer implementation is
shown in Fig. 14.

Bit

Processor

Timer

and

Counter

Buffer

Byte

Processor

Address

Decoder

Read Write

Timer and

Counter

Functions

Program

Realization

TH "Timer"

Address

Decoder

Figure 14. Realisation of the Timer and the Counter

After all modification in the hardware structure of the controller, the pro-
gram consists of seventeen instructions, with four of them transferring a logic
condition and synchronising operation of the processors. It is important that
all those instructions belong to the basic set of instructions and their execution
is relatively short. In Fig. 15 the program is presented that is split into two
columns for the bit and byte processor with additional transfer and synchroni-
sation instructions. The discussed case requires transfer of conditions in both
directions between the processors.

Bit Processor Byte Processor

TH “Start”
O “Start-up” L “P_cur”
A “Stop” L “P_min”
A “ >=I
A F

BLK”

Bb Write FBb
= “
= F Read F

Start-up”

bB

TH “Timer” L “Time”
bB

A “LB” SD “Timer”

= “Out”

Figure 15. Program 3 in the Instruction List

574 M. CHMIEL, E. HRYNKIEWICZ

It can be noticed that the 5th instruction for the bit processor requires read-
ing of the logic condition, worked out by the byte processor. The synchronisation
point should be placed for the instruction A FBb, which requires an updated
value of pressure comparison.

The observable result of such arrangement operations on the bit variables
are hidden under operation on the byte variables. The execution time is not
the sum of all instruction execution times, since byte instructions are executed
concurrently with bit instructions.

By applying the same mechanisms to other instructions a concurrent ope-
ration effect can be achieved. A processor waits for the counterpart unit when
the synchronisation data exchange point is achieved. It can be noticed that
the synchronisation mechanism does not require transferring of an instruction
from the bit processor to the byte processor. It means that the program is also
free from additional operations connected with instruction transfer. Additional
instructions are only inserted for synchronisation of logic condition exchange.
The total program execution time is equal to the maximum value of the byte
processor program execution time and bit processor execution time. But usually,
byte instructions are executed longer than bit instructions, so the execution time
is mainly dominated by operation of the byte processor.

6. Remarks on further development of the Bit-Byte CPU

of PLC

Finally, a CPU can be constructed of two almost independent processors.

The unit is equipped with three memory banks for control programs: the pro-
gram memory for the bit-processor, the program memory for the byte-processor
and the memory unit for standard procedures. As it was assumed, both proces-
sors can operate independently of each other. They are able to execute instruc-
tions from the respective memory units and to access input/output modules
simultaneously (Chmiel, Ciążyński and Hrynkiewicz, 1995).

In Fig. 12 the block diagram of the bit-byte CPU is shown. The part re-
sponsible for instruction passing to the byte processor was removed, while each
processor possesses its own program memory. Processors are synchronised by
the state of condition flip-flops FBb and FbB (empty/full).

Instructions to the processors are delivered from their local memories, so
that they do not have to wait until an instruction is delivered from the common
program memory. The processors enter the wait state only when they attempt
to read the empty condition register or to overwrite an unread condition in a
register. This allows for an effective concurrent operation of both processors.
Some performance reduction can be expected in the two following cases:

1. One of the processors does not complete the awaited operation and the
other one has to wait for the result (READYFBb = 0 or READYFbB = 0).

Concurrent operation of processors in the bit-byte CPU of a PLC 575

2. The condition bit was not read-out by the other processor and a new
one is waiting for writing to condition flip-flop (EMPTYFBb = 0 or
EMPTYFbB = 0).

In order to avoid many wait states the program should be written and compiled
in such a way that the load of both processors is equally distributed in the ope-
ration time. Further optimisation can be achieved by increasing the number of
flip-flops that pass a logic condition between the processors. This leads directly
to the implementation of a common memory with two access ports (dual port
RAM) in which the states of condition flip-flops for both processors are stored.
In that case the problem of cell assignment to given tasks or functions appears.

The assignment problem can be solved in two ways:

1. Condition flip-flops are constantly assigned to a given program instruction
or to smaller fragments of the program that can be called tasks, automati-
cally by the compiler, e.g. the comparison instruction of the byte processor
sets a selected flip-flop, a counter sets another flip-flop, etc. Basing on that
concept each instruction that ends with logic result possesses its condition
flip-flop. A given flip-flop is modified only when the same instruction is en-
countered again in the program stream. This solution is limited by small
flexibility and frequent access cycles to the common memory, in which
logic conditions are stored.

2. The second possibility is to charge the user with cell assignment. A simi-
lar situation can be observed in the Modicon 984 controller programming
(Modicon, 1990). Block instruction outputs may be assigned to memory
cell but this is not necessary. If block output is not assigned, its out-
put value is not stored. Connecting blocks together propagates operation
result to following blocks.

In the considered case cells are used instead of using condition flip-flops.
The operation results are exchanged through the common memory available for
both processors. States of cells that allow for conditional program execution
and synchronisation between processors are stored in this area.

Therefore, it is possible to overcome the problem of idle waiting of one
processor until result is ready from the second one. Having many cells instead of
waiting for a given flag the processor can continue the control program execution.
The given cell will be tested in the next scan.

It can be noticed that during a control program loop execution by one pro-
cessor the second one (especially a bit processor) may change the state of its
condition flip-flop (cell) a few times. This causes that the parts of the control
program, executed by the first processor utilise different states of the condition
flip-flop (cell). The rule of the serial program execution is violated. Both pro-
cessors operate asynchronously with respect to each other. They observe the
cells area (like the I/O space) in order to perform actions that can be executed
in response to changing cells.

576 M. CHMIEL, E. HRYNKIEWICZ

Preserving serial program execution by each processor causes that conditions
are generated in the same order. This allows for designing a specific hardware
with an extremely fast access to cells. The solution is based on a set of D
flip-flops.

As the set of flip-flops two registers may be implemented – one for each direc-
tion of condition transfer. These registers are connected to one processor with
write access while the other one has read access to them (Fig. 16). The position
that is currently written to, is pointed by a counter that is incremented by the
processor after write operation. After reading data from the register the read
pointer is also incremented. The presented registers form queues (something like
a FIFO register) that hold and pass results in the order of their appearance.
There is a possible danger of a queue overlap in the case when one processor is
executing tasks much faster then the other one and generates a large number of
synchronisation flags (Chmiel and Hrynkiewicz, 2004).

Bit

Processor

F
b

CLK
b

F
bB1

D

CLK

Q

F
bB2

D

CLK

F
bBn

D

CLK

Q

Counter

mod n

Byte

Processor

F
B

CLK
B

Q
C

o
u

n
te

r

m
o

d
 n

Figure 16. Block diagram of the two-processor CPU with a common memory
unit

The presented architecture is extremely fast as accessing to information takes
no more than one clock cycle for bit processor and port write operation for byte
processor. This solution is, unfortunately more expensive and complicated than
the use of a RAM. It is necessary to realize that in the case of a RAM used for
condition storing, an access time to the memory is longer than to the flip-flop.

It can be noticed that the presented solution allows for unconstrained oper-
ation of both processors while the processors do not have to wait for condition
passing. In the case of disproportion of program execution time in both pro-
cessors, some flags are updated and examined more frequently than the others
(Chmiel, Hrynkiewicz and Milik, 2005; Chmiel and Hrynkiewicz, 2005).

Can the presented execution method lead to improper operation of the en-
tire CPU? In general, it cannot disturb the operation of the controller. In the

Concurrent operation of processors in the bit-byte CPU of a PLC 577

presented structure common information is processed like any other information
delivered from sensors, actuators and so on. The counterpart processor consti-
tutes a set of flags that are being examined and based on their states proper
actions are triggered. This approach has a shorter response time, since both
processors can operate with a maximum operation speed instead of waiting for
calculation completion.

The introduced improvement to a PLC structure and programming allows for
reducing the PLC throughput time. The processors can respond much faster to
alarms and exception signals. Continuation of execution of the control program
instead of waiting until the entire task in counterpart processor is completed
allows for much faster operation.

7. Conclusions

Studies on the optimised information exchange between the processors of the
bit-byte CPU of the PLC have shown great capabilities and many possible
applications of this architecture.

As one can see from the above considerations, the proposed PLC structure
or - to be more precise – organisation of information exchange between both
processors of a PLC central unit allows for fast execution of control programs
consisting of a bit command and/or word commands. Two modes of CPU opera-
tions were considered. The basic mode – called the dependent operation mode
– brings worse timings than the independent operation mode. It is obvious,
taking into account that both processors wait for the results of the operation
executed by each other. The paper shows that a fully concurrent work of both
CPU processors with exchange of condition flags is possible.

In the Table 1 a comparison of control program execution times for ignition
burners in a steel plant furnace for different controllers and the controller built

Table 1. Comparison of a few PLCs

PLC Number

of bit instructions

Number

of byte instructions

Execution

time [ms]

S5-100U 1030 140 9.0

S5-115U 1030 140 1.9

S7-222 780 50 2.8

S7-224 780 50 2.9

S7-313 1000 115 2.7

S7-315-2DP 1000 115 1.5

Modicon A984 The equivalent control program in LD

representation

8.0

80C320 – serial mode 1050 280 1.7

80C320 – parallel mode 850 140 1.1

578 M. CHMIEL, E. HRYNKIEWICZ

on the basis of the above considerations is presented (Chmiel, 2004). As it
can be seen from Table 1 (rows for 80C320), execution times for the designed
controller are relatively small.

References

Aramaki, N., Shimokawa, Y., Kuno, S., Saitoh, T. and Hashimoto,H.
(1997) A new Architecture for High-performance Programmable Logic
Controller. Proceedings of the IECON’97 23rd International Conference
on Industrial Electronics. Control and Instrumentation, IEEE 1, New
York, USA, 187-190.

Berger, H. (2001a) Automating with STEP 7 in LAD and FBD – SIMATIC
S7-300/400 Programmable Controllers. Siemens AG.

Berger, H. (2001b) Automating with STEP 7 in STL and SCL – SIMATIC
S7-300/400 Programmable Controllers. Siemens AG.

Chmiel, M. (2004) Improvement of Data Exchange Between the Processors of
the Bit-Byte CPU of a PLC. PhD Thesis. Gliwice, Poland.

Chmiel, M., Ciążyński, W. and Hrynkiewicz, E. (1995) An Overview of
Process Data Access and Program Execution Methods Applied in PLCs.
PDS’95: International Conference Programmable Devices and Systems.
Gliwice, Poland 9-10.11.

Chmiel, M., Ciążyński, W. and Nowara, A. (1995) Timers and Counters
Applied in PLCs. PDS’95: International Conference Programmable De-
vices and Systems. Gliwice, Poland 9-10.11.

Chmiel, M. and Hrynkiewicz, E. (1999) Parallel Bit-Byte CPU structures
of Programmable Logic Controllers. International Workshop on ECMS.
Liberec, Czech Republic, 67-71.

Chmiel, M. and Hrynkiewicz, E. (2001) Remarks on Parallel Bit-Byte CPU
structures of Programmable Logic Controllers. International Workshop on
DESDes. Przytok, Poland, 147-152.

Chmiel, M. and Hrynkiewicz, E. (2004) Concurrent Operation of the Pro-
cessors in Bit-Byte CPU of Industrial PLC. International Conference on
PDS. Kraków, Poland, November 18-19, 15-20.

Chmiel, M. and Hrynkiewicz, E. (2005) Remarks on Parallel Bit-Byte CPU
structures of Programmable Logic Controllers. In: M.A. Adamski, A.
Karatkevich, M. Węgrzyn, eds., Design of Embedded Control Systems.
Section V, Springer Science + Business Media, Inc., 231-242.

Chmiel, M., Hrynkiewicz, E. and Milik, A. (2005) Concurrent operation
of the processors in Bit-Byte CPU of a PLC. Preprints of the IFAC World
Congress. Prague, Czech Republic, July 3-8.

Donandt, J. (1989) Improving response time of Programmable Logic Con-
trollers by use of a Boolean coprocessor. In: VLSI and Microelectronic
Applications in Intelligent Peripherals and their Interconnection Networks,
IEEE Computer Society Press, Washington, DC, 167–169.

Concurrent operation of processors in the bit-byte CPU of a PLC 579

Gałka, P. (1995) Podstawy programowania mikrokontrolerów 8051 (Funda-
mentals of 8051 microcontroller programming; in Polish). Mikom, War-
szawa.

Getko, Z. (1983) Programowalne systemy sterowania binarnego PLC (Pro-
grammable systems of binary control, PLC; in Polish). Elektronizacja,
WKiŁ, Warszawa.

Michel, G. (1990) Programmable Logic Controllers, Architecture and Appli-
cations. John Wiley & Sons, West Sussex, England.

Modicon (1990) Modicon 984 Programmable Controller – System Manual.
AEG Modicon.

