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Abstract: A randomized method aimed at evaluation of prob-
abilistic bounds for function values is considered. Stochastic inter-
vals tightly covering ranges of function values with probability close
to one are modelled by a randomized method inspired by interval
arithmetic. Statistical properties of the modelled intervals are inves-
tigated experimentally. The experimental results are discussed with
respect to application of this method in the construction of a branch
and bound type randomized algorithm for global optimization.

Keywords: global optimization, branch and bound method,
randomized computing, interval arithmetic.

1. Introduction

The branch and bound method is an important tool for solving global opti-
mization (GO) problems (Horst, Pardalos and Thoai, 1995). Efficiency of this
method crucially depends on availability of tight bounds concerning objective
function values on subsets of the feasible region comprising the branching tree;
for general discussion on this subject we refer to Floudas et al. (2005) and for
an experimental investigation of influence of bounds tightness on the efficiency
of the corresponding algorithms we refer to Žilinskas and Žilinskas (2006). In
some cases tight bounds can be evaluated owing to the structural or analytical
properties of objective functions (Floudas et al., 2005). Suitable bounds over
rectangular regions can be calculated for a rather broad class of functions by
means of interval arithmetic, and the corresponding GO methods are indeed
efficient for those classes of objective functions (Hansen and Walster, 2003).
Recently the interval arithmetic based GO methods have been developed for
the optimization problems with general constraints (Markot et al., 2006; Sun
and Johnson, 2005). However, the efficiency of interval methods can be de-
graded by the dependency of variables; dependency means multiple occurrences
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of the same variables in the expression/algorithm of the considered objective
function. We are interested in developing a method for the construction of tight
stochastic bounds for the values of objective function, whose properties do not
suggest a specific method for computation of tight bounds, and whose structure
conditions strong dependency implying the degradation of the bounds evaluated
by means of interval arithmetic. We make the same general assumptions about
the analytical properties of objective functions as in development of interval
methods, since our method is based on a stochastic mixture of two versions of
interval arithmetic.

The idea of randomization has proven successful in various computational
problems (Rajasekaran et al., 2001). Many algorithms of “black box” optimiza-
tion include randomized subroutines. For example, the method of branch and
probabilistic bounds (Zhigljavsky, 1990) is implemented as a standard branch
and bound method but including a randomized procedure for evaluation of
bounds. Let us briefly explain this procedure. In a subset of the feasible region,
corresponding to a node of the branching tree, a number of points is generated
at random independently and with uniform distribution. The set of function
values at these random points is considered a random sample with special the-
oretical distribution, and the lower bound for function values is estimated as
minimum of the theoretical distribution (Zhigljavsky, 1990; Zhigljavsky and
Žilinskas, 2008).

Alt and Lamotte (2001) proposed another idea for the randomized eval-
uation of bounds, where random bounds for function values are obtained as
the result of computations by using random interval arithmetic. Unlike the
“black box” model, where only function values are available, the random inter-
val arithmetic model is applicable where an algorithm for computing function
values is available. Randomization is inserted into the structure of the algo-
rithm: the current operation of random interval arithmetic is chosen at random
with equal probabilities from two corresponding operations of inner and outer
interval arithmetic. The result of the computation is a random interval shorter
than the result obtained by the outer interval arithmetic; this advantage of ran-
dom interval arithmetic is gained for the price of loss of guaranteed inclusion
of function values in the resulting interval. The length and the probability of
inclusion can be balanced by means of changing the probability of two possible
alternatives, i.e. operations of outer or inner interval arithmetic. By choosing
an appropriate balance, a good performance of the branch and bound type algo-
rithm based on balanced random arithmetic has been achieved in some practical
problems; see e.g. (Žilinskas and Bogle, 2004). However, in some cases the sta-
tistical assumptions justifying balanced random interval arithmetic are rejected
by statistical consistency testing (Žilinskas and Bogle, 2003). In the present
paper a new version of probabilistic bounds inspired by interval arithmetic is
investigated experimentally, and it is shown that in this case the statistical
model fits well to the experimental data collected in testing experiments.
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A branch and bound type GO algorithm is developed using stochastic in-
terval arithmetic. The method is aimed for problems with simplest (interval)
constraints, and does not include such frequently used enhancements as the in-
terval Newton method. A “pure” version of the algorithm seems best suited
for the assessment of the applicability of the considered stochastic bounds for
further development of GO algorithms aimed at special classes of real world
problems. An example of problems of the probable future interest is included:
it is an optimization problem of statistics. This problem, although simple from
the optimization point of view, well illustrates the fact that despite the common
words in the title with “interval arithmetic”, the “stochastic interval arithmetic”
is oriented at estimating the bounds for functions, which are different from func-
tions aimed by interval arithmetic.

2. Stochastic interval arithmetic

For the practical efficiency of branch and bound global optimization (GO) algo-
rithms it is important that information about the range of function values over
the considered set be as precise as possible, while the procedure for extracting
such an information should be as cheap as possible. We consider a possibil-
ity of tightening bounds by means of randomization, thus accepting the loss of
guaranteed bounding. The considered version of stochastic interval arithmetic
is a modification of random interval arithmetic proposed by Alt and Lamotte
(2001). In spite of the similarity of the widely used term “stochastic arithmetic”
(Alt, Lamotte and Markov, 2006; Markov, Alt and Lamotte, 2004) and the ti-
tle of this section “stochastic interval arithmetic”, the research goals related to
both terms are quite different. The latter title describes a rather narrow theme
on probabilistic bounds meant for use in branch and bound type GO, while the
former term is used in a much broader context.

The operations of stochastic interval arithmetic are defined by combining
the operations of overestimating standard (outer) interval arithmetic and semi-
underestimating operations of inner interval arithmetic. Methodologically, it
would be more appropriate to apply not semi-underestimating but strictly un-
derestimating interval operations. However, in this research, the inner interval
arithmetic was used for the sake of comparability of the experimental results
with those of Alt and Lamotte (2001), Žilinskas and Bogle (2003, 2004). For
the discussion about underestimating interval arithmetic we refer to Kreinovich,
Nesterov and Zheludeva (1996), Žilinskas and Žilinskas (2005), Žilinskas (2006),
and for an example illustrating relations between the interval values defined by
various interval arithmetics we refer to Žilinskas and Žilinskas (2005).

Let us consider computation of an arithmetic expression using random inter-
val arithmetic proposed by Alt and Lamotte (2001). The arithmetic operations
are performed according to the normal priority order, and the standard vs inner
mode of every interval operation is chosen randomly with equal probabilities.
An interval value computed in this way is a random interval. To get a reliable
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approximation of the range of values of the considered arithmetic expression, a
sample of random intervals is generated. Intervals are parameterized by centers
and radii. It is assumed that the standard deviation of centers of the gener-
ated intervals is negligibly small, and the distribution of their radii is normal.
The range is estimated using the sample mean of the centers of generated ran-
dom intervals, and the sample mean and the sample standard deviation of radii
of these intervals. The slight modification of Alt and Lamotte (2001), where
the sequence of interval arithmetic operations is performed by choosing stan-
dard/inner modes randomly with predefined probabilities, is called balanced
random arithmetic and was investigated by Žilinskas and Bogle (2003). Some
advantage of balanced random interval arithmetic with respect to its prede-
cessor (Alt and Lamotte, 2001) can be explained by the flexibility of choosing
the mixing probability, and more realistic distributions: the standard deviation
of centers is not assumed to be small and the distribution of radii is assumed
to be folded normal (Leone, Nelson and Notingham, 1961). Nevertheless, the
experiments (Žilinskas and Bogle, 2003) show that the hypotheses about the
above mentioned distributions are frequently rejected by statistical consistency
tests. This happens, e.g. in the case when balanced random interval arithmetic
is applied to compute interval values of GO test functions defined by simple
formulas.

We propose stochastic interval arithmetic where the result of the arithmetic
operation ◦̃ is defined as a random convex combination of the results of standard
and inner interval operations:

[x]◦̃[y] =
a([x]◦̂[y]) + b([x]◦̌[y])

a + b
,

where [x]◦̂[y] denotes the result of standard interval arithmetic operation, [x]◦̌[y]
denotes the result of inner interval arithmetic operation, and a and b are ran-
dom coefficients. The distributions of random coefficients a and b are uni-
form; their ranges are defined by the predefined coefficient pc: a ∈ [0, pc],
b ∈ [0, (1 − pc)]. The implemented distribution of coefficients has been found
empirically by searching for an appropriate distribution where densities of a and
b were positive over the entire interval [0, 1], a + b = 1, and mean values of a

and b would be easily controllable. In this case the coefficient pc controls the
balance between the underestimating and overestimating components: for pc

close to 0, the results of stochastic interval arithmetic are close to the results of
inner interval arithmetic, and for pc close to 1, the results of stochastic interval
arithmetic are close to the results of standard interval arithmetic. However,
we are most interested in the case of an intermediate pc value. Let stochastic
interval arithmetic with pc ∼ 0.5 be repeatedly applied to compute an interval
value of a function. From a sample of centers and radii of the stochastic inter-
vals the information on the range of function values can be extracted using the
confidence interval technique. The results would be theoretically sound, if the
distributions of centers and radii of generated stochastic intervals were known.
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Since they are not known, we used the approximations: normal distribution for
centers, and folded normal distribution for radii, as proposed by Žilinskas and
Bogle (2004). The applicability of these approximations is analyzed below by
means of the technique of testing statistical hypotheses.

Let an interval value of a function be computed several times using stochastic
interval arithmetic, and a sample of intervals be produced. We want to estimate
the range of function values using the corresponding centers and radii of the
sampled intervals. The idea is to approximate the range by a confidence interval
of a random variable, defined by the sum of hypothetical random variables
center and ±radius. We assume that centers and radii are distributed according
to normal and folded normal distributions, correspondingly. It is well known
that the randomly generated values of normally distributed random variable
with parameters (µ, σ), belong to the interval µ ± 3σ with probability higher
than 0.997. The probability of the similar event for a folded normal random
variable is even higher than 0.997. These arguments suggest the approximation
of the range by the interval

[µcenters ± (3.0σcenters + µradii + 3.0σradii)] , (1)

where the theoretical parameters are replaced by their estimates based on a
sample of intervals obtained by repeated computation of interval function value
by means of stochastic interval arithmetic. Proposed estimates of ranges and
stochastic interval arithmetic have been implemented in C++ modifying a C++
interval library filib++ (Lerch et al., 2001; Žilinskas, 2005).

An experimental investigation has been performed to test how much the
actual properties of stochastic interval arithmetic are close to the hypothetical
ones: do the samples of centers and radii pass the test of compatibility with
the theoretical distributions, and is the accuracy of the approximation (1) ac-
ceptable? The results of similar experiments with balanced random interval
arithmetic are also presented below for comparison.

For the experiments the following GO test functions were used: Rosenbrock,
Six Hump Camel Back, and Goldstein and Price; these functions have been used
in experiments with balanced random interval arithmetic (Žilinskas and Bogle,
2003).

Interval function values (parameterized by centers and radii) were computed
using balanced random and stochastic interval arithmetics. The value pc = 0.55
has been used for stochastic interval arithmetic. Such a pc value corresponds
to the value of the mixing probability adopted in balanced random interval
arithmetic; in the sequence of alternating standard/inner interval operations
the probability of an operation in the standard mode equal to ps = 0.55 was
shown appropriate (Žilinskas and Bogle, 2004). The histograms of samples of
1000 values of centers and radii of are presented in Figs. 1 through 4. The values
computed using standard and inner interval arithmetics are shown as vertical
lines denoted by ‘inn’ and ‘st’. The sample means and the sample standard
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deviations are presented in the titles of x-axes. The graphs of normal distri-
butions for centers and folded normal distributions for radii with the evaluated
sample means and standard deviations are also shown in Figs. 1 through 4. The
Kolmogorov-Smirnov test was used to test the compatibility of samples with
the corresponding hypothetical distributions. P-values of tests, denoted QKS,
are presented below the figures.

The interval values of the Rosenbrock function were computed for a ran-
domly generated X = [0.521, 1.52]× [−0.817, 0.183]. The histograms of centers
and radii of a sample of 1000 interval function values, computed using balanced
random and stochastic interval arithmetics are presented in Fig. 1. The his-
tograms of the samples generated using balanced random interval arithmetic
severely differ from the hypothetical distributions indicating the concentration
of samples at the results of standard and inner arithmetic. This phenomenon is
implied by the extremely simple formula of the Rosenbrock function:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2.

In this case four random intervals are computed using balanced random interval
arithmetic, and their probabilities depend on ps

P
{

f(X) = 100(x2−̂x2
1)

2+̂(1 − x1)
2
}

= ps × ps,

P
{

f(X) = 100(x2−̂x2
1)

2+̌(1 − x1)
2
}

= ps × (1 − ps),

P
{

f(X) = 100(x2−̌x2
1)

2+̂(1 − x1)
2
}

= (1 − ps) × ps,

P
{

f(X) = 100(x2−̌x2
1)

2+̌(1 − x1)
2
}

= (1 − ps) × (1 − ps).

As the numerical value of the second operand of addition in most cases is
much smaller than of the first one, we get interval values similar to standard in-
terval with the probability ps, and interval values similar to inner interval with
the probability 1 − ps. Therefore, the histograms look like if in ps cases only
standard interval arithmetic was used, and in 1 − ps cases only inner interval
arithmetic was used. The discrete distribution is, of course, far from the nor-
mal distribution. On the other hand, the histograms of the samples generated
using stochastic interval arithmetic are similar to the theoretical distributions.
The Kolmogorov-Smirnov test supports our observation: at the standard sig-
nificance level 0.05 the hypothetical distributions are acceptable for the results
of stochastic interval arithmetic, but definitely not acceptable for the results of
balanced random interval arithmetic. Similar results for the Six Hump Camel
Back function for a randomly generated X = [2.56, 3.56] × [−1.45,−0.451] are
presented in Fig. 2.

The histograms for the Goldstein and Price function for X = [0.521, 1.52]×
[−0.817, 0.183] are presented in Fig. 3. Although in this case the Kolmogorov-
Smirnov test rejects the theoretical hypotheses, visually the histograms of cen-
ters and radii of the random intervals generated using stochastic interval arith-
metic seem closer to the theoretical distributions than those of balanced random
interval arithmetic.
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a) balanced random interval arithmetic b) stochastic interval arithmetic

Figure 1. The histograms of centers and radii of balanced random and
stochastic intervals for the Rosenbrock function over randomly generated X =
[0.521, 1.52]× [−0.817, 0.183]
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Figure 2. The histograms of centers and radii of balanced random and stochastic
intervals for the Six Hump Camel Back function over randomly generated X =
[2.56, 3.56]× [−1.45,−0.451]
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QKS=0.00

centers: µ=5.85e+03, σ=1.21e+04

h
is

to
g
ra

m

st  inn

µ-3σ µ+3σ

QKS=0.00

radii: µ=0.00e+00, σ=6.48e+04

h
is

to
g
ra

m

st  inn

µ+3σ

QKS=0.00

centers: µ=4.95e+03, σ=3.29e+03

h
is

to
g
ra

m

st  inn

µ-3σ µ+3σ

QKS=0.00

radii: µ=0.00e+00, σ=2.11e+04

h
is

to
g
ra

m

st  inn

µ+3σ

a) balanced random interval arithmetic b) stochastic interval arithmetic

Figure 3. The histograms of centers and radii of balanced random and stochastic
intervals for the Goldstein and Price function over randomly generated X =
[0.521, 1.52]× [−0.817, 0.183]
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Figure 4. The histograms of centers and radii of balanced random and stochastic
intervals for objective function of optimization problem related to the evaluation
of parameters in statistics over randomly generated X = [1.72, 3.72]



On probabilistic bounds inspired by interval arithmetic 515

Similar results for the objective function of the optimization problem re-
lated to the evaluation of parameters in statistics (see description in the next
section) for a randomly generated X = [1.72, 3.72] are presented in Fig. 4. The
histograms of the samples generated using balanced random interval arithmetic
severely differ from the hypothetical distributions. The histograms of the sam-
ples generated using stochastic interval arithmetic are similar to the theoretical
distributions. The Kolmogorov-Smirnov test supports our observation: at the
standard significance level 0.05 the hypothetical distributions are acceptable for
the results of stochastic interval arithmetic, but definitely not acceptable for the
results of balanced random interval arithmetic.

An alternative method for the construction of global optimization ori-
ented probabilistic bounds for function values is based on extreme value statis-
tics (Zhigljavsky, 1990; Zhigljavsky and Žilinskas, 2008). Let xi, i = 1, . . . , n, be
a sample of random vectors uniformly distributed in X , and let ỹi, i = 1, . . . , n,
denote increasingly ordered function values f(xi). We refer to Zhigljavsky
(1990), Zhigljavsky and Žilinskas (2008) for a discussion of assumptions con-
cerning properties of f(·), related to the estimation of minimum/maximum of
f(x), x ∈ X , using information about f(xi). The ordered statistics based es-
timates of extreme values normally involve some first/last members of the se-
quence ỹi, i = 1, . . . , n. For example, the following simple estimate of minimum

fmin = ỹ1 − ak(ỹk − ỹ1), (2)

is discussed by Zhigljavsky and Žilinskas (2008), p. 68, where it is emphasized
that k should be relatively small with respect to the sample size; the multiplier
ak depends on behavior of f(·) in the vicinity of the minimizer. We are inter-
ested in small samples, e.g. in the experiments below the samples of size n = 20
are considered. Therefore the value k = 2 seems most appropriate. Assuming
that the minimizer is on the border of the feasible region X , the function in
the vicinity of the minimizer can be approximated by a linear function; these
assumptions suggest for functions of two variables the choice of a2 = 2 (Zhigl-
javsky and Žilinskas, 2008). Applying the estimate of maximum fmax, obtained
by means of an obvious reformulation of (2), the interval [fmin, fmax] can be
considered a stochastic estimate of the range for function values. Stochastic
estimates of ranges for function values obtained using extreme value statistics,
balanced random interval arithmetic, and stochastic interval arithmetic were
compared experimentally. The ranges for the Rosenbrock, Six Hump Camel
Back, and Goldstein and Price functions were estimated over the feasible re-
gion shown in the captions of Figs. 1-3. Samples of 1000 stochastic estimates
of ranges were generated by the competing methods for all three test cases.
Two criteria were used for comparison: failure (if an estimate did not cover
the range) percentage, and average length of stochastic intervals. Estimates of
ranges were computed by means of balanced random arithmetic and stochastic
arithmetic using random samples of size equal to 5. Estimates from the method
based on extreme value statistics were computed using samples of size 20, in
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Table 1. Results of experimental testing where ‘Stochastic’ is a shorthand for
the method of stochastic interval arithmetic, ‘Random’ is a shorthand for the
method of balanced random arithmetic, and ‘Extremal’ is a shorthand for the
method based on extreme value statistics; ‘Length’ denotes the average lengths
of generated stochastic intervals, and ‘Failure’ denotes the percentage of failures
to cover real range of function values

Rosenbrock function

Method Stochastic Random Extremal

Length 960 965 1095

Failure (%) 2.5 2.3 4.8

Six Hump Camel Back function

Method Stochastic Random Extremal

Length 847 881 912

Failure (%) 0.1 0.2 14.4

Goldstein and Price function

Method Stochastic Random Extremal

Length 115380 316596 266370

Failure (%) 0.8 5.9 8.4

order to account for the 4 times higher complexity of computing an estimate
by stochastic interval arithmetic than by the method based on extreme value
statistics.

A foremost conclusion from the experimental results concerning the method
based on extreme value statistics was that the theoretically justified value a2 = 2
is too small, implying high failure probability. Therefore, the values of a2 were
tuned for test cases individually to get average lengths of intervals similar to
those obtained by stochastic interval arithmetic; thus different methods can be
compared with respect to percentage of failures.

The experimental results presented in Table 1 clearly show that both ver-
sions of randomized interval arithmetic clearly outperform the method based
on extreme value statistics. The results of stochastic interval arithmetic are
better than the results of balanced random arithmetic. The deficiency of the
method based on extreme value statistics can be explained by the inadequacy of
its asymptotic nature to small size of samples used for estimation. This method
is also sensitive to the behavior of the considered function in the vicinities of
both kinds of extremum points, which is difficult to assess a priori.

The statistical model of stochastic interval arithmetic seems sufficiently ad-
equate to the experimental data; at least the adequacy of this model is much
better than the adequacy of the model of balanced random interval arithmetic.
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However, a much better adequacy of the model does not necessarily imply a
much higher accuracy of the approximation (1). The results of experiments,
designed to assess the accuracy of (1) for both randomized interval arithmetics,
are presented below.

For the experimental assessment of the approximation (1) the precise values
of the considered ranges are desirable. However, their computation is a difficult
task. Therefore, their statistical estimates were used: the range of function val-
ues corresponding to a randomly chosen multidimensional interval of variables
is estimated using 2000 function values computed at uniformly distributed ran-
dom points. The size of samples, used to compute the approximations (1), was
chosen equal to N = 30 and N = 5. The approximation is called successful if the
statistical estimate of a range is a sub-interval of the corresponding approxima-
tion (1). The success rate is estimated taking into account the approximations
of ranges corresponding to 1000 randomly chosen multidimensional intervals of
variables. The accuracy of approximation is measured by the mean ratio of
widths of approximation (1) and of the standard interval enclosure, i.e. the in-
terval computed using standard interval arithmetic. The ratio of widths shows
how much approximation (1) is narrower than bounds computed using standard
interval arithmetic. When approximation (1) is used in global optimization, the
success rate influences the reliability of the branch and bound algorithm. The
ratio of widths determines the efficiency of the algorithm: for a smaller ratio
the approximation is narrower, and the algorithm is faster since sub-regions are
discarded earlier.

The inter-relationship between the success rate and the ratio of widths is
obtained by estimating both parameters for different values of the coefficient pc

in the case of stochastic interval arithmetic. Similarly, in the case of balanced
random interval arithmetic both parameters are estimated for different values of
probability to choose the mode of standard interval arithmetic ps. The curves
showing these inter-relationships for both versions of interval arithmetic, and
for two sizes of samples (N = 30 and N = 5), are presented in Figs. 5 and 6.

The considered inter-relationships for the Goldstein and Price function are
shown in Fig. 5. The results can be summarized as follows. First: the inter-
vals obtained using stochastic interval arithmetic more reliably cover the corre-
sponding ranges of function values than the intervals of the same average length
obtained using balanced random interval arithmetic. Second: the difference is
more evident for a small sample. The second conclusion is especially important
for global optimization, since small sample sizes are preferable to save time on
computing approximations.

The results of the experiments with the objective function of a practical
process network synthesis problem from Csendes (1998), presented in Fig. 6,
are similar to the results of experiments with the Goldstein and Price function.
Narrower approximations are obtained more reliably using stochastic interval
arithmetic than using balanced random interval arithmetic; the difference is
more evident for a small sample.
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a) sample size N=30 b) sample size N=5

Figure 5. Interrelationship between success rate and mean ratio of widths for the
Goldstein and Price function; solid line corresponds to balanced random interval
arithmetic, and dashed line corresponds to stochastic interval arithmetic
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Figure 6. Interrelationship between success rate and mean ratio of widths for ob-
jective function of process network synthesis problem; solid line corresponds to
balanced random interval arithmetic, and dashed line corresponds to stochastic
interval arithmetic
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3. Global optimization using stochastic interval arithmetic

The tightness of bounds is an important factor of efficiency in branch and bound
based GO. On the other hand, a branch and bound approach based algorithm
can fail if the bounds are underestimated.

For the experimental comparison of the efficiency of interval GO with differ-
ent versions of interval arithmetic, a branch and bound algorithm has been im-
plemented, where lower and upper bounds for function values can be computed
by a chosen version of interval arithmetic. Three versions of interval arithmetic
are included: standard, balanced random, and stochastic. The smallest value
of the function at the middle points of the considered sub-regions is used as an
estimate of the upper bound for the minimum.

GO algorithms based on the balanced random and stochastic interval arith-
metics are randomized algorithms because of stochastic bounds used in branch
and bound procedures. Therefore, the efficiency and the reliability of optimiza-
tion were assessed by averaging the results of 100 runs. Experiments were per-
formed with different values of pc for stochastic interval arithmetic. Stochastic
bounds for function values were estimated from the samples of random intervals
where sample size was equal to 5. An optimization problem related to a process
network synthesis problem (Csendes, 1998) was used for testing. The termina-
tion condition was defined by the relative tolerance equal to 10−2. For different
values of pc the reliability and the efficiency of the algorithm were assessed.
The reliability was measured by success rate equal to the ratio of runs where
the global minimum was estimated with the predefined accuracy. The efficiency
was measured by the ratio between the mean number of objective function
calls by the algorithm using stochastic (balanced random) interval arithmetic,
and number of objective function calls by the algorithm using standard interval
arithmetic. The results summarized in Fig. 7 show that the efficiency of stochas-
tic and balanced random interval arithmetics, measured in function calls ratio
for success rate close to 1, is approximately 10 times better than that of stan-
dard interval arithmetic. The algorithm with stochastic interval arithmetic uses
fewer function calls for the same success rate than the algorithm with balanced
random interval arithmetic.

The time of optimization has also been measured. Average relative opti-
mization time is computed averaging the ratios of time of GO using stochastic
(balanced random) and standard interval arithmetics; the results are presented
in Fig. 8. When the desired success rate is less than 99%, the algorithms with
stochastic bounds are faster than the algorithm with standard interval arith-
metic. When 90% success rate is required, the algorithms are more than five
times faster, when 80% – six times faster. The speed of optimization algorithms
with stochastic bounds computed from balanced random intervals and stochas-
tic intervals is similar, although the computation of interval function value using
balanced random arithmetic takes approximately twice shorter time than such
a computation using stochastic interval arithmetic.
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Figure 7. The relationship between success rate and function calls ratio for
the problem of optimal synthesis of process network; solid line corresponds to
balanced random interval arithmetic, and dashed line corresponds to stochastic
interval arithmetic
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Figure 8. The relationship between success rate and average relative time for
the problem of optimal synthesis of process network; solid line corresponds to
balanced random interval arithmetic, and dashed line corresponds to stochastic
interval arithmetic
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The optimization problems related to the evaluation of parameters in statis-
tics have frequently the properties favorable to the application of the proposed
GO method. The 100% success rate in these problems is not necessary, since
estimates anyway are random variables as functions of a random sample. More-
over, for the small and medium samples an increase of the minimization precision
does not necessarily improve the quality of estimates with respect to statistical
criteria, e.g. bias and standard deviation. The problem of estimation of param-
eters of the three-parameter lognormal models (Wingo, 1984) illustrates well
the properties of the typical optimization problems of interest: the number of
variables is small, the formulas of computation of objective function are rather
simple, but data sets involved in computations according to these formulas are
large, causing strong dependency of variables.

The probability density of the lognormal distribution is defined by the for-
mula

p(y) =
1√

2πβ(y − γ)
exp

(

−
(ln(y − γ) − µ)2

2β

)

, (3)

where y > γ, −∞ < γ < ∞, and β > 0. The number of parameters of p(y)
is equal to three, and these parameters can be estimated by the method of
maximum likelihood as described in Wingo (1984):

min
−10≤θ≤10

[µ(θ) +
1

2
ln(β(θ))], (4)

µ(θ) =
1

n

n
∑

i=1

ln(yi − γ(θ)), (5)

β(θ) =
1

n − 1

n
∑

i=1

[ln(yi − γ(θ)) − µ(θ)]2, (6)

γ(θ) = ymin − exp(−θ),

where yi, i = 1, ..., n, is a sample of n observations, and ymin denotes the
minimum observed value.

Although the optimization problem (4) seems rather simple, it has been
considered in several research papers, e.g. cited by Wingo (1984); for the more
recent results related to this statistical problem and further references we refer
to Basak, Basak and Balakrishnan (2008). The GO algorithms based on bal-
anced random arithmetic and on stochastic arithmetic have been tested using
100 random samples (of size equal to 100) from the distribution (3) with pa-
rameters γ = 10, µ = 1, and β = 0.5; these values for the parameters have been
chosen following Wingo (1984). The averaged results are presented in Fig. 9,
showing some advantage of stochastic interval arithmetic based algorithm.

To assess the performance of the stochastic arithmetic based GO algorithm
in the estimation of parameters of (3), the statistics of the testing is presented
in Table 2; see the row “stochastic”. One hundred random samples of size 100
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Figure 9. The relationship between success rate and function calls ratio (left)
as well as average relative time (right) for the problem (4) where the tolerance
of termination condition was equal to 10−3 ; solid line corresponds to balanced
random interval arithmetic, and dashed line corresponds to stochastic interval
arithmetic

were considered. The estimate of γ was obtained as γo = ymin−exp(−θo) where
ymin was minimum sample value, and θo was the minimizer in (4). The esti-
mates of two other parameters were obtained by replacing γ with γo in (5) and
(6), respectively. The means and the standard deviations of the estimates are
denoted by γ̄, β̄, µ̄ and std. γ, std. β, std. µ, respectively. For comparison,
the statistics of estimates obtained using standard interval arithmetic are pre-
sented in the row “standard” of Table 2. The considered problem of estimation
is difficult because one of the parameters estimated, namely the parameter γ, is
minimum of the distribution density p(y), and

lim
y→γ+0

p(y) = lim
y→γ+0

p′(y) = 0. (7)

If the parameter γ were known, then the estimation problem would be re-
duced to a trivial one where the estimates of the remaining two parameters
could be computed using formulas (5) and (6). The statistics of estimates of
β and µ, obtained for the case of known γ (γ = 10) are presented in the row
“analytical” of Table 2. These statistics can be considered as the desirable limit
for the corresponding statistics of estimates obtained for the case of unknown
γ.

The results of Table 2 show that the estimates obtained using the stochastic
interval arithmetic are as good as those obtained using the standard interval
arithmetic, but the former are obtained using a considerably smaller number of
function calls.
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Table 2. The results of estimation of parameters of the lognormal distribution

algorithm calls ratio γ std. γ µ std. µ β std. β

analytical 0.000 10.000 0.000 1.015 0.067 0.466 0.015

standard 1.000 10.022 0.292 0.984 0.147 0.514 0.138

stochastic 0.033 9.837 0.156 1.074 0.100 0.428 0.092

To improve the efficiency, different enhancements are included into the state
of the art GO algorithms based on interval arithmetic, e.g. the interval Newton
method. In contrast, very simple versions of GO algorithms based on stochas-
tic interval arithmetic were considered in the present paper so as to exclude
confusing factors in the assessment of the newly proposed stochastic interval
arithmetic. Simple test functions were used, adequate for the (simple) tested
version of the algorithm. The obtained results of experimental testing encour-
age the development of a sophisticated (parallel) version of GO algorithm based
on stochastic interval arithmetic and oriented at the optimization problems in
statistics.

4. Conclusions

In computing probabilistic bounds for function values, the stochastic interval
arithmetic outperforms the balanced random arithmetic as well as the method
based on extreme value statistics; the methods were compared with respect to
application in branch and bound type methods for global optimization. The
parameter estimation problems in statistics seem a proper field to be aimed at
in the further development of the proposed approach.
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