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Abstract: This paper examines a supply planning problem for
multilevel serial production systems under lead time uncertainties.
The techniques used in industry are often based on the assumption
that the lead times are known. However, in a supply chain the
lead times are often random variables. Therefore, it is necessary to
evaluate the influence of the planned lead times on the total cost.
An exact performance evaluation technique is developed to calculate
the total cost as a function of the planned lead times when the actual
lead times are random discrete variables. The sum of the average
component holding and tardiness costs at each level, plus the average
finished product backlogging cost is considered. Several properties
of this function are proven. A numerical example is reported.

Keywords: multilevel serial systems, random lead times, per-
formance evaluation, newsboy model, generalizations.

1. Introduction

Uncertainty in lead times (or delivery times from an external supplier) is a major
problem in production systems. These times vary due to many factors, including
machine breakdowns, transport delays, poor quality, etc. A late component may
delay all subsequent processes and too early availability engenders overstocking.
The effects of lead time uncertainty are particularly problematic in multilevel
production systems (see Bullwhip effect, Chen et al., 2000). To minimize the
influence of these random lead times, firms can implement safety lead times. The
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safety lead time is defined as the difference between the planned and expected
lead times. Nevertheless, excess safety lead times create stocks and stocks are
expensive. Therefore, the problem is to optimize stock at each level by assigning
adequate values of planned lead times.

In this paper, the planned lead time analysis is considered for a multilevel
serial supply chain with unlimited number of levels and random component lead
times for each level. The demand of the finished product is assumed to be fixed
and known. The lead time of each component (delivery time for the next level)
is supposed to be a discrete random variable. No restrictive hypothesis is made
on such random variables; only that the probability distributions are known.

The holding as well as tardiness costs are considered. Tardiness costs can be
due to the cost of revising a schedule. For the first level (level 1), corresponding
to the finished product, tardiness means backlog, so for the finished product
backlogging cost is introduced. Thus, the problem is to minimize the sum of
expected holding, tardiness and backlogging costs. The decision variables are
the planned lead times for components at each level. An exact performance
evaluation model is proposed.

A similar multilevel production system (supply chain) was already studied
by Yano (1987a,b). However, in that case, the lead times of components were
continuous random variables. Yano limited the study to two and three stage
(level) serial systems due to the difficulties to express the objective function in
a closed form when the number of stages exceeds two.

The model suggested in this paper differs from Yano (1987a,b) as follows:
we consider a discrete model with no restriction on the number of levels and
our model offers the expression of objective function in a closed form.

The rest of the paper is organized as follows. Section 2 presents related
publications. Section 3 deals with problem description. Section 4 presents the
Key Performance Indicators (KPI). In Section 5, some interesting properties
of the problem are presented. A numerical example is reported in Section 6.
Finally, some concluding remarks are given in Section 7.

2. Related publications

In literature on supply planning, as far as can be determined, the number of
publications on the considered problem with random lead times is modest, at
best, in spite of its significance, in contrast with many models for random de-
mand. Mula et al. (2006) have done a review for this domain; an extensive state
of the art on the supply planning under uncertainties is also given in Dolgui and
Prodhon (2007).

Earlier work includes simulation studies by Whybark and Williams (1976).
They suggest that, in a multi-level production-inventory system, when the pro-
duction and replenishment times are stochastic, safety lead times mechanism
may perform better than that of safety stocks. Nevertheless, simulation studies
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of Grasso and Taylor (1984) led to opposite conclusion and to preference for
safety stocks.

In Chen et al. (2000), Chatfield et al. (2004), Kim et al. (2006), simulations
are also used for multilevel serial production systems with stochastic lead times.
Their main effort dealt with information sharing among levels.

Some analytical models were also suggested. Weeks (1981) developed a
one-stage model with tardiness and holding costs, in which processing time is
stochastic and demand is deterministic. The author proves that this is equiva-
lent to the standard “newsboy” problem.

Yano (1987a) used an analytic approach to determine optimal planned lead
times in serial production systems, in which the actual procurement and pro-
cessing times may be stochastic, demand is deterministic, and the lot-for-lot
policy is used. The distribution of lead times is supposed stationary. The con-
sidered cost is the sum of inventory holding and job tardiness costs. The author
presents a general solution procedure for two stage serial systems.

A similar problem is studied by Yano (1987b), but another cost is incurred:
the rescheduling costs at the intermediate stages. Then, the objective is to
minimize the sum of holding costs, rescheduling costs arising from tardiness at
intermediate stages of productions, and tardiness of delivery to the customer.
The author studied two and three stage serial systems due to the difficulties of
the problem and complexity of the model. One of the main difficulties for this
model is to express the objective function in a closed form when the number of
stages exceeds two.

To surmount this difficulty, Elhafsi (2002) developed a recursive scheme eval-
uating the objective function efficiently for any number of levels without recur-
ring to its expression in a closed form. However, computing time increases
relatively quickly with the number of levels. To overcome this problem, the
author presented a heuristic. For a special case of this continuous model, where
the lead times are distributed exponentially, the author derived the objective
function in a closed form.

Kim et al. (2004) suggested a model for constant demand and lead time with
Erlang distribution for a single item inventory, and obtained an approximate
solution. They launched an interesting conjecture that the behaviour of the
analogous single-item inventory control model for the case where both demand
and lead time are random can be calculated from the behaviours of the following
three models: (i) deterministic demand and lead time, (ii) random demand and
deterministic lead time, and (iii) random lead time and deterministic demand.

He, Kim and Hayya (2005) studied the impact of lead time when demand is
constant in one level assembly system. In this study the lead time is random and
limited, and the economic order quantity (EOQ) policy is used. The authors
have shown that the cost varies linearly in the function of the deviation of time.

The problem of planned lead time calculation for one-level assembly systems
was already studied in our previous work. In Dolgui and Louly (2002) a Markov
model was proposed and in Louly and Dolgui (2002), a new generalization of
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the Discrete newsboy model was suggested. For a more general case, a branch
and bound algorithm was developed in Louly, Dolgui and Hnaien (2008).

3. Problem description

We consider a serial production system with m levels (see Fig. 1). We suppose
that the demand D of the finished product is fixed and its due date is known. To
satisfy this demand, we need to launch the production processes composed of m

serial stages (m levels) for a lot of D items. The level numbers are enumerated
as follows: level m corresponds to the first production stage, level m− 1 to the
second stage, and so on. The raw materials are released at level m, semi-finished
products are processed at levels m−1, m−2, . . . , 2 and finally, finished product
is produced at level 1. After these m levels, the lot of D finished products is
delivered to the customer.

Order release date 

j

customers 

Finished 

product 

Level 1 Level  jLevel m

m 1m-1

Figure 1. The m-level serial production system

We assume also that the lead time at each level (delivery time for next level)
is a discrete random variable. No restrictive hypothesis is made on such random
variables; we only suppose that the distribution probabilities are known. The
policy is the lot-for-lot for all levels. Level m delivers the semi-finished products
to level m − 1 within a random lead time Lm, level j delivers the semi-finished
products to level j − 1 within a random lead time Lj, j = 2, ..., m. When the
items arrive at the end of level 1, the customer demand D of finished products
is satisfied. There are stocks at each intermediate level (from level m to level 1).

If total lead time exceeds the planned lead time of the component at level j,
j = 1, 2, ..., m, tardiness is incurred and therefore the corresponding tardiness
costs for level m to level 2. For level 1 this is called backlogging cost and
corresponds to the finished product backlog. Otherwise, we obtain stocks and
so corresponding holding cost for each level (see Fig. 2). Hence, the objective is
to minimize the total cost composed of the holding, tardiness and backlogging
costs.
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b)

a)

The order release date 

(at level m) Due date 

(known) 

Level m Level j Level 1 

stock tardiness Lead time 

Figure 2. An illustration of the cost incurred

The following notations are introduced:

• cj components at level j, where j = 1, 2, ..., m;
• dj number of component j needed at level j − 1;
• b1 unit backlogging cost for finished product per period;
• bj unit tardiness cost for component j, j = 2, . . . , m, per period;
• hj unit holding cost for component j, j = 1, . . . , m, per period;
• D demand of finished products per period (fixed and known);
• Lj actual lead time of the component j (discrete random variable);
• L′

j(xj+1, xj+2, ..., xm) actual cumulative lead time of level j (proper lead
time plus delays due to level j + 1);

• uj upper value of Lj;
• Qj = djD lot size for components j;
• xj planned lead time for component j (integer decision variable);
• Fj(k) = Pr(Lj ≤ k);
• Φj(k, xj+1, ..., xm) = Pr(L′

j ≤ k);
• E(.) mathematical expectation operator.

Let the lead time for components of level j be a random discrete variable
with known distribution: Pr(Lj = k), k = 1, 2, ..., uj, where uj is the maximum
planned lead time value, for j = 1, . . . , m. The lead time takes into account
all processing times at the level j plus transportation time between level j and
j − 1. The actual cumulative lead time of the level j is given in (1):
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L′
j(xj+1, xj+2, ..., xm) = Lj + (L′

j+1(xj+2, xj+3, ..., xm) − xj+1)
+,

for j = 1, 2, ..., m−1
L′

m = Lm

(1)

We present a model of this problem by analytically expressing the criterion
to be optimized. This criterion considers the holding, component tardiness, and
backlogging costs. For each type of component j, xj denotes the planned lead
time.

Note that in Hnaien et al. (2007) we considered the same problem as in the
current article but for the case of a Just in Time (JIT) policy, where there are
no holding costs at intermediate levels. For that problem, the objective was to
find order release dates at level m (sum of planned lead times for all levels).

4. Key Performance Indicators

Proposition 1 The total cost is expressed as follows:

C(X, L) =

m
∑

j=1

Qj

[

hj(xj − L′
j(xj+1, xj+2, ..., xm))

]

+
m

∑

j=1

Qj

[

(bj + hj)(L
′
j(xj+1, xj+2, ..., xm) − xj)

+
]

(2)

where

X = (x1, ..., xm),

L = (L′
1, ..., L

′
m).

Proof. The cost is equal to the sum of the component holding, tardiness as well
as finished product backlogging costs. If at a certain level, a job is completed
before its planned due date, i.e. (xj−L′

j(xj+1, xj+2, ..., xm)) > 0, then a holding
cost is incurring. Thus, the component holding cost is equal to:

m
∑

j=1

hjQj(xj − L′
j(xj+1, xj+2, ..., xm))+.

There is a tardiness (respectively backlog) of components j (respectively
finished product) if the total lead time exceeds the planned lead time of the
component at level j, j = 1, 2, ..., m, i.e. (L′

j(xj+1, xj+2, ..., xm) − xj) > 0.
Thus, the sum of component tardiness cost and the finished product back-

logging cost is equal to:

m
∑

j=1

bjQj(L
′
j(xj+1, xj+2, ..., xm) − xj)

+.
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Then, the total cost is equal to:

C(X, L) =

m
∑

j=1

bjQj(L
′
j(xj+1, xj+2, ..., xm) − xj)

+

+
m

∑

j=1

hjQj(xj − L′
j(xj+1, xj+2, ..., xm))+.

Note that (−f)+ = max(−f, 0) = f− = f+ − f .
So, if we consider f = (xj−L′

j(xj+1, xj+2, ..., xm)), C(X, L) can be rewritten
as follows:

C(X, L) =
m

∑

j=1

(bj + hj)Qj(L
′
j(xj+1, xj+2, ..., xm) − xj)

+

+
m

∑

j=1

hjQj(xj − L′
j(xj+1, xj+2, ..., xm)).

The cost C(X, L) is a random variable. Therefore, we will calculate the
mathematical expectation of C(X, L) noted EC(X).

Proposition 2 The expected cost can be expressed as follows:

EC(X) =

m
∑

j=1

Qj

[

hj(xj − E
(

L′
j(xj+1, xj+2, ..., xm)

)]

+
m

∑

j=1

Qj

[

(bj + hj)
∑

k≥0

(1 − Φj(xj + k, xj+1..., xm))
]

(3)

where


















Φj(k, xj+1, ..., xm) =
k

∑

s=1

Pr(Lj = s)Φj+1(xj+1 + k − s, xj+2, ..., xm),

for j = 1, ..., m − 1
Φm(k) = Fm(k)

(4)

Proof. From relation (2), we derive the total expected cost:

EC(X) = E(C(X, L)) =

=

m
∑

j=1

Qj

[

hj

(

xj − E
(

L′
j(xj+1, xj+2, ..., xm)

))

+ (bj + hj)E (Z)
]

where:

Z = (L′
j(xj+1, xj+2, ..., xm) − xj)

+,
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Z is a positive discrete random variable with a finite number of possible values,
and its mathematical expectation is:

E(Z) =
∑

i≥0

i Pr(Z = i) =
∑

i≥0

i−1
∑

k=0

Pr(Z = i) =
∑

k≥0

∑

i>k

Pr(Z = i) =
∑

k≥0

Pr(Z >k).

Thus, we obtain:

E(Z) =
∑

k≥0

Pr
(

(L′
j(xj+1, xj+2, ..., xm) − xj)

+ > k
)

.

Given that

Pr
(

(L′
j(xj+1, xj+2, ..., xm) − xj)

+ > k
)

=

= 1 − Pr ((L′
j(xj+1, xj+2, ..., xm) − xj)

+
≤ k)

= 1 −
(

Pr ((L′
j(xj+1, xj+2, ..., xm) − xj) ≤ k) × Pr (k ≥ 0)

)

.

Therefore:

E(Z) =
∑

k≥0

(

1 −
(

Pr(L′
j(xj+1, xj+2, ..., xm) − xj ≤ k) × Pr (k ≥ 0)

))

.

In the previous expression the sum is computed for k ≥ 0, thus:

E(Z) =
∑

k≥0

(

1 − Pr(L′
j(xj+1, xj+2, ..., xm) ≤ xj + k)

)

=
∑

k≥0

(1 − Φj(xj + k, xj+1, ..., xm))

where,

Φj(k, xj+1..., xm) = Pr(L′
j(xj+1, xj+2, ..., xm) ≤ k)

= Pr(Lj + (L′
j+1(xj+2, ..., xm) − xj+1)

+
≤ k)

=

k
∑

s=1

Pr(Lj = s) × Pr
(

(L′
j+1(xj+2, ..., xm) − xj+1)

+
≤ k − s

)

=

k
∑

s=1

Pr(Lj =s) × Pr
(

L′
j+1(xj+2, ..., xm)−xj+1 ≤ k−s

)

× Pr (k−s ≥ 0) .

But, k − s ≥ 0, thus:

Φj(k, xj+1..., xm) =

k
∑

s=1

Pr(Lj = s)Φj+1(xj+1 + k − s, xj+2, ..., xm).
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Finally:

EC(X) =
m

∑

j=1

Qj

[

hj(xj − E
(

L′
j(xj+1, xj+2, ..., xm)

)]

+

m
∑

j=1

Qj

[

(bj + hj)
∑

k≥0

(1 − Φj(xj + k, xj+1..., xm))
]

.

Note that for the particular case of only one level, the total cost (2) can be
rewritten as follows:

C(x1, L1) = Q1[h1(x1 − L1) + (b1 + h1)(L1 − x1)
+]. (5)

The corresponding expected cost (3) is as follows:

EC(X) = Q1

[

h1(x1 − E (L1)) + (b1 + h1)
∑

k≥0

(1 − F1(x1 + k))
]

. (6)

Hence, the optimal solution for one level system is given by the well known
newsboy model:

F1(x1 − 1) ≤

(

b1

b1 + h1

)

≤ F1(x1). (7)

5. Problem properties

Using the previous evaluation model, we present in this section some interesting
properties for this problem.

5.1. Partial increments of cost functions

We will use the following partial increment functions (Louly, Dolgui and Hnaien,
2008):

G+
j (X) = EC(x1, ..., xj + 1, ..., xm) − EC(x1, ..., xj , ..., xm), (8)

G−
j (X) = EC(x1, ..., xj − 1, ..., xm) − EC(x1, ..., xj , ..., xm). (9)

These partial increments represent the evolution of the objective function
due to increment or decrement of a decision variable. An optimal solution X

must satisfy the requirements (10) and (11), otherwise there is a neighboring
solution better than X .

G+
j (X) ≥ 0, for j = 1, . . . , m, (10)

G−
j (X) ≥ 0 for j = 1, . . . , m. (11)
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Proposition 3 The function G+
j (X) can be rewritten as follows:

G+
j (X) ≤ Qj [−bj + (bj + hj)Φj(xj , xj+1..., xm)] +

j−1
∑

s=1

Qshs (12)

G+
j (X) ≥ Qj [−bj + (bj + hj)Φj(xj , xj+1..., xm)] −

j−1
∑

s=1

Qs(bs + hs). (13)

Proof.

G+
j (X) =

m
∑

s=1

Qs

[

hs(xs − E (L′
s(xs+1, ..., xj + 1, ..., xm)))

]

+
m

∑

s=1

Qs

[

(bs + hs)
∑

k≥0

(1 − Φs(xs + k, ..., xj + 1, ..., xm))
]

−

m
∑

s=1

Qs

[

hs(xs − E (L′
s(xs+1, ..., xj , ..., xm))

]

−

m
∑

s=1

Qs

[

(bs + hs)
∑

k≥0

(1 − Φs(xs + k, ..., xj , ..., xm))
]

.

This difference between these two costs can be calculated term by term
according to the value of the number s. The terms can be separated to facilitate
the calculation. Let us note G+

j (X) = A + B + C.
The first term is for the values of s larger than j. The difference equals zero

for this group:

A =
m

∑

s=j+1

Qs

[

hs(xs−E (L′
s(xs+1, ..., xm)))+(bs+hs)

∑

k≥0

(1 − Φs(xs+k, ..., xm))
]

−

m
∑

s=j+1

Qs

[

hs(xs−E (L′
s(xs+1, ..., xm)))+(bs + hs)

∑

k≥0

(1 − Φs(xs + k, , ..., xm))
]

= 0.

The second term is for s = j. The difference is as follows:

B = Qj [ hj

(

xj + 1 − E
(

L′
j(xj+1, xj+2, ..., xm)

) )

]

+Qj

[

(bj + hj)
∑

k≥0

(1 − Φj(xj + 1 + k, xj+1..., xm))
]

−Qj

[

hj

(

xj − E
(

L′
j(xj+1, xj+2, ..., xm)

)) ]

−Qj

[

(bj + hj)
∑

k≥0

(1 − Φj(xj + k, xj+1..., xm)
]
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= Qj [ hj − (bj + hj)(1 − Φj(xj , xj+1..., xm)) ]

= Qj [−bj + (bj + hj)Φj(xj , xj+1..., xm) ].

The third term is calculated for s < j, it is as follows:

C =

j−1
∑

s=1

Qs

[

hs(xs − E (L′
s(xs+1, ..., xj + 1, ..., xm)))

]

+

j−1
∑

s=1

Qs

[

(bs + hs)
∑

k≥0

(1 − Φs(xs + k, ..., xj + 1, ..., xm))
]

−

j−1
∑

s=1

Qs

[

hs(xs − E (L′
s(xs+1, ..., xj , ..., xm)))

]

−

j−1
∑

s=1

Qs

[

(bs + hs)
∑

k≥0

(1 − Φs(xs + k, ..., xj , ..., xm))
]

=

j−1
∑

s=1

Qshs

[

E (L′
s(xs+1, ..., xj , ..., xm)) − E (L′

s(xs+1, ..., xj + 1, ..., xm))
]

+

j−1
∑

s=1

Qs(bs + hs)
[

∑

k≥0

(1 − Φs(xs + k, ..., xj + 1, ..., xm))
]

−

j−1
∑

s=1

Qs(bs + hs)
[

∑

k≥0

(1 − Φs(xs + k, ..., xj , ..., xm))
]

.

Or, 0 ≤ E (L′
s(xs+1, ..., xj , ..., xm)) − E (L′

s(xs+1, ..., xj + 1, ..., xm)) ≤ 1 and

0 ≤
∑

k≥0

(1−Φs(xs +k, ..., xj , ..., xm))−
∑

k≥0

(1−Φs(xs +k, ..., xj +1, ..., xm)) ≤ 1.

Then, this last term C satisfies the following inequalities:

−

j−1
∑

s=1

Qs(bs + hs) ≤ C ≤

j−1
∑

s=1

Qshs.

Finally, we conclude:

G+
j (X) ≤ Qj [−bj + (bj + hj)Φj(xj , xj+1..., xm)] +

j−1
∑

s=1

Qshs

G+
j (X) ≥ Qj [−bj + (bj + hj)Φj(xj , xj+1..., xm)] −

j−1
∑

s=1

Qs(bs + hs)
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5.2. Properties of decisions variables

Proposition 4 The following properties are valid:

Φj(xj , xj+1..., xm) ≥ αj for j = 1, . . . , m, (14)

Φj(xj − 1, xj+1..., xm) ≤ βj for j = 1, . . . , m, (15)

Fm(xm) ≥ αm, (16)

Fm(xm − 1) ≤ βm, (17)

Fj(xj) ≥ αj for j = 1, . . . , m, (18)

where αj =

Qjbj −

j−1
∑

s=1

Qshs

Qj(bj + hj)
and βj =

Qjbj +

j−1
∑

s=1

Qs(bs + hs)

Qj(bj + hj)
, for j = 1, ..., m.

Proof. According to (12):

G+
j (X) ≤ Qj [−bj + (bj + hj)Φj(xj , xj+1..., xm)] +

j−1
∑

s=1

Qshs.

Thus:

Qjbj −

j−1
∑

s=1

Qshs

Qj(bj + hj)
≤ Φj(xj , xj+1..., xm), for j = 1, . . . , m.

Thus, property (14) is proved.

As G−
j (X) = −G+

j (x1, ..., xj −1, ..., xm), we can derive the following inequal-
ity from (11):

0 ≤ Qj [bj − (bj + hj)Φj(xj − 1, xj+1..., xm)] +

j−1
∑

s=1

Qs(bs + hs).

Thus,

Φj(xj − 1, xj+1..., xm) ≤

Qjbj +

j−1
∑

s=1

Qs(bs + hs)

Qj(bj + hj)
.

Thus, property (15) is proved.

Using (4), property (16) is immediately derived from (14) and property (17)
is immediately derived from (15).

Using (4):

Φj(xj , xj+1..., xm) ≤ Fj(xj), for j = 1, . . . , m.
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Finally,

Qjbj −

j−1
∑

s=1

Qshs

Qj(bj + hj)
≤ Fj(xj), for j = 1, . . . , m,

i.e. we obtain property (18).

Note: for m = 1, properties (15)-(18) are equivalent to the well known
newsboy model.

6. Numerical example

We give an illustrative example with 2 levels (m = 2). The lead time of each
type of component is a discrete random variable, which takes values from 1 to 5
(u1 = u2 = 5), i.e., 1 ≤ Lj ≤ 5. The unit holding costs are given in Table 1 and
only one type of each component j is needed to produce the finished product,
i.e., Qj = 1. The distribution probabilities of all lead times are given in Table 2.

Table 1. Unit holding costs

j 1 2

hj 10 10

Table 2. Probability distributions of the lead times

w 1 2 3 4 5

Pr (L1 = w) 0.50 0.30 0.10 0.05 0.05

Pr (L2 = w) 0.20 0.20 0.30 0.10 0.20

In the following tables (Tables 3, 4, and 5), the expected costs for different
values of tardiness costs (b1 = 10 and b2 = 5; b1 = 20 and b2 = 10; b1 = 40 and
b2 = 20) are reported.

We can see that the optimal solution of the first instance with b1 = 10 and
b2 = 5 is (3, 2). The expected cost is 21.05.

These results show that it is necessary to set big values for the planned lead
times when the unit backlogging costs are quite large. As we can see, when the
backlogging (tardiness) costs increase, the optimal solutions for planned lead
times increase also up to the upper values of lead times, (5, 5) in this example.
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Table 3. Expected costs for different values of x1 and x2 where b1=10 and b2=5

x1

x2 1 2 3 4 5

1 36.00 27.00 22.20 22.00 25.20

2 29.65 21.65 21.05 24.05 30.65

3 32.90 26.40 28.60 34.80 33.10

4 44.50 38.50 43.30 40.90 33.70

5 59.00 54.00 50.00 42.00 33.00

Table 4. Expected costs for b1=20 and b2=10

x1

x2 1 2 3 4 5

1 73.00 54.00 41.80 36.50 36.30

2 59.30 43.30 37.40 36.90 41.80

3 61.80 48.80 47.10 51.40 43.85

4 78.00 66.00 68.20 59.60 43.80

5 99.00 89.00 78.00 61.00 42.50

Table 5. Expected costs for b1=40 and b2=20

x1

x2 1 2 3 4 5

1 144.00 108.00 81.00 65.50 58.50

2 118.60 86.60 70.10 62.60 64.10

3 119.60 93.60 84.10 84.60 65.35

4 145.00 121.00 118.00 97.00 64.00

5 179.00 159.00 134.00 99.00 61.50

7. Conclusions

The problem of planned lead time evaluation has not been sufficiently studied,
especially for multilevel production systems with random actual lead times.
That was the motivation of this paper.

Here, multilevel supply planning was studied under lead time uncertain-
ties for the case where the actual lead times are independent random discrete
variables. The cost function was the sum of finished product backlogging, com-
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ponent holding and tardiness costs for all levels. A mathematical model for
performance evaluation was suggested.

The proposed model takes into account the dependence among level inven-
tories and is a generalization of the well-known discrete newsboy model.

Further research will be dedicated to the development of efficient optimiza-
tion algorithms using this evaluation model. It is also interesting to study the
extensions of this approach for multilevel assembly systems. The main difficulty
will be to represent in a treatable form the dependence among component in-
ventories necessary to assemble a semi-finished product. In this perspective, the
models of this paper may be useful for an approximate approach which consists
in cutting the bill of material (BOM) tree of the finished product into multi-level
linear parts (branches).
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