
Control and Cybernetics

vol. 39 (2010) No. 2

Selection of prototypes with the EkP system∗

by

Karol Grudziński

Institute of Physics, Kazimierz Wielki University
Bydgoszcz, Poland

e-mail: grudzinski.k@gmail.com

Abstract: A new system for selection of reference instances,
which is called the EkP system (Exactly k Prototypes), has been
introduced by us recently. In this paper we study suitability of
the EkP method for training data reduction on seventeen datasets.
As the underlaying classifier the well known IB1 system (1-Nearest
Neighbor classifier) has been chosen. We compare generalization
ability of our method to performance of IB1 trained on the entire
training data and performance of LVQ, Learning Vector Quantiza-
tion, for which the same number of codebooks has been chosen as
the number of prototypes selected by the EkP system. The compar-
ison indicates that even with only a few prototypes which have been
chosen by the EkP method on nearly all seventeen datasets statis-
tically indistinguishable results from those given by the IB1 system
have been obtained. On many datasets generalization ability of the
EkP method has been higher than the one attained with LVQ.

Keywords: classification of data, selection of reference vectors,
prototype methods.

1. Introduction

Data mining is commonly employed in many domains. A case-based way of data
explanation is very popular among researchers. Such an approach to knowledge
discovery and understanding is particularly often employed in medicine, where
a medical doctor makes a diagnosis by referring to other similar cases in a
database of patients.

Interesting instance vectors, known as reference cases or sometimes as pro-
totypes, can be either selected from training data or can be generated out of
a training set. In the latter case the instance features have in general different
values from the ones stored in the original training set. The idea behind these
both two techniques is that only a small set obtained from a usually much larger,

∗Submitted: January 2009; Accepted: May 2009.

488 K. GRUDZIŃSKI

original training set, is used for a final classification of unseen samples (Mal-
oof and Michalski, 2000; Martinez and Wilson, 1997, 2000; Grochowski, 2003;
Jankowski and Grochowski, 2004; Grochowski and Jankowski, 2004; Duch and
Grudzinski, 2000; Grudzinski, 2004, 2008).

Prototype selection is an important problem which has been frequently stud-
ied in machine learning and pattern recognition. Selection of reference instances
can significantly speed up classification and analysis of data and usually leads to
better data understanding and may lower sensitivity to noise of some classifiers.
Strong training set reduction may sometimes result in statistically significant
degradation of the classification accuracy attained on unseen samples, however,
as many experiments illustrate it is often the other way around, i.e. data pruning
improves the generalization ability of classifiers.

This paper concerns the first of above mentioned problems, i.e. ‘instance
selection’, ‘training data compression, reduction or pruning’. For this purpose
a new system, which we call EkP, has been introduced recently (Grudzinski,
2008). The acronym EkP stands for Exactly-k-Prototypes. Our method is
based on minimization of the number of errors, which the employed underlying
classifier makes during learning on a training partition. In other words, building
the EkP model (i.e. training it) on training data involves performing a process of
minimization. Thus, in order to conduct a classic 10-fold cross-validation test,
minimization has to be repeated 10 times: one time for every training partition.
This minimization process results in construction of the optimal new target
training set containing k prototype instances per each class occurring in a prob-
lem domain. The parameter k, which controls the number of samples selected
is given by a user of the program. The aim of the cost function, which is called
from a minimization procedure and whose pseudocode is given in detail further
in the paper, is to extract k instances per class from the vector of optimization
parameters (they are selected randomly for the parameter vector from the orig-
inal training set) and to form from them a new small training set whose content
is optimized with respect to the generalization ability of the employed classifier.
Thus, the purpose of the cost function is to decode the vector of optimization
parameters, extract the instances, build from these samples a new small learning
set, train on it the underlying classifier and return the number of classification
errors made during learning. After completion of minimization, the underlying
classifier is built on a training set consisting of just the found prototypes and
after that its generalization ability is estimated on unseen samples.

We want to stress here that our new system differs significantly from our
earlier model, PM-M (Grudzinski, 2004), but it is common to both systems
that they are minimization based. Samples selected with the EkP system can
be used, for example, to build prototype-based rules, introduced in Duch and
Grudzinski (2001) and Blachnik and Duch (2004), and which are an alternative
to the classic logical rules.

Selection of prototypes with the EkP system 489

2. Methodologies for reference instance selection

Before we proceed to presentation of the EkP system and the results obtained
with this method, a very concise review of some of the known techniques em-
ployed in selection of the reference cases is provided. This presentation draws
heavily on Grochowski (2003).

2.1. Formulation of the problem

The problem of selection of the reference instances can be defined as a process of
finding the smallest set S of cases representing the same population as the orig-
inal training set T and leading to correct classification of the samples from not
only T but, more importantly, of the unseen cases. This technique should result
in minimal degradation of the generalization ability of the underlying classifier
or, ideally, ought to lead to the improvement of the classification results with
respect to these that are obtained by using the original set T for learning. In
other words, reference case selection is a method for selection or generation of
the most informative samples (called by us also supervectors) from T and re-
jection of the noisy cases or of these instances that degrade the generalization
when the original training set T is used for learning. Let us denote by n the
number of samples of the original training set T . Restricting ourselves to proto-
type selection, by which we understand selection of reference cases, in which S

is a subset of T , the problem is to find the optimal subset S out of all possible
2n−1 subsets with respect to generalization ability of the underlaying classifier.

The reference vectors selection algorithms can be divided into a few number
of techniques that share the same strategies.

2.1.1. Noise filters

This category of methods, known also as editing rules, is based on rejecting
noisy cases or outliers from T . The rate of data pruning is usually low and
these techniques are usually employed as the first data preprocessing step, which
is then followed by other methods. ENN, RENN (Wilson, 1972), All k-NN
(Tomek, 1976) and ENRBF (Jankowski, 2000) are the key examples of the
algorithms in this group.

2.1.2. Data condensation algorithms

This group of methods is also known as data pruning or data compression tech-
niques. The main idea behind this approach is to achieve the highest possible
training data reduction without or with minimum sacrifice of generalization of
the employed underlying classifiers. Condensation methods aim at seeking and
removing the training vectors that have a small influence on learning and thus
their presence negatively affects classifier time requirements and memory con-
sumption. This is usually accomplished by discarding these instances that lay

490 K. GRUDZIŃSKI

far from the decision borders. CNN (Hart, 1968), RNN (Gates, 1972), GA,
RNGE (Bhattacharya, Poulsen and Toussaint, 1981), ICF (Brighton and Mel-
lish, 2002) and DROP 1-5 (Martinez and Wilson, 2000) are the main systems
that fall into this category.

2.1.3. Prototype methods

The family of reference selection algorithms that are aimed at finding extremely
low number of highly informative samples carrying particularly large amount
of information and capable of representing large number of cases are known
as prototype methods. In case when S is a subset of T these methods are
called prototype selection algorithms, otherwise prototype generation systems.
The difference between data condensation algorithms and prototype selection
methods is very subtle. In our understanding, prototype selection algorithms
push the reduction of the training data to the extreme, taking sometimes the
risk of slightly larger degradation of generalization of the underlying classifiers.
Both groups of methods, though, try to arrive at the smallest set S, the stress
in data condensation techniques is put on generalization, whilst in the case of
prototype selection algorithms it is on the extremely low amount of samples that
are selected. It should not be surprising that some of the algorithms, particularly
these in which one has the control over the number of samples selected, may be
treated either as data condensation methods or as prototype selection models.
LVQ (Kaski, Kohonen and Oja, 2003), MC1 and RMHC (Skalak, 1994), IB3
(Aha, Albert and Kibler, 1991), ELH, ELGrow and Expolore (Cameron-Jones,
1995) and our own models PM-M (Grudzinski, 2004) and EkP (Grudzinski,
2008) can be included into the prototype selection and generation group of
methods.

3. The EkP system

The EkP system is based on minimization of a cost function, which returns
the number of errors the classifier makes. Despite this, the EkP method is
relatively fast because during every evaluation of the cost function the reduced
training set is constructed only out of the preset small number of instances. It
takes seconds for the EkP method to perform 10-fold cross-validation on most
common UCI datasets. In our implementation we used the well known simplex
method (Nelder and Mead, 1965) for function minimization, which we have
taken from the Internet (Lampton, 2004).

The simplex must be initialized first before a minimization procedure is
started. The EkP system is very sensitive to the way in which the simplex is
initialized, and therefore we have decided to include in the text of the paper the
description of the EkP’s initialization algorithm, which is given below.

Selection of prototypes with the EkP system 491

Algorithm 1 The EkP’s simplex initialization algorithm

Require: A vector of training set instances trainInstances[] (numInstances

dimensional)
Require: A vector p[] of optimization parameters (numProtoPerClass *

numClasses * numAttributes dimensional)
Require: A matrix simplex to construct a simplex

Let numPoints denote the number of points to build simplex on
for i = 0 to numPoints - 1 do

randomize(trainInstances[])
for j = 0 to numInstances - 1 do

for k = 0 to numAttributes - 1 do

simplex[j][k] = trainInstances[j][k]
end for

end for

c = 0
for j = 0 to numClasses * numProtoPerClass - 1 do

for k = 0 to numAttributes - 1 do

p[k + numAttributes * j] = simplex[c][k]
end for

if c ¡= numInstances then

c = c + 1
else

c = 0
end if

end for

simplex[i][numAttributes] = costFunction(p[])
end for

Two variants of the cost function algorithm have been implemented in our
system. The first variant is based on the internal cross-validation learning on
training partitions, whilst in the second variant a classifier is trained by con-
ducting a plain test (the pruned training partitions are used for learning and the
test on the entire training partition is used for estimating training accuracy).
The details about both variants of the cost function algorithm are given in the
pseudocode listings below.

Our implementation of the EkP method is not the simplest one as our code
will become a basis for an extended version of this algorithm. In order to give a
short description of the algorithm in the paper, it is worth mentioning that the
array of optimization parameters is (numProtoPerClass * numClasses * numAt-
tributes)-dimensional but the instances stored in this vector are not involved in
any parameter modification. They are simply extracted from the parameter
vector and are added to the training partition in every cost function evaluation.
In other words, the training partitions are built by extracting samples from

492 K. GRUDZIŃSKI

Algorithm 2 The EkP-1 cost function algorithm (learning via internal cross-
validation)

Require: A vector of training set instances trainInstances[]
Require: A vector p[] of optimization parameters (numProtoPerClass *

numClasses * numAttributes dimensional)
for k = 1 to numCrossValidationLearningFolds do

Create the empty training set cvTrain

Build the k-th test partition cvTest

for i = 0 to numClasses * numProtoPerClass - 1 do

for j = 0 to numAttributes - 1 do

Add the prototype stored in p[] starting from p[j + numAttributes

* i] and ending at p[numAttributes - 1 + numAttributes * i] to
cvTrain

end for

end for

Build (train) the classifier on cvTrain and test it on cvTest

end for

Remember the optimal p[] value and associated with it the lowest value of
numClassificationErrors

return numClassificationErrors

Algorithm 3 The EkP-2 cost function algorithm (learning via test on the
entire training partition taking pruned training partition for building (training)
a classifier)

Require: A vector of training set instances trainInstances[]
Require: A vector p[] of optimization parameters (numProtoPerClass *

numClasses * numAttributes dimensional)
Create the empty training set tmpTrain

for i = 0 to numClasses * numProtoPerClass - 1 do

for j = 0 to numAttributes - 1 do

Add the prototype stored in p[] starting from p[j + numAttributes

* i] and ending at p[numAttributes - 1 + numAttributes * i] to
tmpTrain

end for

end for

Build (train) the classifier on tmpTrain and test it on trainInstances

Remember the optimal p[] value and associated with it the lowest value of
numClassificationErrors

return numClassificationErrors

Selection of prototypes with the EkP system 493

a parameter vector, which always contains numProtoPerClass examples from
every class occurring in a problem domain.

In a simpler implementation one could store the indices of the training set
instances instead of storing the numProtoPerClass * numClasses vectors them-
selves in the parameter array. Note that numAttributes denotes the total number
of attributes in a dataset including the class attribute.

4. Numerical experiments

In order to verify the suitability of the EkP system for data analysis, the classi-
fication experiments on seventeen real-world problems (mainly taken from the
well-known UCI repository of machine-learning databases, Mertz and Murphy,
1996) have been performed. The information about the datasets used can be
found in Table 1.

Table 1. Datasets used in our experiments
 # Dataset # Instances # Attributes # Numeric # Nominal # Classes Base Rate (%) Rnd. Choice (%)

1 appendicitis 106 8 7 1 2 80.18 50.00

2 breast-cancer 286 10 0 10 2 70.30 50.00

3 horse-colic 368 23 7 16 2 63.05 50.00

4 credit-rating 690 16 6 10 2 55.51 50.00

5 german_credit 1000 21 8 13 2 70.00 50.00

6 pima_diabetes 768 9 8 1 2 65.11 50.00

7 glass 214 10 9 1 6 35.51 16.67

8 cleveland-heart 303 14 6 8 2 54.45 50.00

9 hungarian-heart 294 14 6 8 2 63.95 50.00

10 heart-statlog 270 14 13 1 2 55.56 50.00

11 hepatitis 155 20 2 18 2 79.38 50.00

12 labor 57 17 8 9 2 64.67 50.00

13 lymphography 148 19 0 19 4 54.76 25.00

14 primary-tumor 339 18 0 18 21 24.78 4.76

15 sonar 208 61 60 1 2 53.38 50.00

16 vote 435 17 0 17 2 61.38 50.00

17 zoo 101 18 0 18 7 40.61 14.29

 Average 337.76 18.18 8.24 9.94 3.76 58.39 41.81

The EkP system can be based on an arbitrary classifier, i.e. it can be a
neural-network, support-vector machine or a decision-tree method, etc. In our
experiments, the IB1 (1-Nearest Neighbor) (Aha, Albert and Kibler, 1991) sys-
tem has been used both as the underlying classifier for the EkP system and
as the reference method. The reason for selecting the IB1 system is that this
method requires very small training datasets, which may consist of just a few
samples, in order to make classification possible. Other classifiers, including
IBk (Aha, Albert and Kibler, 1991) require slightly larger training sets in order
to operate. Our aim when we were conducting the experiments for this paper
was to show that even calculations with extremely low number of prototypes
selected may lead to good generalization of the method on unseen samples. The
well known LVQ method (Hyninen et al., 1996; Kohonen, 2001; Kaski, Kohonen
and Oja, 2003), even though it is a prototype-generation system, has also been
taken as the reference model in our experiments. The second reason for choos-

494 K. GRUDZIŃSKI

ing the IB1 classifier as the underlying method for the EkP system is the fact
that the LVQ method uses the k-Nearest Neighbor classifier as its classification
engine.

Ten-fold stratified cross-validation test has been performed for all seventeen
domains. In the experiments conducted with the EkP system in each cross-
validation fold the training partition has been pruned so that only the proto-
type cases remained. Then the EkP’s underlying classifier has been trained
and its generalization ability has been estimated on the cross-validation test
partition. After the completion of the calculation on all ten folds, the test has
been repeated ten times and the average classification accuracy and its stan-
dard deviation, taken over all the available hundred partial results, have been
reported.

Generalization ability of the EkP system with only one, two and three in-
stances per class, selected from a training set, has been compared to the clas-
sification performance of LVQ, for which the same number of codebooks has
been used. Additionally, the results obtained with IB1 system, which has been
trained on the entire cross-validation training partitions (i.e. all training samples
from every learning fold have been used) are provided.

The single corrected re-sampled T-Test (Witten and Frank, 2000; Dobosz,
2006) has been used to calculate statistical significance of the results (with
the factor of 0.05) in order to help making decision whether the EkP system
performed better, the same or worse than the reference models.

The LVQWeka implementation of the LVQ method that has been employed
in our calculations was written by Jason Brownlee (Brownlee, 2004). Finally,
what remains to be mentioned is that the EkP system has been written by the
author in Java as the contribution to the SBLWeka project (Grudzinski, 2005).

4.1. Experiment 1: generalization ability – EkP vs. IB1

In the first experiment our system under study has been compared to the per-
formance of IB1 on all seventeen domains. The results of the statistical tests
against the majority classifier, both of IB1 and EkP, are not provided here.
The base rate results, however, which are the values obtained by the majority
classifier1 on all tested datasets are listed in Table 1. It is worth mentioning
that IB1 appeared to outperform the majority classifier on thirteen domains.
On appendicitis, breast-cancer, german-credit and hepatitis datasets the results
have been statistically insignificant.

The EkP system has been used mainly with the same default settings for all
seventeen problems, because the calculations have been performed in a batch
mode, which made performing numerical experiments and collecting the results
for the paper much easier. The simplex cost function tolerance has been set to
1E-16 and the maximum number of cost function evaluations has been restricted

1The majority classifier of the Weka system, which was used in our experiments is called

ZeroR.

Selection of prototypes with the EkP system 495

to 300 calls, excluding a certain number of evaluations required to initialize the
simplex. This latter value is the parameter, which is called the number of
simplex points on which a simplex is spanned. Thus, the maximum number of
the cost function evaluations value has to be increased by the number of simplex
points in order to attain the total number of calls. For all experiments that have
been conducted in our paper we have set the number of simplex points to fifty.
The upper limitation on the value of this parameter is the number of samples
in the training partition. Therefore, because the smallest problem out of the
studied seventeen domains consists of hardly sixty samples, the value for this
parameter, selected by us, seems to be a good choice. The maximum number of
cost calls of 300 was taken as the default for the datasets of the size of a couple
of hundred cases and this choice is based on our earlier experience with similar
minimization-based learning systems we had been working on. What concerns
the EkP form of learning used for Experiment 1, both the first variant of the
cost function algorithm involving leave-one-out cross-validation learning as well
as the second variant have been employed. The IB1 classifier has been chosen
as the EkP classification engine.

Tables 2 and 3 summarize the results of Experiment 1. It is easy to notice
that generalization ability of the EkP system trained with the first algorithm
variant depends strongly on the number of prototypes selected. Selection of
one prototype per class by the EkP-1 system statistically degraded the clas-
sification results with respect to ones obtained with the IB1 system only on
three out of the all seventeen domains. When two prototypes per class have
been selected, the number of times training data reduction degraded the results
dropped to only two. With three prototypes per class chosen the results have
been statistically insignificant from these attained with IB1 on sixteen prob-
lems, see Table 2. The first variant of the EkP algorithm that has been taken
for our experiments was trained with leave-one-out cross-validation. The influ-
ence of the value of the cross-validation learning fold on the generalization has
not been fully investigated yet. Leave-one-out cross-validation seems to lead to
very stable models and the best generalization at the expense of significantly
lengthening the calculation time. In case of the second variant of the algorithm
(EkP-2) statistically significant degradation of the generalization results with
respect to ones attained with the IB1 system could be noted on three datasets
independently of the number of prototypes per class chosen, see Table 3.

496 K. GRUDZIŃSKI

Table 2. Comparison of generalization results attained with the EkP system with
one, two and three prototypes per class selected vs. the results from the IB1 classifier.
EkP was trained with the first version of the cost function algorithm, denoted EkP-1.
Fifty simplex points were used to train the EkP system. Statistical degradation of
results with respect to the reference (i.e. IB1) is marked with a bold font.

Dataset # Classes IB1 Std. Dev. EkP-1 Std. Dev. # P. EkP-1 Std. Dev. # P. EkP-1 Std. Dev. # P.

1 appendicitis 2 80.28 10.78 86.36 10.25 2 87.18 8.86 4 87.25 8.83 6

2 breast-cancer 2 68.58 7.52 72.98 7.14 2 71.80 6.37 4 72.53 5.97 6

3 horse-colic 2 79.11 6.51 74.62 8.19 2 78.70 5.94 4 78.16 5.87 6

4 credit-rating 2 81.57 4.57 80.20 6.65 2 80.77 5.23 4 81.48 5.36 6

5 german_credit 2 71.88 3.68 69.82 1.90 2 69.59 2.99 4 69.71 3.26 6

6 pima_diabetes 2 70.62 4.67 69.79 5.54 2 70.51 5.37 4 70.40 4.76 6

7 glass 6 69.95 8.43 57.31 9.36 6 59.86 10.01 12 62.57 9.51 18

8 cleveland-heart 2 76.06 6.84 80.69 6.54 2 80.72 6.71 4 79.78 6.72 6

9 hungarian-heart 2 78.33 7.54 83.17 6.64 2 82.19 6.79 4 81.64 7.25 6

10 heart-statlog 2 76.15 8.46 81.00 7.51 2 80.19 7.34 4 80.52 7.34 6

11 hepatitis 2 81.40 8.55 82.29 9.96 2 81.85 9.05 4 82.85 9.13 6

12 labor 2 84.30 16.24 79.93 18.18 2 83.30 16.26 4 84.10 17.30 6

13 lymphography 4 81.54 8.48 74.28 11.43 4 76.55 13.04 8 74.50 10.33 12

14 primary-tumor 21 34.64 7.07 35.69 7.06 21 36.32 8.09 42 35.93 6.87 63

15 sonar 2 86.17 8.45 66.50 9.34 2 68.23 8.46 4 69.47 9.86 6

16 vote 2 92.23 3.95 90.92 3.92 2 92.58 3.93 4 92.43 3.95 6

17 zoo 7 96.55 5.34 88.72 6.77 7 92.48 6.91 14 94.39 6.75 21

Average 3.76 77.02 7.48 74.96 8.02 3.76 76.05 7.73 7.53 76.34 7.59 11.29

Significance (0.05) (0/14/3) (0/15/2) (0/16/1)

Table 3. Comparison of the generalization results attained with the EkP system with
one, two and three prototypes per class selected vs. the results from the IB1 classifier.
EkP was trained with the second version of the cost function algorithm, denoted EkP-
2. Fifty simplex points were used to train the EkP system. Statistical degradation of
results with respect to the reference (i.e. IB1) is marked with a bold font.

Dataset # Classes IB1 Std. Dev. EkP-2 Std. Dev. # P. EkP-2 Std. Dev. # P. EkP-2 Std. Dev. # P.

1 appendicitis 2 80.28 10.78 85.66 10.60 2 85.62 10.31 4 87.01 9.97 6

2 breast-cancer 2 68.58 7.52 72.98 7.14 2 71.80 6.37 4 72.53 5.97 6

3 horse-colic 2 79.11 6.51 77.03 7.20 2 78.19 6.91 4 78.48 6.14 6

4 credit-rating 2 81.57 4.57 82.09 5.23 2 81.30 5.37 4 81.16 5.01 6

5 german_credit 2 71.88 3.68 69.80 1.90 2 69.93 3.05 4 70.27 2.98 6

6 pima_diabetes 2 70.62 4.67 70.45 6.03 2 70.81 5.79 4 70.71 5.48 6

7 glass 6 69.95 8.43 57.67 8.99 6 60.92 9.74 12 61.45 9.87 18

8 cleveland-heart 2 76.06 6.84 80.47 6.92 2 80.66 6.64 4 79.47 7.29 6

9 hungarian-heart 2 78.33 7.54 82.15 6.68 2 82.35 6.06 4 81.19 6.63 6

10 heart-statlog 2 76.15 8.46 79.63 7.21 2 79.11 6.67 4 79.26 8.17 6

11 hepatitis 2 81.40 8.55 79.79 9.20 2 81.02 9.53 4 82.72 9.57 6

12 labor 2 84.30 16.24 81.07 16.60 2 81.47 16.20 4 82.33 17.23 6

13 lymphography 4 81.54 8.48 75.64 10.77 4 75.32 12.24 8 74.35 10.91 12

14 primary-tumor 21 34.64 7.07 35.69 7.06 21 36.32 8.09 42 35.93 6.87 63

15 sonar 2 86.17 8.45 66.48 10.15 2 68.73 9.47 4 69.09 9.75 6

16 vote 2 92.23 3.95 90.92 3.92 2 92.58 3.93 4 92.43 3.95 6

17 zoo 7 96.55 5.34 88.62 7.12 7 92.48 6.76 14 94.09 6.86 21

Average 3.76 77.02 7.48 75.07 7.81 3.76 75.80 7.83 7.53 76.03 7.80 11.29

Significance (0.05) (0/14/3) (0/14/3) (0/14/3)

4.2. Experiment 2: generalization ability – LVQ vs. IB1 and LVQ

vs. EkP

For this experiment, LVQ version 1 with ’random training data proportional’
as well as ’simple k-means’ initialization, learning rate of 0.3, total training
iterations of 1000, linear decay learning function and disabled voting has been

Selection of prototypes with the EkP system 497

used. Generalization ability of LVQ against IB1 has been tested first. Because
the method of initialization of the positions of codebooks seemed not to make
any statistically significant influence on generalization of the LVQ system, only
one table (Table 4) is provided, in which the LVQ system has been used with
the ’random training data proportional’ initialization.

As it can be seen from Table 4, the LVQ system performed rather poorly
and on seventeen problems with two codebooks set, twelve times a statistically
significant degradation of results with respect to those attained with the IB1
classifier has been noted. Increasing the number of codebooks to four has led
to a minor improvement of the generalization of the LVQ system and on ten
domains the results have been still worse than those obtained with IB1. Selection
of six codebooks has led to statistically significant degradation of results with
respect to the reference ones on nine problems out of seventeen studied. In
this experiment also no improvement over IB1’s generalization ability has been
observed.

Table 4. Comparison of the generalization results attained with the LVQ-1 system
(with the linear decay learning and the training data proportional initialization set-
tings) with two, four and six codebooks set vs. the results from the IB1 classifier.
Statistical degradation of results with respect to the reference (i.e. IB1) is marked
with a bold font.

Dataset # Classes IB1 Std. Dev. LVQ (2 P.) Std. Dev. LVQ (4 P.) Std. Dev. LVQ (6 P.) Std. Dev.

1 appendicitis 2 80.28 10.78 78.64 15.17 82.72 10.92 85.15 9.37

2 breast-cancer 2 68.58 7.52 66.46 12.18 70.97 4.10 71.00 4.79

3 horse-colic 2 79.11 6.51 58.52 9.88 62.49 7.64 63.75 7.59

4 credit-rating 2 81.57 4.57 53.04 5.39 58.72 5.18 62.35 5.08

5 german_credit 2 71.88 3.68 66.84 10.94 69.57 4.20 69.78 1.54

6 pima_diabetes 2 70.62 4.67 61.96 9.75 66.79 4.32 68.46 5.22

7 glass 6 69.95 8.43 31.63 7.96 33.01 7.58 40.15 9.82

8 cleveland-heart 2 76.06 6.84 56.52 8.48 62.14 8.94 62.77 8.01

9 hungarian-heart 2 78.33 7.54 62.15 13.00 67.42 9.39 65.88 6.80

10 heart-statlog 2 76.15 8.46 56.89 8.23 62.30 8.40 64.41 8.55

11 hepatitis 2 81.40 8.55 75.39 14.66 78.84 3.88 77.94 4.99

12 labor 2 84.30 16.24 70.60 18.31 84.27 16.88 90.03 12.76

13 lymphography 4 81.54 8.48 61.16 15.79 69.85 13.31 74.03 10.68

14 primary-tumor 21 34.64 7.07 12.68 8.66 16.02 8.62 18.43 6.88

15 sonar 2 86.17 8.45 55.34 8.61 63.11 11.67 67.09 10.55

16 vote 2 92.23 3.95 69.71 20.79 89.84 10.83 93.39 6.71

17 zoo 7 96.55 5.34 32.99 12.63 35.98 10.33 36.55 10.29

Average 3.76 77.02 7.48 57.09 11.79 63.18 8.60 65.36 7.63

Significance (0.05) (0/5/12) (0/7/10) (0/8/9)

In the second experiment in this section the test estimating generalization
ability of LVQ against EkP has been performed. This test was made only on
two-class problems to assure that the number of LVQ codebooks as well as the
prototypes selected by the EkP system is the same. Recall that EkP takes the
number of prototypes per class as its adaptive parameter whilst the LVQ system
requires a total number of codebooks to be specified. Since all the calculations
have been performed in a batch mode with the same settings for all classification
domains, the list of datasets had to be restricted to two class problems. What
can be noted by taking a closer look at Table 5 is that the results of LVQ

498 K. GRUDZIŃSKI

depend more strongly on the number of codebooks selected than it is in case
of EkP-1. The average classification accuracy of EkP-1, taken over all twelve
domains oscillates around 79% whilst in the case of LVQ, for two codebooks, it
equals only 64%. Increasing the number of codebooks to four and six, increases
the average LVQ’s generalization ability to about 70% and 72%, respectively.
Similar trends can be observed when LVQ is put against the EkP-2 (see Table 6).

Table 5. Comparison of the generalization results attained with the LVQ-1 system
with two, four and six codebooks vs. the results from the EkP classifier. EkP was
trained with the first version of the cost function algorithm, denoted EkP-1. Fifty
simplex points were used to train the EkP system. Statistical degradation of results
of the LVQ system with respect to the reference is marked with a bold font.

 2 prototypes (codebooks) 4 prototypes (codebooks) 6 prototypes (codebooks)

Dataset EkP-1 Std. Dev. LVQ Std. Dev. EkP-1 Std. Dev. LVQ Std. Dev. EkP-1 Std. Dev. LVQ Std. Dev.

1 appendicitis 86.36 10.25 78.64 15.17 87.18 8.86 82.72 10.92 87.25 8.83 85.15 9.37

2 breast-cancer 72.98 7.14 66.46 12.18 71.80 6.37 70.97 4.10 72.53 5.97 71.00 4.79

3 horse-colic 74.62 8.19 58.52 9.88 78.70 5.94 62.49 7.64 78.16 5.87 63.75 7.59

4 credit-rating 80.20 6.65 53.04 5.39 80.77 5.23 58.72 5.18 81.48 5.36 62.35 5.08

5 german_credit 69.82 1.90 66.84 10.94 69.59 2.99 69.57 4.20 69.71 3.26 69.78 1.54

6 pima_diabetes 69.79 5.54 61.96 9.75 70.51 5.37 66.79 4.32 70.40 4.76 68.46 5.22

7 cleveland-heart 80.69 6.54 56.52 8.48 80.72 6.71 62.14 8.94 79.78 6.72 62.77 8.01

8 hungarian-heart 83.17 6.64 62.15 13.00 82.19 6.79 67.42 9.39 81.64 7.25 65.88 6.80

9 heart-statlog 81.00 7.51 56.89 8.23 80.19 7.34 62.30 8.40 80.52 7.34 64.41 8.55

10 hepatitis 82.29 9.96 75.39 14.66 81.85 9.05 78.84 3.88 82.85 9.13 77.94 4.99

11 labor 79.93 18.18 70.60 18.31 83.30 16.26 84.27 16.88 84.10 17.30 90.03 12.76

12 sonar 66.50 9.34 55.34 8.61 68.23 8.46 63.11 11.67 69.47 9.86 67.09 10.55

13 vote 90.92 3.92 69.71 20.79 92.58 3.93 89.84 10.83 92.43 3.95 93.39 6.71

Average 78.33 7.83 64.00 11.95 79.05 7.18 70.71 8.18 79.26 7.35 72.46 7.07

Significance (0.05) (0/5/8) (0/8/5) (0/8/5)

Table 6. Comparison of the generalization results attained with the LVQ-1 system
with two, four and six codebooks vs. the results from the EkP classifier. EkP was
trained with the second version of the cost function algorithm, denoted EkP-2. Fifty
simplex points were used to train the EkP system. Statistical degradation of results
of the LVQ system with respect to the reference is marked with a bold font.

 2 prototypes (codebooks) 4 prototypes (codebooks) 6 prototypes (codebooks)

Dataset EkP-2 Std. Dev. LVQ Std. Dev. EkP-2 Std. Dev. LVQ Std. Dev. EkP-2 Std. Dev. LVQ Std. Dev.

1 appendicitis 85.66 10.60 78.64 15.17 85.62 10.31 82.72 10.92 87.01 9.97 85.15 9.37

2 breast-cancer 72.98 7.14 66.46 12.18 71.80 6.37 70.97 4.10 72.53 5.97 71.00 4.79

3 horse-colic 77.03 7.20 58.52 9.88 78.19 6.91 62.49 7.64 78.48 6.14 63.75 7.59

4 credit-rating 82.09 5.23 53.04 5.39 81.30 5.37 58.72 5.18 81.16 5.01 62.35 5.08

5 german_credit 69.80 1.90 66.84 10.94 69.93 3.05 69.57 4.20 70.27 2.98 69.78 1.54

6 pima_diabetes 70.45 6.03 61.96 9.75 70.81 5.79 66.79 4.32 70.71 5.48 68.46 5.22

7 cleveland-heart 80.47 6.92 56.52 8.48 80.66 6.64 62.14 8.94 79.47 7.29 62.77 8.01

8 hungarian-heart 82.15 6.68 62.15 13.00 82.35 6.06 67.42 9.39 81.19 6.63 65.88 6.80

9 heart-statlog 79.63 7.21 56.89 8.23 79.11 6.67 62.30 8.40 79.26 8.17 64.41 8.55

10 hepatitis 79.79 9.20 75.39 14.66 81.02 9.53 78.84 3.88 82.72 9.57 77.94 4.99

11 labor 81.07 16.60 70.60 18.31 81.47 16.20 84.27 16.88 82.33 17.23 90.03 12.76

12 sonar 66.48 10.15 55.34 8.61 68.73 9.47 63.11 11.67 69.09 9.75 67.09 67.09

13 vote 90.92 3.92 69.71 20.79 92.58 3.93 89.84 10.83 92.43 3.95 93.39 93.39

Average 78.33 7.60 64.00 11.95 78.74 7.41 70.71 8.18 78.97 7.55 72.46 18.09

Significance (0.05) (0/7/6) (0/8/5) (0/8/5)

Selection of prototypes with the EkP system 499

4.3. Experiment 3: time requirements

The training times of the EkP system, although all statistically worse than those
of IB1 (it is not a surprise), are quite short and in average are equal to about
1s (EkP-1) and 0.2s (EkP-2) for learning on a single partition of a typical UCI
dataset of a size of a couple of hundred cases (see Tables 7 and 8)2. The training
times of LVQ are even shorter than those obtained with our system. As it can
be seen from Table 9, LVQ has outpaced completely both variants of the EkP
method on all seventeen classification problems. It turned out that the LVQ
system can be trained in time which is of three orders of magnitude shorter
than the EkP. Fortunately, the EkP testing times are shorter than those of IB1
by two orders of magnitude.

Table 10 contains the summary of results of the measurements of testing
time. It is not hard to see that it takes much less than a minute for the entire
10-fold cross-validation test that is conducted with our system to complete on
most common UCI datasets. This is an acceptable result. It should be noted
that training the EkP method with lower-fold cross-validation than leave-one-
out leads to a significant reduction of the time requirements for this algorithm.

5. Conclusions

We have developed a relatively fast prototype selection system despite employ-
ing the simplex minimization routine, which is usually expensive. The initial
experiments indicate that the method may turn out to be competitive to other
data pruning systems. In the preliminary calculations the method discussed in
this paper has shown statistically insignificant difference of the generalization
ability with respect to IB1 on almost all classification problems and sometimes
turned out to be superior to the LVQ system ver. 1. However, the EkP train-
ing times are longer that those of IB1 and of LVQ, though the testing times
are shorter than the ones obtained by timing IB1. After all, one should re-
member about the general idea lying behind the selection of prototypes: once
the instances are initially found (training sets are pruned), the tests on unseen
samples, which are usually frequently performed can be conducted much faster.
The results of the EkP system are promising, but further experiments with
our method and comparison with other prototype selection methods must be
performed in order to have better knowledge about the value of the proposed
method in pattern recognition field.

2The calculations have been performed on a laptop equipped with a 2.4GHz Intel Core 2

Duo processor running 64-bit Ubuntu Linux Operating System under 64-bit OpenJVM Java

1.6.

500 K. GRUDZIŃSKI

Table 7. Training times (in seconds) of the EkP method attained on one cross-
validation fold. EkP was trained with the first version of the cost function algorithm,
denoted EkP-1. Fifty simplex points were used to train the EkP system. Statistical
degradation of the results of the EkP system with two and three prototypes per class
selected with respect to the reference (i.e. EkP-1 with one reference instance per class
chosen) is marked with a bold font.

Dataset EkP-1 Std. Dev. # P. EkP-1 Std. Dev. # P. EkP-1 Std. Dev. # P.

1 appendicitis 0.094100 0.011024 2 0.122640 0.012439 4 0.150680 0.015624 6

2 breast-cancer 0.387710 0.031026 2 0.463360 0.031208 4 0.539880 0.029821 6

3 horse-colic 0.896440 0.038249 2 1.288820 0.051652 4 1.671100 0.054170 6

4 credit-rating 2.157560 0.652252 2 2.416530 0.078107 4 2.841530 0.072034 6

5 german_credit 4.069850 0.102912 2 5.012590 0.130176 4 5.901870 0.114146 6

6 pima_diabetes 2.101360 0.069882 2 2.326480 0.061336 4 2.559110 0.074534 6

7 glass 0.451500 0.024611 6 0.701010 0.036583 12 0.947280 0.040618 18

8 cleveland-heart 0.743410 0.040017 2 1.140030 0.046655 4 1.681980 0.335402 6

9 hungarian-heart 0.702100 0.039398 2 1.062410 0.044892 4 1.432560 0.061142 6

10 heart-statlog 0.445890 0.031254 2 0.589730 0.031850 4 0.736540 0.039326 6

11 hepatitis 0.260750 0.025523 2 0.395390 0.036889 4 0.525430 0.037316 6

12 labor 0.074720 0.014501 2 0.114500 0.015386 4 0.153150 0.015815 6

13 lymphography 0.345840 0.022860 4 0.576120 0.036620 8 0.802680 0.040138 12

14 primary-tumor 2.895140 0.083248 21 5.342370 0.135357 42 7.802860 0.140862 63

15 sonar 1.465180 0.061098 2 2.772280 0.332526 4 3.837320 0.091913 6

16 vote 0.922810 0.040775 2 1.191440 0.045587 4 1.456910 0.052481 6

17 zoo 0.309320 0.030384 7 0.543520 0.031581 14 0.779980 0.041131 21

Average 1.077864 0.077589 3.76 1.532895 0.068167 7.53 1.989462 0.073910 11.29

Significance (0.05) (0/1/16) (0/0/17)

Table 8. Training times (in seconds) of the EkP method attained on one cross-
validation fold. EkP was trained with the second version of the cost function algorithm,
denoted EkP-2. Fifty simplex points were used to train the EkP system. Statistical
degradation of the results of the EkP system with two and three prototypes per class
selected with respect to the reference (i.e. EkP-2 with one reference instance per class
chosen) is marked with a bold font.

Dataset EkP-2 Std. Dev. # P. EkP-2 Std. Dev. # P. EkP-2 Std. Dev. # P.

1 appendicitis 0.037790 0.007664 2 0.045880 0.007532 4 0.055930 0.011434 6

2 breast-cancer 0.082680 0.010414 2 0.107170 0.016144 4 0.126710 0.013139 6

3 horse-colic 0.163910 0.014278 2 0.243600 0.021487 4 0.310910 0.031048 6

4 credit-rating 0.251590 0.027058 2 0.349290 0.021823 4 0.445370 0.041481 6

5 german_credit 0.399330 0.022377 2 0.587730 0.033918 4 0.741370 0.035401 6

6 pima_diabetes 0.227630 0.021423 2 0.299020 0.026785 4 0.347850 0.019753 6

7 glass 0.125850 0.013469 6 0.197960 0.016508 12 0.264570 0.027457 18

8 cleveland-heart 0.165890 0.014700 2 0.261310 0.018811 4 0.344170 0.020931 6

9 hungarian-heart 0.152880 0.014194 2 0.241970 0.029088 4 0.315260 0.030305 6

10 heart-statlog 0.103060 0.010329 2 0.141760 0.014758 4 0.171600 0.014837 6

11 hepatitis 0.072560 0.017038 2 0.099140 0.010503 4 0.124040 0.012784 6

12 labor 0.030960 0.007271 2 0.040720 0.007770 4 0.051060 0.011704 6

13 lymphography 0.087670 0.010470 4 0.135960 0.013544 8 0.180570 0.015458 12

14 primary-tumor 0.562650 0.033226 21 1.036940 0.046220 42 1.466880 0.061435 63

15 sonar 0.245350 0.018604 2 0.377860 0.034716 4 0.488430 0.024053 6

16 vote 0.150160 0.014686 2 0.202640 0.016651 4 0.250320 0.026978 6

17 zoo 0.083240 0.010366 7 0.133620 0.012904 14 0.179630 0.016602 21

Average 0.273129 0.015739 3.76 0.264857 0.020539 7.53 0.344981 0.024400 11.29

Significance (0.05) (0/0/17) (0/0/17)

Selection of prototypes with the EkP system 501

Table 9. Training times (in seconds) of the EkP method attained on one cross-
validation fold. EkP was trained with the first and second versions of the cost function
algorithm, denoted EkP-1 and EkP-2, respectively. Two codebooks /prototypes have
been chosen. Fifty simplex points were used to train the EkP system. Statistical
degradation of the results of the EkP system with respect to the reference (i.e. LVQ)
is marked with a bold font.

Dataset LVQ (2c.) Std. Dev. EkP-1 (2 p.) Std. Dev. EkP-2 (2p.) Std. Dev.

1 appendicitis 0.001200 0.005662 0.094100 0.011024 0.037790 0.007664

2 breast-cancer 0.000890 0.000399 0.387710 0.031026 0.082680 0.010414

3 horse-colic 0.001720 0.000570 0.896440 0.038249 0.163910 0.014278

4 credit-rating 0.001810 0.000526 2.157560 0.652252 0.251590 0.027058

5 german_credit 0.002260 0.000543 4.069850 0.102912 0.399330 0.022377

6 pima_diabetes 0.000980 0.000426 2.101360 0.069882 0.227630 0.021423

7 glass 0.000820 0.000479 0.451500 0.024611 0.125850 0.013469

8 cleveland-heart 0.001260 0.000441 0.743410 0.040017 0.165890 0.014700

9 hungarian-heart 0.001260 0.000463 0.702100 0.039398 0.152880 0.014194

10 heart-statlog 0.001050 0.000261 0.445890 0.031254 0.103060 0.010329

11 hepatitis 0.001270 0.000446 0.260750 0.025523 0.072560 0.017038

12 labor 0.001090 0.000321 0.074720 0.014501 0.030960 0.007271

13 lymphography 0.001310 0.000545 0.345840 0.022860 0.087670 0.010470

14 primary-tumor 0.001370 0.000506 2.895140 0.083248 0.562650 0.033226

15 sonar 0.003450 0.000575 1.465180 0.061098 0.245350 0.018604

16 vote 0.001270 0.000468 0.922810 0.040775 0.150160 0.014686

17 zoo 0.001980 0.007790 0.309320 0.030384 0.083240 0.010366

Average 0.001470 0.001201 1.077864 0.077589 0.173129 0.015739

Significance (0.05) (0/0/17) (0/0/17)

Table 10. Testing times (in seconds) of the EkP method attained on one cross-
validation test fold. EkP was trained with the second version of the cost function
algorithm, denoted EkP-2. Fifty simplex points were used to train the EkP system.
The statistical improvement of the results of the EkP system with respect to the
reference (i.e. IB1) is marked with a bold, italic font.

Dataset LB1 Std. Dev. EkP-2 Std. Dev. # P. EkP-2 Std. Dev. # P. EkP-2 Std. Dev. # P.

1 appendicitis 0.000350 0.000479 0.000000 0.000000 2 0.000040 0.000197 4 0.000010 0.000100 6

2 breast-cancer 0.002470 0.000441 0.000070 0.000256 2 0.000070 0.000256 4 0.000090 0.000288 6

3 horse-colic 0.011370 0.000485 0.000130 0.000338 2 0.000140 0.000349 4 0.000280 0.000451 6

4 credit-rating 0.030640 0.009157 0.000110 0.000314 2 0.000280 0.000451 4 0.000410 0.000494 6

5 german_credit 0.081050 0.010622 0.000410 0.000494 2 0.000590 0.000494 4 0.000690 0.000465 6

6 pima_diabetes 0.022770 0.001874 0.000140 0.000349 2 0.000260 0.000441 4 0.000270 0.000446 6

7 glass 0.002010 0.000301 0.000080 0.000273 6 0.000130 0.000338 12 0.000220 0.000416 18

8 cleveland-heart 0.006040 0.008393 0.000230 0.000423 2 0.000250 0.000435 4 0.000290 0.000456 6

9 hungarian-heart 0.004350 0.000479 0.000070 0.000256 2 0.000150 0.000359 4 0.000250 0.000435 6

10 heart-statlog 0.004320 0.000490 0.000090 0.000288 2 0.000110 0.000314 4 0.000130 0.000338 6

11 hepatitis 0.001950 0.000261 0.000100 0.000302 2 0.000040 0.000107 4 0.000140 0.000349 6

12 labor 0.000200 0.000402 0.000010 0.000100 2 0.000050 0.000219 4 0.000020 0.000141 6

13 lymphography 0.001700 0.000503 0.000060 0.000239 4 0.000100 0.000302 8 0.000100 0.000302 12

14 primary-tumor 0.006670 0.000533 0.000580 0.000496 21 0.001030 0.000171 42 0.001680 0.000649 63

15 sonar 0.012170 0.000877 0.000120 0.000327 2 0.000410 0.000494 4 0.000460 0.000501 6

16 vote 0.012060 0.009183 0.000150 0.000359 2 0.000170 0.000378 4 0.000200 0.000402 6

17 zoo 0.000670 0.000473 0.000100 0.000302 7 0.000060 0.000239 14 0.000140 0.000349 21

Average 0.011827 0.002644 0.000144 0.000301 3.7

6

0.000228 0.000331 7.5

3

0.000316 0.000387 11.2

9

Significance (0.05) (15/2/0) (14/3/0) (14/3/0)

502 K. GRUDZIŃSKI

References

Aha, D., Kibler, D. and Albert, M. (1991) Instance-based learning algo-
rithms. Machine Learning 6, 37-66.

Bhattacharya, B., Poulsen,R. and Toussaint,G. (1981) Application of
proximity graphs to editing nearest neighbor decision rule. In: Interna-

tional Symposium on Information Theory, Santa Monica.
Brighton, H. and Mellish, C. (2002) Advances in instance selection for in-

stance-based learning algorithms. Data Mining and Knowledge Discovery

6, 153-172.
Brownlee, J. (2004) A java implementation of the SOM-LVQ PAK.

http://www.it.swin.edu.au/personal/jbrownlee/,
http://wekaclassalgos.sourceforge.net

Cameron-Jones, R. (1995) Instance selection by encoding length heuristic
with random mutation hill climbing. In: Proceedings of the Eighth Aus-

tralian Joint Conference on Artificial Intelligence, 99-106.
Dobosz, K. (2006) Statistical Significance Tests in Estimation of the Results

Obtained with Various Systems that Learn. M.Sc. thesis, Nicolaus Coper-
nicus University, Toruń, Poland, (in Polish).

Duch, W. and Blachnik, M. (2004) Fuzzy rule-based systems derived from
similarity to prototypes. LNCS 3316, 912-917.

Duch, W. and Grudzinski, K. (2001) Prototype based rules - new way to
understand the data. IEEE International Joint Conference on Neural

Networks, Washington D.C, 1858-1863.
Gates, G. (1972) The reduced nearest neighbor rule. IEEE Transactions on

Information Theory, 18, 665-669.
Grochowski, M. (2003) Selection of Reference Vectors in Selected Methods

for Classification. M.Sc. thesis, Nicolaus Copernicus University, Depart-
ment of Applied Informatics, Toruń, Poland, (in Polish).

Grochowski, M. and Jankowski, N. (2004) Comparison of Instance Selec-
tion Algorithms II: Results and Comments. Artificial Intelligence and Soft

Computing ICAISC 2004, LNAI 3070, Springer, 580-585.
Grudzinski, K. and Duch, W. (2000) SBL-PM: A Simple Algorithm for Se-

lection of Reference Instances for Similarity-Based Methods. Intelligent

Information Systems, Bystra, Poland, 2000. In: Advances in Soft Com-
puting, Physica-Verlag, 99-108.

Grudzinski, K. (2004) SBL-PM-M: A System for Partial Memory Learning.
Artificial Intelligence and Soft Computing ICAISC 2004. LNAI 3070,
Springer, 586-591.

Grudzinski, K. (2005) SBLWeka: A modified Weka System. http://scientific-
activity-karol-grudzinski.blogspot.com.

Grudzinski, K. (2008) EkP: A fast minimization based prototype selection
algorithm. Proceedings of the International IIS’08 Conference, Zakopane,
Poland, 2008. Academic Publishing House EXIT, Warsaw, 45-53.

Selection of prototypes with the EkP system 503

Hart, P. (1968) The condensed nearest neighbor rule. IEEE Transactions on

Information Theory 14, 515-516.
Hyninen, J., Kangas, J., Kohonen, T., Laaksonnen, J. and Torkolla,

K. (1996) LVQ PAK: The Learning Vector Quantization Program Pack-
age.

Jankowski, N. (2000) Data regularization. In: L. Rutkowski, R. Tadeu-
siewicz, eds., Neural Networks and Soft Computing, Zakopane, Poland,
209-214.

Jankowski, N. and Grochowski, M. (2004) Comparison of Instances Se-
lection Algorithms I: Algorithms Survey. Artificial Intelligence and Soft

Computing ICAISC 2004. LNAI 3070, Springer, 598-603.
Kohonen, T. (2001) Self-Organizing Maps. 3rd ed. Springer-Verlag, Berlin

Heidelberg.
Lampton, M. (no date) neldermead.java . The version of the original nelder-

mead.java code modified by the author of this paper that has been used
for the calculations used in this paper can be found at
http://scientific-activity-karol-grudzinski.blogspot.com.

Maloof, M. and Michalski, R. (2000) Selecting Examples for Partial Me-
mory Learning. Machine Learning 41, 27-52.

Mertz, C. and Murphy, P. (1996) UCI repository of machine learning da-
tabases. http://archive.ics.uci.edu/ml/.

Nelder, J. and Mead, R. (1965) A simplex method for function minimiza-
tion. Computer Journal 7, 308-313.

Oja, M., Kaski, S. and Kohonen, T. (2003) Bibliography of Self-Organiz-
ing Map (SOM) Papers: 1998-2001 Addendum. Neural Computing Sur-

veys, 3, 1-156.
Skalak, D. (1994) Prototype and feature selection by sampling and random

mutation hill climbing algorithms. In: International Conference on Ma-

chine Learning, 293-301.
Tomek, I. (1976) An experiment with the edited nearest neighbor rule. IEEE

Transactions on Systems, Man, and Cybernetics 6, 448-452.
Wilson, D. (1972) Asymptotic properties of nearest neighbor rules using

edited data. IEEE Transactions on Systems, Man, and Cybernetics 2,
408-421.

Wilson, D. and Martinez, T. (1997) Instance Pruning Techniques. In: D.
Fisher: Machine Learning: Proceedings of the Fourteenth International

Conference. Morgan Kaufmann Publishers, San Francisco, CA., 404-417.
Wilson, D. and Martinez, T. (2000) Reduction Techniques for Instance-

Based Learning Algorithms. Machine Learning, 38, 257-286.
Witten, I. and Frank, E. (2000) Data Mining: Practical Machine Learn-

ing Tools and Techniques with Java Implementations. Morgan Kaufmann
Publishers.

