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Abstract: In a previous paper three types of missing attribute
values: lost values, attribute-concept values and "do not care" con-
ditions were compared using six data sets. Since previous experi-
mental results were affected by large variances due to conducting
experiments on different versions of a given data set, we conducted
new experiments, using the same pattern of missing attribute values
for all three types of missing attribute values and for both certain
and possible rules. Additionally, in our new experiments, the process
of incremental replacing specified values by missing attribute values
was terminated when entire rows of the data sets were full of miss-
ing attribute values. Finally, we created new, incomplete data sets
by replacing the specified values starting from 5% of all attribute
values, instead of 10% as in the previous experiments, with an incre-
ment of 5% instead of the previous increment of 10%. As a result, it
is becoming more clear that the best approach to missing attribute
values is based on lost values, with small difference between certain
and possible rules, and that the worst approach is based on "do not
care" conditions, certain rules. With our improved experimental
setup it is also more clear that for a given data set the type of the
missing attribute values should be selected individually.
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1. Introduction

The main objective of this paper is to compare three different interpretations
of missing attribute values, all three based on rough sets.

In a previous paper (Grzymala-Busse and Grzymala-Busse, 2007) results of
experiments conducted to compare three types of missing attribute values: lost
values, attribute-concept values, and "do not care" conditions were reported.

Lost values are interpreted as currently unavailable, even though originally
they were available in the data set. Such values might be incidentally erased.
Another possibility is that they were given, but were not recorded. A rough
set approach to incomplete data sets in which all attribute values were lost was
presented for the first time in Grzymala-Busse and Wang (1997), where two
algorithms for rule induction, modified to handle lost attribute values, were
introduced.

In attribute-concept values we are assuming that the missing attribute value,
where the corresponding case belongs to a concept C, could be any attribute
value for all cases from the same concept C. A concept (class) is a set of all cases
classified (or diagnosed) in the same way. For example, if for a patient the value
of attribute Temperature is missing, this patient is sick with flu, and all remain-
ing patients sick with flu have values high or very_high for Temperature then
using the interpretation of the missing attribute value as the attribute-concept
value, we will replace the missing attribute value with high and very_high. This
approach was introduced in Grzymala-Busse (2004c).

For "do not care" conditions a missing attribute value is replaced by all
specified values for that attribute. For example, if all possible values of the
attribute Temperature are: normal, high, very_high, then a missing attribute
value will be replaced by all three values: normal, high, very_high. A rough set
approach to incomplete data sets in which all attribute values were "do not care"
conditions was presented for the first time in Grzymala-Busse (1991), where a
method for rule induction was introduced in which each missing attribute value
was replaced by all values from the domain of the same attribute.

In general, incomplete decision tables are described by characteristic rela-
tions, in a similar way as complete decision tables are described by indiscerni-
bility relations (Grzymala-Busse, 2003, 2004a,b).

In rough set theory (Pawlak, 1982, 1991), one of the basic notions is the
idea of lower and upper approximations. For complete decision tables, once the
indiscernibility relation is fixed and the concept (a set of cases) is given, the
lower and upper approximations are unique.

For incomplete decision tables, for a given characteristic relation and con-
cept, there are three important and different possibilities to define lower and
upper approximations, called singleton, subset, and concept approximations
(Grzymala-Busse, 2003). Singleton lower and upper approximations were stud-
ied in Kryszkiewicz (1995, 1999); Slowinski and Vanderpooten (2000); Ste-
fanowski and Tsoukias (1999, 2001). Note that similar definitions of lower and
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Table 1. An incomplete decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 high ? yes yes

2 ? yes * yes

3 − no * no

4 high − yes yes

5 * yes no no

6 normal no ? no

upper approximations, though not for incomplete decision tables, were studied
in Lin (1992); Yau (1998); Yao and Lin (1996). Some other rough-set ap-
proaches to missing attribute values were presented in Grzymala-Busse (1991);
Grzymala-Busse and Hu (2000); Hong, Tseng and Chien (2004), Nakata and
Sakai (2005); Wang (2002) as well.

This paper first introduces briefly the methodology used in our research
and then presents results of experiments aimed at comparison of three different
interpretations of missing attribute values. Finally, we conclude that the best
approach to missing attribute values is based on the interpretation of lost values.

A preliminary version of this paper was prepared for the 16-th International
Conference on Intelligent Information Systems, Zakopane, Poland, June 16–18,
2008 (Grzymala-Busse et al., 2008).

2. Mining incomplete data

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2,..., 6}. Independent variables are called
attributes and a dependent variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A. In Table 1, A = {Temperature,
Headache, Cough} and d = Flu. Any decision table defines a function ρ that
maps the direct product of U and A into the set of all values. For example, in
Table 1, ρ(1, T emperature) = high. A decision table with completely specified
function ρ will be called completely specified, or, for the sake of simplicity, com-
plete. In practice, input data for data mining are frequently affected by missing
attribute values. In other words, the corresponding function ρ is incompletely
specified (partial). A decision table with an incompletely specified function ρ

will be called incomplete. Function ρ describing Table 1 is incompletely speci-
fied.
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An important tool to analyze complete decision tables is a block of the
attribute-value pair. Let a be an attribute, i.e., a ∈ A, and let v be a value of
a for some case. For complete decision tables if t = (a, v) is an attribute-value
pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v. For incomplete decision tables the definition of a block of an
attribute-value pair must be modified in the following way:

• If for an attribute a there exists a case x such that ρ(x, a) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

• If for an attribute a there exists a case x such that the corresponding value
is a "do not care" condition, i.e., ρ(x, a) = ∗, then the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

• If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., ρ(x, a) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a)
of attribute a, where

V (x , a) = {ρ(y, a) | ρ(y, a) is specified , y ∈ U, ρ(y, d) = ρ(x, d)}.

For Table 1, V (3, T emperature) = {normal} and V (4, Headache) = {yes},
so the blocks of attribute-value pairs are:

[(Temperature, high)] = {1, 4, 5},

[(Temperature, normal)] = {3, 5, 6},

[(Headache, yes)] = {2, 4, 5},

[(Headache, no)] = {3, 6},

[(Cough, yes)] = {1, 2, 3, 4},

[(Cough, no)] = {2, 3, 5}.

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

• If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a

and its value ρ(x, a),
• If ρ(x, a) = ? or ρ(x, a) = ∗ then the set K(x, a) = U ,
• If ρ(x, a) = −, then the corresponding set K(x, a) is equal to the union

of all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = U .
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For Table 1 and B = A,

KA(1) = {1, 4, 5} ∩ U ∩ {1, 2, 3, 4} = {1, 4},

KA(2) = U ∩ {2, 4, 5} ∩ U = {2, 4, 5},

KA(3) = {3, 5, 6} ∩ {3, 6} ∩ U = {3, 6},

KA(4) = {1, 4, 5} ∩ {2, 4, 5} ∩ {1, 2, 3, 4} = {4},

KA(5) = U ∩ {2, 4, 5} ∩ {2, 3, 5} = {2, 5},

KA(6) = {3, 5, 6} ∩ {3, 6} ∩ U = {3, 6}.

Characteristic set KB(x) may be interpreted as the set of cases that are
indistinguishable from x using all attributes from B and using a given inter-
pretation of missing attribute values. Thus, KA(x) is the set of all cases that
cannot be distinguished from x using all attributes. The characteristic relation
R(B) is a relation on U defined for x, y ∈ U as follows

(x , y) ∈ R(B) if and only if y ∈ KB(x ).

Thus, the relation R(B) may be defined by (x, y) ∈ R(B) if and only if y is
indistinguishable from x by all attributes from B.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in Stefanowski and Tsoukias (1999), see also,
e.g., Stefanowski and Tsoukias (2001). For decision tables where all missing
attribute values are "do not care" conditions a special characteristic relation
was defined in Kryszkiewicz (1995), see also, e.g., Kryszkiewicz (1999). For a
completely specified decision table, the characteristic relation R(B) is reduced
to the indiscernibility relation (Pawlak, 1982, 1991). For some other approaches
to missing attribute values see, e.g., Dardzinska and Ras (2005); Little and
Rubin (2002).

3. Definability

For completely specified decision tables, any union of elementary sets of B is
called a B-definable set, see, e.g., Pawlak (1991). Definability for completely
specified decision tables should be modified to fit into incomplete decision tables.
For incomplete decision tables, a union of some intersections of attribute-value
pair blocks, where such attributes are members of B and are distinct, will be
called B-locally definable sets. A union of characteristic sets KB(x), where
x ∈ X ⊆ U , will be called a B-globally definable set. Any set X that is B -globally
definable is B -locally definable, the converse is not true. For example, the set {5}
is A-locally definable since {5} = [(Temperature, normal)]∩ [(Headache, yes)].
However, the set {5} is not A-globally definable. On the other hand, the set
{1} is not even A-locally definable. Obviously, if a set is not B-locally definable
then it cannot be expressed by rule sets using attributes from B. This is why it
is important to distinguish between B-locally definable sets and those that are
not B-locally definable.
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4. Lower and upper approximations

For completely specified decision tables lower and upper approximations are
defined on the basis of the indiscernibility relation, see Pawlak (1982, 1991).

For incomplete decision tables lower and upper approximations may be de-
fined in a few different ways. In this paper we will discuss three different defini-
tions of lower and upper approximations for incomplete decision tables, following
Grzymala-Busse (2003, 2004a,b). Let X be a concept, let B be a subset of the
set A of all attributes, and let R(B) be the characteristic relation of the in-
complete decision table with characteristic sets KB(x), where x ∈ U . Our first
definition uses a similar idea as in the previous articles on incomplete decision
tables, Stefanowski and Tsoukias (1999, 2001); Kryszkiewicz (1995, 1999) i.e.,
lower and upper approximations are sets of singletons from the universe U satis-
fying some properties. We will call these approximations singleton. A singleton
B-lower approximation of X is defined as follows:

BX = {x ∈ U | KB(x) ⊆ X}.

A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩ X 6= ∅}.

In our example of the decision table presented in Table 1 let us say that
B = A. Then the singleton A-lower and A-upper approximations of the two
concepts: {1, 2, 3} and {4, 5, 6, 7, 8} are:

A{1, 2, 4} = {1, 4},

A{3, 5, 6} = {3, 6},

A{1, 2, 4} = {1, 2, 4, 5},

A{3, 5, 6} = {2, 3, 5, 6}.

We may easily observe that the set {1} = A{1, 2, 4} is not A-locally definable
since in all blocks of attribute-value pairs cases 1 and 4 are inseparable. Thus,
as it was observed in, e.g., Grzymala-Busse (2003, 2004a,b), singleton approx-
imations should not be used, theoretically, for data mining and, in particular,
for rule induction.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore, we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method,
using characteristic sets instead of elementary sets. There are two ways to do
this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x) | x ∈ U, KB(x) ⊆ X}.
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A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U, KB(x) ∩ X 6= ∅}.

Since any characteristic relation R(B) is reflexive; for any concept X , single-
ton B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively , Grzymala-Busse (2004a). For
the same decision table, presented in Table 1, the subset A-lower and A-upper
approximations are

A{1, 2, 4} = {1, 4},

A{3, 5, 6} = {3, 6},

A{1, 2, 4} = {1, 2, 4, 5},

A{3, 5, 6} = {2, 3, 4, 5, 6}.

The second possibility is to modify the subset definition of lower and up-
per approximation by replacing the universe U from the subset definition by a
concept X . A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x) | x ∈ X, KB(x) ⊆ X}.

Obviously, the subset B-lower approximation of X is the same set as the
concept B-lower approximation of X . A concept B-upper approximation of the
concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X, KB(x) ∩ X 6= ∅} =

= ∪{KB(x) | x ∈ X}.

The concept upper approximations were defined in Lin (1992) and Slowinski
and Vanderpooten (2000), as well. The concept B-upper approximation of X

is a subset of the subset B-upper approximation of X , Grzymala-Busse (2004).
For the decision table presented in Table 1, the concept A-upper approximations
are

A{1, 2, 4} = {1, 2, 4, 5},

A{3, 5, 6, 7, 8} = {2, 3, 5, 6}.

Note that for complete decision tables, all three definitions of lower approx-
imations, singleton, subset and concept, coalesce to the same definition. Also,
for complete decision tables, all three definitions of upper approximations coa-
lesce to the same definition. This is not true for incomplete decision tables, as
our example shows.
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5. LERS and LEM2

The data system LERS (Learning from Examples based on Rough Sets), Grzy-
mala-Busse (1992), induces rules from inconsistent data, i.e., data with conflict-
ing cases. Two cases are conflicting when they are characterized by the same
values of all attributes, but they belong to different concepts (classes).

Rules induced from the lower approximation of the concept certainly de-
scribe the concept, hence such rules are called certain. On the other hand, rules
induced from the upper approximation of the concept describe the concept pos-
sibly, so these rules are called possible.

The LEM2 algorithm, a part of LERS, is most frequently used for rule
induction. LEM2 explores the search space of attribute-value pairs. Its input
data set is a lower or upper approximation of a concept, so its input data set
is always consistent. In general, LEM2 computes a local covering and then
converts it into a rule set. We will quote a few definitions to describe the LEM2
algorithm, see. e.g., Chan and Grzymala-Busse (1991); Grzymala-Busse (1992,
2002).

The LEM2 algorithm is based on the idea of an attribute-value pair block.
Let X be a nonempty lower or upper approximation of a concept represented by
a decision-value pair (d, w). Set X depends on a set T of attribute-value pairs
t = (a, v) if and only if

∅ 6= [T ] =
⋂

t∈T

[t] ⊆ X.

Set T is a minimal complex of X if and only if X depends on T and no
proper subset T ′ of T exists such that X depends on T ′. Let T be a nonempty
collection of nonempty sets of attribute-value pairs. Then T is a local covering
of X if and only if the following conditions are satisfied:

• each member T of T is a minimal complex of X ,

•
⋃

t∈T
[T ] = X , and

• T is minimal, i.e., T has the smallest possible number of members.

MLEM2, a modified version of LEM2, processes numerical attributes dif-
ferently than symbolic attributes. For numerical attributes MLEM2 sorts all
values of a numerical attribute. Then it computes cutpoints as averages for any
two consecutive values of the sorted list. For each cutpoint q MLEM2 creates
two blocks, the first block contains all cases, for which values of the numerical
attribute are smaller than q, the second block contains remaining cases, i.e., all
cases, for which values of the numerical attribute are larger than q. The search
space of MLEM2 is the set of all blocks computed in this way, together with
blocks defined by symbolic attributes. Starting from that point, rule induction
in MLEM2 is conducted, the same way as in LEM2.



An improved comparison of rough set approaches to missing values 477

Table 2. Data sets used for experiments

Data set Number of

cases attributes concepts

Bankruptcy 66 5 2

Breast cancer - Slovenia 277 9 2

Hepatitis 155 19 2

Image segmentation 210 19 7

Iris 150 4 3

Lymphography 148 18 4

Wine 178 12 3

In our data sets, lost values were denoted by "?", "do not care" conditions
by "*", and attribute-concept values by "−". We assumed that for each case at
least one attribute value was specified.

For rule induction from incomplete data we used the MLEM2 data mining
algorithm, for details see Grzymala-Busse (1992, 2002). Additionally, we used
concept lower and upper approximations to induce certain and possible rules.

6. Experiments

In our experiments seven typical data sets were used, see Table 2. In two data
sets: bankruptcy and iris all attributes were numerical. These data sets were
processed as numerical (i.e., discretization was done during rule induction by
MLEM2). The image segmentation data set was converted into symbolic using
a discretization method based on agglomerative cluster analysis (this method
was described, e.g., in Chmielewski and Grzymala-Busse, 1996).

Since previous experimental results were affected by large variances due to
conducting experiments on different versions of a given data set, we conducted
new experiments, using the same pattern of missing attribute values for all three
types of missing attribute values and for both certain and possible rules.

For every data set a set of templates was created. Templates were formed by
replacing incrementally (with 5% increment) existing specified attribute values
by lost values. Thus, we started each series of experiments with no lost values,
then we added 5% of lost values, then we added additional 5% of lost values, etc.,
until at least one entire row of the data sets was full of lost values. Then, three
attempts were made to change configuration of new lost values and either a new
data set with extra 5% of lost values was created or the process was terminated.
Additionally, the same formed templates were edited for further experiments by
replacing question marks, representing lost values by "−" representing attribute-
concept values and, separately, by "*", representing "do not care" conditions.



478 J.W. GRZYMALA-BUSSE, W.J. GRZYMALA-BUSSE, Z.S. HIPPE, W. RZĄSA

6.1. A single ten-fold cross validation scheme

For each data set with some percentage of missing attribute values of a given
type, experiments were conducted separately for certain and possible rule sets,
using concept lower and upper approximations, respectively. Ten-fold cross val-
idation was used to compute error rate. Rule sets were induced by the MLEM2
option of the LERS data mining system. Results of our experiments are pre-
sented in Figs. 1–7.

In four data sets: image segmentation, iris, lymphography and wine, strate-
gies based on lost values were the best, irrespective of whether certain or possible
rule sets were used. The strategy based on do not care conditions and certain
rule sets was the worst strategy, while attribute-concept value combined with
the certain rule sets was the next bad strategy.

Remaining data sets show different patterns. In the bankruptcy data set, for
lost values and attribute-concept values, there is no difference in performance be-
tween certain and possible rule sets. Both strategies, based on attribute-concept
values and "do not care" conditions, show gradual increase of the error rate with
increasing percentage of missing attribute values, while a strategy based on "do
not care" conditions seems to be the worst. The strategy based on lost values,
starting from 20% of missing attribute values, surprisingly, show decrease in the
error rate with increasing percentage of missing attribute values.

In the breast cancer - Slovenia data set there is no preference among all
six strategies, except that starting from 35% of missing attribute values, the
strategy based on "do not care" conditions and certain rule sets is the worst
strategy.

The hepatitis data set shows gradual increase of the error rate with increas-
ing percentage of missing attribute values up to 45%, with no clear pattern of
any interpretation of missing attribute values being better or worse. Starting
from 50% of the percentage of missing attribute values, the strategy based on
attribute-concept values combined with the certain rule sets seems to be the
worst strategy, while the strategy based on attribute-concept values combined
with the possible rule sets seems to be the best strategy.

6.2. Multiple ten-fold cross validation

Additional experiments were conducted on some data sets by repeating the 10-
fold cross validation scheme for 30 times, changing the ordering and partitioning
every time. In these experiments all six approaches to missing attribute values,
i.e., interpreting missing attribute values as lost, attribute-concept values, and
"do not care" conditions, combined with inducing two kind of rules: certain and
possible, were applied. Since such experiments are time-consuming, only three
data sets were selected: bankruptcy (an example of a data set with all numerical
attributes), breast cancer (with all symbolic attributes), and lymphography (a
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Figure 1. Bankruptcy data set

Figure 2. Breast cancer - Slovenia data set
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Figure 3. Hepatitis data set

Figure 4. Image segmentation data set
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Figure 5. Iris data set

Figure 6. Lymphography data set
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Figure 7. Wine data set

data set with relatively many attributes and concepts). Additionally, all three
data sets had 35% of missing attribute values (35% was selected since for the
bankruptcy data set it is the maximum percentage of missing attribute values
for which every case has at least one specified attribute value). Results of our
experiments are presented in Table 3.

We compared all 15 pairs of the six methods listed in Table 3 using the
standard statistical test (two-tailed) on the difference between two means, based
on the following well-known formula

Z =
X1 − X2
√

s2

1
+s2

2

30

,

where X1 and X2 are the means of 30 ten-fold cross validation experiments and
s1 and s2 are the corresponding sample standard deviations.

In general, for all three data sets, there is no significant difference (5% sig-
nificance level) between certain and possible rules for lost values. Moreover, the
lost interpretation of missing attribute values is the best approach for all three
data sets.

For the bankruptcy data set, the worst method is based on "do not care"
conditions and the attribute-concept values is worse that lost values and better
than "do not care" conditions. For all three types of missing attribute values
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Table 3. Additional experiments—error rates

Method Bankruptcy Breast cancer Lymphography

error standard error standard error standard

rate deviation rate deviation rate deviation

(?, C) 18.13 2.85 28.11 0.85 25.11 3.25

(?, P) 17.32 3.22 28.38 1.14 25.65 2.79

(−, C) 23.38 3.73 30.10 0.71 51.71 3.59

(−, P) 25.05 4.03 29.13 0.52 28.85 3.02

(*, C) 29.44 5.47 34.24 2.50 42.16 3.45

(*, P) 27.58 4.40 28.81 0.75 27.32 2.75

there is no difference between certain and possible rules, all observations with
5% significance level. The last observation is most likely due to the fact that
bankruptcy is a numerical data set.

For the breast cancer data set there is the following order of performance
for the different methods: the best one are lost values, no significant difference
between certain and possible rules, then attribute-concept values, certain rules,
then attribute-concept values, possible rules and "do not care" conditions, pos-
sible rules, no significant difference between the two, and the worst method is
"do not care" conditions and certain rules.

For the lymphography data set, for only two methods there is no significant
difference: lost values, no matter whether certain or possible rules. These two
methods are also the best. Then there is the following order of performance,
from better to worse: "do not care" conditions, possible rules, then attribute-
concept values, possible rules, then "do not care" conditions, certain rules and,
finally, attribute-concept values, certain rules. The only surprise is poor per-
formance of the attribute-concept value approach. It may be explained by the
fact that the lymphography data set has many concepts, many attributes, and a
few cases. All of these facts contribute to poor performance of attribute-concept
value interpretation of missing attribute values since with few cases and many
concepts it is difficult to guess correctly the proper attribute value. Further-
more, during classification of a testing case against a rule set, attribute-concept
values are treated in the same way as "do not care" conditions.

7. Conclusions

Overall, it seems that the interpretation of missing attribute values as lost values
is the best approach among our three types of missing attribute value interpre-
tations, and that the worst approach is based on "do not care" conditions and
certain rules. This was caused by the fact that lower approximations of con-
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cepts, with large number of missing attribute values, were empty. Our additional
experiments (see Table 3) support this idea as well. With our improved experi-
mental setup it is also clearer that for a given data set the type of the missing
attribute value should be selected individually.
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