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Abstract: Constraint Programming (CP) is an emergent soft-
ware technology for declarative description and effective solving of
large combinatorial problems, especially in the area of integrated
production planning. In this context, CP can be considered an ap-
propriate framework for development of decision making software,
supporting scheduling of multi-robots in a multi-product job shop.
The paper deals with the multi-resource problem, in which more
than one shared renewable and non-renewable resource type may be
required by a manufacturing operation and the availability of each
type is time-windows limited. The problem is NP-complete. The
aim of the paper is to present a knowledge based and CP-driven
approach to multi-robot task allocation providing prompt service to
a set of routine queries, stated both in direct and reverse way. Pro-
vided examples illustrate the cases with consideration of accurate
and uncertain specification of robot and worker operation time.

Keywords: knowledge engineering, modeling, constraint logic
programming, scheduling.

1. Introduction

Some industrial processes simultaneously produce different products using the
same production resources. For example, in recycling industries, different items
are recovered simultaneously from the recycled products. The distribution of
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the cumulative demand for each item is known over a finite planning horizon and
all unsatisfied demand is fully backlogged (Van Hentenryck, 1991). An optimal
assignment of available resources to production steps in a multi-product job shop
is often economically indispensable. The goal is to generate a plan/schedule of
production orders for a given period of time, while minimizing the cost, so as
to maximize the profit.

In this context the executives want to know how much a particular pro-
duction order will cost, which resources are needed, what resource allocation
can guarantee due time production order completion, and so on (Banaszak,
2006). So, a dispatcher’s needs might be formulated in the form of standard,
routine questions, such as: Can the production order be completed before an
arbitrary given deadline? What is the production completion time following
assumed robots operation time? Is it possible to undertake a new production
order under given (constrained in time) resource availability while guarantee-
ing disturbance-free execution of the already planned orders? Which values of
given variables guarantee that production order will be completed following the
assumed set of performance indexes?

The problems standing behind such questions belong to the class of so called
project scheduling problems. In turn, project scheduling can be defined as
the process of allocating scarce resources to activities over a period of time
to perform a set of activities so as to take into account a given performance
measure. Such problems belong to NP-complete ones. Therefore, new methods
and techniques addressing the impact of real-life constraints on decision making
are of great importance, especially for interactive and task oriented Decision
Support System (DSS) design (Banaszak, 2006).

Several techniques have been proposed in the past fifty years, including
Mixed-integer Linear Programming problem (MILP) (Linderoth and Savels-
bergh, 1999), or, more recently, Artificial Intelligence. The latter techniques
concentrate mostly on fuzzy set theory and constraint programming frameworks.
Constraint Programming/Constraint Logic Programming (CP/CLP) languages
(Barták, 2004; Van Hentenryck, 1991) seem to be well suited to modelling of
real-life and day-to-day decision-making processes in an enterprise (Banaszak,
2006). In turn, applications of fuzzy set theory in production management show
that most of research on project scheduling has been focused on fuzzy PERT and
fuzzy CPM (Chanas and Komburowski, 1981; Dubois, Fargier and Fortemps,
2003).

The paper touches upon various issues of decision making, while employing
the knowledge and CP based framework. The proposed approach provides the
framework allowing for considering both precise (crisp), and imprecise (fuzzy)
data in a unified way and treat them in a unified form of a discrete, constraint
satisfaction problem (CSP). The framework considered enables treating multi
product small-size production flow prototyping as an iterative process of direct
and reverse problem resolution.
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Moreover, the proposed approach concerns the logic-algebraic method (LAM,
see Bubnicki, 1999) based and CP -driven methodology, aimed at interactive de-
cision making for precise and imprecise data. In this context the paper can
be seen as a continuation of previous work concerning project portfolio man-
agement, whose objective is to determine the optimal mix and sequencing of
proposed projects, while satisfying constraints imposed by the precise and im-
precise specification of available resources (Bocewicz, Bach and Banaszak, 2008;
Bach, Bocewicz and Banaszak, 2008, 2009).

We first provide an illustrative example of the problem considered, see Sec-
tion 2, and then we present some details of the modelling framework assumed, in
particular, we describe the reference model employed in Section 3. In Section 4,
the problem statement is provided, and its CSP implementation, as well as the
LAM based approach to CSP resolution is discussed. An illustrative example
of the possible application of the approach developed is discussed in Section 5.
We conclude with some results and lesson learned in Section 6.

2. Illustrative example of the decision problem

Consider the job shop composed of eight work stations where out of the two semi-
products K1, K2, two products, W1 and W2, are manufactured following the pro-
duction route P1, see Fig. 1. At the work stations three kinds of manufacturing
operations are considered: decomposition, e.g. disassembly, {O1,2, O1,4}, compo-
sition, e.g. assembly {O1,5, O1,8}, and processing, e.g. milling {O1,1, O1,3, O1,6,
O1,7}. The workstations are serviced by three robots (ro1, ro2, ro3) and two
workers (ro4, ro5). At least one robot and/or worker is allocated to each Oi,j ,
see Table 1. Since production routes specify an order of operation execution, in
further considerations, whenever it does not lead to confusion, the operations
will stand for activities and the production routes will be treated as activity
networks.

Activities (operations) are non-preemptable. Each activity requires for its
processing dpi,j,k units of the k-th renewable resource, and consumes at its
beginning a units as well as results at its end in b units of non-renewable resource
flow (see Table 2).

Given are activity times as well as associated moments of the relevant re-
source allocation. This type of decision variables, e.g. activity execution times
for robots or workers, can be specified as precise or imprecise ones. Note that,
since the amount of common shared resources is limited, their allocation to si-
multaneously executed activities has to avoid occurrence of closed loop resource
requests, i.e. deadlocks.

In this context, the problem of multi-robot task allocation in a multi-product
job shop reduces to a class of dispatcher’s routine questions, such as: Does a
given resource allocation guarantee that production order completion time does
not exceed the deadline h and the amount of renewable resources is positive at
any moment of time horizon H = {0, 1, . . . , h}? Does there exist a resource allo-
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Figure 1. Job shop following the production route P1

Table 1. Robot and worker allocation to activities of the production route P1

O1,1 O1,2 O1,3 O1,4 O1,5 O1,6 O1,7 O1,8

ro
b
o

ts
 

ro1 1 0 1 0 0 0 0 0

ro2 0 1 0 1 1 0 0 0

ro3 0 0 0 1 0 0 1 1

w
o
rk

er
s ro4 1 0 0 0 1 1 0 0

ro5 0 1 0 0 0 0 1 1

Table 2. Cash inflows and outflows associated with activities

        activity 

cash
O1,1 O1,2 O1,3 O1,4 O1,5 O1,6 O1,7 O1,8

outflow 2 2 2 2 2 1 2 2

inflow 0 0 0 0 4 6 2 5
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cation such that production order completion time not exceeding the deadline h

is guaranteed and amount of renewable resources is positive at any moment of
time horizon H? What values and of what variables guarantee that production
orders will be completed under the assumed values of performance indexes?

3. Reference model

Consider a reference model, oriented at the following routine question: Do given
job shop capabilities and assumed resources allocation guarantee that produc-
tion order completion time does not exceed the deadline h and the amount of
renewable resources is positive at any moment of time horizon H?

Given is the amount lz of renewable discrete resources roi specified by: Ro =
(ro1, ro2, . . . , rolz). Given are the amounts zoi,k of available renewable resources
zoi = (zoi,1, zoi,2, . . . , zoi,h), where zoi,k – limited amount of the i-th renewable
resource at the k-th moment of H , specified by Zo = (zo1, zo2, . . . , zolz).

Given is the amount ln of non-renewable resources rni specified by: Rn =
(rn1, rn2, . . . , rnln). Given are also the amounts zni of available non-renewable
resources rni specified by: Zn = (zn1, zn2, . . . , znln), where zni denotes amount
of the resource rni available at the beginning of time horizon H .

Decision variables. Given is a set of projects specified by the set of produc-
tion routes P = {P1, P2, . . . , Plp}. Each Pi is specified by the set composed of
loi activities, i.e. Pi = {Oi,1, . . . , Oi,loi

}, with (Bach, Bocewicz and Banaszak,
2008):

Oi,j = (xi,j , ti,j , T pi,j, T zi,j, Dpi,j , T ri,j , T si,j, Cri,j , Csi,j), (1)

where:

xi,j — starting time of activity Oi,j , i.e., time counted from the beginning
of time horizon H ,

ti,j — duration of activity Oi,j ,

further, in what follows, a general notation is used, in two forms: XYi,j or
Xyi,j, where X , Y and y take on a number of values; generally, these two forms
correspond to the same tables, determined by a triple of indices, in the first case
(XYi,j) the second index being variable, while in the second case (Xyi,j) the
third index is variable; thus, in formula (1) we have:

Tpi,j = (tpi,j,1, tpi,j,2, . . . , tpi,j,lz) — the sequence of time moments when
activity Oi,j requires new amounts of renewable resources, with tpi,j,k — time
counted since the moment xi,j the amount dpi,j,k of the k-th resource has been
allocated to activity Oi,j ; hence, a resource is allotted to an activity during its
execution period: 0 ≤ tpi,j,k ≤ ti,j , k = 1, 2, . . . , lz;

Tzi,j = (tzi,j,1, tzi,j,2, . . . , tzi,j,lz) — the sequence of moments, when activity
Oi,j releases the subsequent resources, tzi,j,k — time counted since the moment
xi,j the amount dpi,j,k of the k-th renewable resource was released by activity



74 I. BACH, G. BOCEWICZ, Z.A. BANASZAK, W. MUSZYŃSKI

Oi,j ; so, it is assumed that a resource is released by an activity during its
execution: 0 < tzi,j,k ≤ ti,j and tpi,j,k < tzi,j,k, k = 1, 2, . . . , lz;

Dpi,j = (dpi,j,1, dpi,j,2, . . . , dpi,j,lz) — the sequence of the k-th resource
amounts dpi,j,k that are allocated to activity Oi,j , i.e. dpi,j,k is the amount
of the k-th resource, allocated to activity Oi,j ; this is linked with assumption
that 0 ≤ dpi,j,k ≤ zok, k = 1, 2, . . . , lz;

Tri,j = (tri,j,1, tri,j,2, ..., tri,j,ln) — the sequence of time moments, when
the determined amounts of subsequent non renewable resources are collected
by activity Oi,j ; tri,j,k — the time counted since the moment xi,j when the
amount dpi,j,k of the k-th non renewable resource was released by activity Oi,j ;
it is assumed that a resource is collected by activity during its execution: 0 ≤
tri,j,k < ti,j ; k = 1, 2, . . . , ln;

Tsi,j = (tsi,j,1, tsi,j,2, ..., tsi,j,ln) — the sequence of moments when the deter-
mined amounts of subsequent non renewable resources are generated (released)
by activity Oi,j ; tsi,j,k — time counted since the moment xi,j the amount csi,j,k

of the the k-th non renewable resource was generated by activity Oi,j ; it is as-
sumed that the resource is generated during activity execution, but not earlier
than its collection started, i.e.: 0 ≤ tsi,j,k < ti,j ; k = 1, 2, . . . , ln, as well as
tri,j,k ≤ tsj,k; k = 1, 2, . . . , ln;

Cri,j = (cri,j,1, cri,j,2, . . . , cri,j,ln) — the sequence of non-renewable resource
amounts consumed by activity Oi,j ; cri,j,k — the amount of the k-th resource
required by the activity Oi,j , cri,j,k ≤ 0; k = 1, 2, . . . , ln; cri,j,k = 0 means that
this activity does not consume the k-th resource;

Csi,j = (csi,j,1, csi,j,2, . . . , csi,j,ln) — the sequence of amounts of non-renew-
able resources released by activity Oi,j ; csi,j,k — the amount of the k-th resource
released by activity Oi,j , csi,j,k ≥ 0, k = 1, 2, . . . , ln; csi,j,k = 0 means that the
activity does not release the k-th resource.

Consequently, each activity Oi,j is specified by the sequences of:

• starting times of activities on the project Pi:
Xi = (xi,1, xi,2, . . . , xi,loi

), 0 ≤ xi,j < h, i = 1, 2, ..., lp; j = 1, 2, ..., loi;
• duration of activities on the project Pi:

Ti = (ti,1, ti,2, . . . , ti,loi
);

• starting times the j-th resource is allocated to the k-th activity on the
project Pi:
TPi,j = (tpi,1,j , tpi,2,j , . . . , tpi,k,j , . . . , tpi,loi,j);

• starting times the j-th resource is released by the k-th activity on Pi:
TZi,j = (tzi,1,j , tzi,2,j , . . . , tzi,k,j , . . . , tzi,loi,j);

• amounts of the j-th resource allotted to the k-th activity on Pi:
DPi,j = (dpi,1,j , dpi,2,j , . . . , dpi,k,j , . . . , dpi,loi,j);

• the sequence of moments the j-th non renewable resource is collected by
the activities of the projects on Pi:
TRi,j = (tri,1,j , tri,2,j , . . . , tri,loi,j);
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• the sequence of moments the j-th non renewable resource is released by
the activities of the projects on Pi:
TSi,j = (tsi,1,j , tsi,2,j, . . . , tsi,loi,j);

• sequences of amounts of the j-th non-renewable resource consumed by the
activities of the project Pi:
CRi,j = (cri,1,j , cri,2,j , . . . , cri,loi,j);

• sequences of amounts of the j-th non-renewable resource involved by the
activities of the project Pi:
CSi,j = (csi,1,j , csi,2,j , . . . , csi,loi,j).

Assume that some of chosen execution times are defined roughly, i.e. are
treated as fuzzy variables, specified by fuzzy sets. Therefore, the activity
Oi,j = (x̂i,j , t̂i,j , T pi,j, T zi,j, Dpi,j , T ri,j , T si,j, Cri,j , Csi,j), is specified by the
sequences of:

• starting times of activities on the project Pi:
X̂i = (x̂i,1, x̂i,2, ..., x̂i,loi

),
• duration of activities on the project Pi:

T̂i = (t̂i,1, t̂i,2, ..., t̂i,loi
),

where:

X̂ = (X̂1, X̂2, ..., X̂lp) — is the sequence determining (consisting of) the

sequences X̂i (where i = 1, 2, ..., lp), whose elements are fuzzy starting times of
activities Oi,j ,

T̂ = (T̂1, T̂2, ..., T̂lp) — is the sequence determining (consisting of) the se-

quences T̂i (where i = 1, 2, ..., lp), whose elements are fuzzy duration times of
activities Oi,j ,

Tpi,j, Tzi,j, Dpi,j , Tri,j , Tsi,j, Cri,j , Csi,j are the sequences, defined by (1).

Activity order constraints. Let us consider a set of projects P , composed of
loi precedence and resource constrained, non-preemptable activities that require
renewable resources. Assume lz is a number of available renewable discrete
resources and the sequences ri,j = (rok , rog, . . . , rof ), j = 1, . . . , loi consist of
rok, rog, ..., rof , which are elements of Ro and determine resource requirements
of the activities Oi,j . The total number of units of the discrete resource roi,
i = 1, . . . , lz, is limited by zoi. The resource can be allotted (and constant
within the activity operation time) to activities in arbitrary amount from the
set {1, . . . , zoi}. This means that two different resources can be allotted to
activity Oi,j at different, also overlapping, periods of time.

Note that, since the volume of common shared resources is limited, their
allocation to simultaneously executed activities must avoid occurrence of closed
loop resource request, i.e. deadlocks. For this purpose, relevant constraints
should be imposed (Bach, Bocewicz and Banaszak, 2008).

Project Pi is represented by an activity-on-node network, where an activ-
ity corresponds to a node and arcs determine the order of activity execution.
Consequently, the following constraints on the order of activities are considered:
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• k-th activity follows the i-th one:

x̂i,j +̂ t̂i,j ≤̂ x̂i,k, (2)

• k-th activity follows other activities:

x̂i,j +̂ t̂i,j ≤̂ x̂i,k, x̂i,j+1+̂t̂i,j+1≤̂x̂i,k, ..., (3)

x̂i,j+n +̂ t̂i,j+n ≤̂ x̂i,k,

• k-th activity is followed by other activities:

x̂i,k +̂ t̂i,k ≤̂ x̂i,j , x̂i,k +̂ t̂i,k ≤̂ x̂i,j+1, ..., (4)

x̂i,k +̂ t̂i,k ≤̂ x̂i,j+n

The relevant fuzzy arithmetic operations +̂, ≤̂ are defined in the Appendix.
Due to the formulas (a8) and (a12) from the Appendix, any fuzzy constraint
Ci (e.g. v̂i<̂v̂l) can be characterized by a value E(Ci), E(Ci) ∈ [0, 1]. In turn,
values E(Ci) allow for determining the level of uncertainty, DE , of reference
model constraint satisfaction, i.e. a kind of uncertainty threshold. For instance,
DE = 1 means that all constraints hold, and DE = 0.8 means that they are,
altogether, close to satisfaction. The value of DE is determined through formula:

DE = min
i=1,2,...,loc

{E(Ci)} (5)

where: loc is the number of constraints of the reference model.

In the course of decision making, based on constraints, assuming fuzzy vari-
ables, an uncertainty threshold should be assumed (e.g. following operator’s
experience). This means that the decision maker should be able to decide about
the membership functions of the decision variables used, as well as the uncer-
tainty thresholds of fuzzy constraints employed.

Renewable resource constraints. Because of limited amount of available dis-
crete renewable resources the constraints protecting against their allocation ex-
ceeding available output should also be considered. This means that constraints
taking into account imprecise character of such variables as activity operation
times t̂i,j and the time instants of activity start, x̂i,j , have to be considered.
The approach proposed follows the method applied in the case of precise (crisp)
variables (Bocewicz, Bach and Banaszak, 2008; Bach, Bocewicz and Banaszak,
2009). Note that the cases, when resource availability limits are exceeded, fol-
low from conflicts resulting from wrong resource allocation, leading to the closed
loops of resource requests. So, in order to be able to develop the constraints
allowing for avoiding violation of the assumed limits of the available amounts of
renewable resources, consider the following functions f∗

k and g∗k, defining avail-
able amounts of the k-th resource, required at the moment v̂:

• f∗
k (v̂, X̂,DE fk) — defines the required number of the k-th resource units

at the fuzzy moment v̂, which depends on assumed fuzzy moments of be-
ginning of activities, X̂ = (X̂1, X̂2, ..., X̂lp); it is assumed that the set H is
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the domain of the membership function µ(v) of the variable v̂, determin-
ing DE fk ∈ [0, 1]. So, for the sake of simplicity in further considerations,
the following phrase will be used: “the variable v̂ defined on the set H ′′.
Note that the function f∗

k is calculated for a given level of uncertainty.
This means that, for instance, if DE fk = 0.8, then at the moment v̂ the
number of required units of the k-th resource does not exceed the number
f∗

k with uncertainty level equal to 0.8.
• g∗k(v̂,DE gk) — defines, with uncertainty level DE gk ∈ [0, 1], the available

amount of the k-th resource at the moment v̂. We assume that the avail-
able amount of the k-th resource is constant over entire time horizon H ,
i.e. g∗k(v̂,DE gk) = gvk, where gvk = const, ∀v ∈ H .

Therefore, the above functions f∗
k and g∗k can be treated as some general-

ization of functions fg and gk, defining, respectively, the quantity of required
and available units of the k-th resource in case variables considered are precise
(Bocewicz, Bach and Banaszak, 2008; Bach, Bocewicz and Banaszak, 2009).
The occurrence of the closed loops of resource requests implies the inequality
fk(vb, X) > gk(vb). So, assuming the variables are treated as imprecise, the
inequality fk(vb, X) > gk(vb) can be seen as a consequence of occurrence of a
closed loop of resource request with uncertainty level f∗

k (v̂, X̂,DE fk) > gvk.
Such generalization leads to the following Property 1:

Property 1 The inequality f∗
k (v̂, X̂,DE fk) > gvk is a necessary condition

for the occurence of closed loops of resource request with the uncerntainty level
DE fk.

Moreover, assuming that activities cannot be stopped (suspended) during
their execution, the following Lemma 1 holds:

Lemma 1 If resource allocation to activities in the set of projects P at the mo-
ment v̂ satisfies the condition f∗

k (v̂, X̂,DE fk)≤ gvk, ∀k∈{1, 2, . . . , lz}, for the

assumed X̂, T̂ , TPi,j, TZi,j, DPi,j, H, then execution of respective activities does
not lead to the deadlocks with uncertainty level DE f =mink∈{1,2,...,lz}{DE fk}.

Proof. The proof follows directly from Property 1. Due to Property 1 a dead-
lock cannot occur with uncertainty level DE f = mink∈{1,2,...,lz}{DE fk} in the

fuzzy moment v̂ only in the case when condition f∗
k (v̂, X̂,DE fk) > gvk holds

for at least one resource. So, in case for each resource (∀k ∈ {1, 2, ..., lz})
Property 1 does not hold (i.e., condition f∗

k (v̂, X̂,DE fk) > gvk does not hold)
the closed cycle occurs with uncertainty level DE f = mink∈{1,2,...,lz}{DE fk}.

When Property 1 does not hold, condition f∗
k (v̂, X̂,DE fk) ≤ gvk holds. So, the

closed cycle (i.e. a deadlock) does not occur with uncertainty level DE f , in case
condition f∗

k (v̂, X̂,DE fk) ≤ gvk holds for each resource (∀k ∈ {1, 2, ..., lz}).

Property 2 If at any fuzzy moment v̂ in the time horizon H the condition
f∗

k (v̂, X̂,DE fk) ≤ gvk holds, ∀k ∈ {1, 2, ..., lz}, then execution of activities is
deadlock-free with uncertainty level DE f = mink∈{1,2,...,lz}{DE fk}.
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Due to the above introduced assumptions, functions f∗
k and g∗k have the

following form:

• function f∗
k (v̂, X̂,DE fk):

f∗
k (v̂, X̂,DE fk) =

lp
∑

i=1

loi
∑

j=1

[

dpi,j,k · ˆ̄1(v̂, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk)
]

(6)

where:
tpi,j,k < tzi,j,k, lp — is the number of projects,

loi — is the number of activities in the i-th project,

dpi,j,k — is the volume of the k-th resource engaged by the activity Oi,j ,

ˆ̄1(v̂, â, b̂,DE fk) = 1̂(v̂, â,DE fk)− 1̂(v̂, b̂,DE fk) — is a fuzzy function of time
resource occupation, where 1̂(v̂, â,DE fk) is a fuzzy unit step function; the fuzzy
unit step function corresponds to the precise unit step function 1(v).

The following fuzzy unit step function is considered:

1̂(v̂, â,DE fk) = f, f ∈ {0, 1}, DE fk ∈ [0, 1], (7)

where f is a precise number, for which the value of the following expression
equals DE fk:

[

(v̂≥̂â) ∨ (f = 0)
]

∧ [(v̂<̂â) ∨ (f = 1)] (8)

i.e.

E
[[

(v̂≥̂â) ∨ (f = 0)
]

∧ [(v̂<̂â) ∨ (f = 1)]
]

= DE fk (9)

For further considerations, let us note that the expressions β1 ∧β2; β1∨β2; ¬β1

correspond to the following formulas:

E(β1 ∧ β2) = E(β1) · E(β2), (10)

E(β1 ∨ β2) = E(β1) + E(β2) − E(β1) · E(β2), (11)

E(¬β1) = 1 − E(β1). (12)

Formula (9) leads, therefore, to:

E(v̂≥̂â) + E(f = 0) · [1 − 2E(v̂≥̂â)] = DE fk (13)

and finally:

E(f = 0) =
DE fk − E(v̂≥̂â)

1 − 2E(v̂≥̂â)
. (14)
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Taking into account E(f = 0) = 1 − f , f ∈ {0, 1}, we obtain:

f = 1 −
DE fk − E(v̂≥̂â)

1 − 2E(v̂≥̂â)
. (15)

Finally, the fuzzy unit step function has the following form:

1̂(v̂, â,DE fk) = 1 −
DE fk − E(v̂≥̂â)

1 − 2E(v̂≥̂â)
, (16)

where 1̂(v̂, â,DE fk) ∈ {0, 1}, DE fk ∈ [0, 1].

Let us treat â of the function ˆ̄1(v̂, â, b̂,DE fk) as a characteristic point. Since
in formula (6) the considered function is determined by

ˆ̄1(v̂, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk),

hence the corresponding characteristic point is determined by the fuzzy moments
x̂i,j+̂tpi,j,k when dpi,j,k units of the k-th resource are alloted to the activity Oi,j .
In further considerations, such points are called characteristic points of the func-
tion f∗

k (v̂, X̂,DE fk). Note that increase of the value of function f∗
k (v̂, X̂,DE fk)

can occur only at characteristict points of this function.

• function g∗k(v̂,DE gk):

g∗k(v̂,DE gk) = gvk = zok,1 = zok,2 = · · · = zok,h (17)

where:
gvk — the available amount of the k-th renewable resource,

zok,i — the element of sequence zok determining the limited amount of the
k-th renewable resource at the i-th moment of H .

Therefore, since (6) and (17) hold, the following Theorem 1 is also true.

Theorem 1 Given the set of projects P , consider assumptions imposed by the
reference model regarding the specification of activities X̂, T̂ , TPi,j, TZi,j,

DPi,j , H, and functions f∗
k (v̂, X̂,DE fk) and g∗k(v̂,DE gk), following the for-

mulae (6), (17). If for any moment v̂ in the assumed time horizon H and for
each k-th resource, k ∈ {1, 2, . . . , lz} , conditions (18) hold, then the execu-
tion of the set of projects will be deadlock free with uncertainty level DE f =
mink∈{1,2,...,lz}{DE fk}.
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∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂1,1+̂tp1,1,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k, DE fk,1,1)]≤zok,1

∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂1,2+̂tp1,2,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk,1,2)]≤zok,1

...
∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂1,lo1
+̂tp1,lo1,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk,1,lo1

)]≤zok,1

∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂2,1+̂tp2,1,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk,2,1)]≤zok,1

∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂2,2+̂tp2,2,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk,2,2)]≤zok,1

...
∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂2,lo2
+̂tp2,lo2,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk,2,lo2

)]≤zok,1

...
∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂lp,1+̂tplp,1,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DE fk,lp,1)]≤zok,1

...
∑lp

i=1

∑loi

j=1
[dpi,j,k ·

ˆ̄1(x̂lp,lolp
+̂tplp,lolp,k, x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k,DEfk,lp,lolp

)]≤zok,1

(18)

where: DE fk = mink∈{1,2,...,lz}{DE fk,1,1,DE fk,1,12, ..., DEfk,lp,lolp
}.

Proof. Due to the forms of functions f∗
k (v̂, X̂, DEfk) and g∗k(v̂, DEgk) (see for-

mulae (6), (17)), the condition f∗
k (v̂, X̂, DEfk) ≤ gvk can be stated as follows:

lp
∑

i=1

loi
∑

j=1

[

dpi,j,k · ˆ̄1(
⌢
v , x̂i,j+̂tpi,j,k, x̂i,j+̂tzi,j,k, DEfk)

]

≤ zok,1. (19)

According to Property 2, in order to avoid deadlocks, condition (19) must
hold for each moment v̂ in time horizon H . Note that conditons (18) are gener-
alizations of inequality (19) for the cases, when variable v̂ follows the values of
characteristic points of function f∗

k (v̂, X̂, DEfk). Due to (6), a change of states
of projects considered can occur in P only for characteristic points. So, if for
each k-th resource, k ∈ {1, 2, . . . , lz}, formula (19) holds in characteristic points,
then it holds for each v ∈ H . This observation, due to Property 2 and Lemma
1, guarantees that the execution of activities within the time horizon (i.e. the
execution of the entire set of projects) is deadlock-free with uncertainty level
DEf = mink∈{1,2,...,lz}{DEfk}.

Non-renewable resource constraints. Because of limited amount of the avail-
able discrete non-renewable resources, constraints protecting against their allo-
cation exceeding available output should also be considered, also because non-
renewable resources can be allotted at the same time to different activities in a
way causing occurrence of closed loop resource requests, i.e. deadlocks.
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By analogy to renewable resources we shall formulate the constraints de-
termining resource allocation guaranteeing deadlock-free execution of activi-
ties. Assume that the number of required and obtained units of the k-th non-
renewable resource is determined by functions

b∗k(v̂, X̂, DEnk and m∗
k(v̂, X̂, DEnk),

respectively:

• b∗k(v̂, X̂, DEnk) — function defining total amount of required units of the
k-th resource at the moment v̂, taking into account the moments the
activities begin, X̂ = (X̂1, X̂2, ..., X̂lp). Of course, the values of function
b∗k are determined for a given level of uncertainty, DEnk ∈ [0, 1].

• m∗
k(v̂, X̂, DEnk) — function defining total amount of the used up units of

the k-th resource at the moment v̂, taking into account the moments the
activities begin, X̂ = (X̂1, X̂2, ..., X̂lp). Of course, the values of function
m∗

k are determined for a given level of uncertainty, DEnk ∈ [0, 1].

It can be proven that for deadlock to occur, the inequality bk(v, X) >

mk(v, X) must hold for each v ∈ H . This observation can be generalized by
replacing accurate variables by the imprecise (fuzzy) ones, i.e. the inequality
b∗k(v̂, X̂, DEnk) > m∗

k(v̂, X̂, DEnk) results as a consequence of the closed cycle
of resource requests, with uncertainty level DEnk. Therefore, we are led to
Property 3.

Property 3 The inequality b∗k(v̂, X̂, DEnk) > m∗
k(v̂, X̂, DEnk) is a necessary

condition for the occurrence of closed loops of the non-renewable resource re-
quests (i.e. deadlocks) with the uncertainty level DEnk.

Property 3 allows for proving the following Lemma 2:

Lemma 2 Assume that the reference model is specified by X̂, T̂ , TPi,j, TZi,j,
DPi,j , H. If for an allocation of non-renewable resources to project activities P

at the moment v̂ the condition b∗k(v̂, X̂, DEnk) ≤ m∗
k(v̂, X̂, DEnk) holds, ∀k ∈

{1, 2, ..., ln}, then realization of these activities is deadlock-free with uncertainty
level DEn = mink∈{1,2,...,ln}{DEnk}.

Proof. Proof follows directly from Property 3. Due to Property 3 a dead-
lock can occur with uncertainty level DEnk, only in the case when at the
fuzzy moment v̂ for at least one k-th resource the condition b∗k(v̂, X̂, DEnk) >

m∗
k(v̂, X̂, DEnk) holds. This means that if for no resource k (∀k ∈ {1, 2, ..., lz})

Property 3 holds (i.e. the condition b∗k(v̂, X̂, DEnk) > m∗
k(v̂, X̂, DEnk) does

not hold), then the execution of activities is deadlock-free with uncertainty level
DEn = mink∈{1,2,...,ln}{DEnk}. In case Property 3 does not hold, then con-

dition b∗k(v̂, X̂, DEnk) ≤ m∗
k(v̂, X̂, DEnk) holds. This implies that execution

of activities is deadlock-fee if for each resource k (∀k ∈ {1, 2, ..., lz}) condition
b∗k(v̂, X̂, DEnk) ≤ m∗

k(v̂, X̂, DEnk) holds.
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Property 4 If at any fuzzy moment v̂ in the time horizon H the condition
b∗k(v̂, X̂, DEnk) ≤ m∗

k(v̂, X̂, DEnk) ∀k ∈ {1, 2, ..., ln} holds, then execution of
activities is deadlock-free with uncertainty level DEn = mink∈{1,2,...,ln}{DEnk}.

Due to the assumptions imposed on the reference model, the functions in-
cluded in the inequality b∗k(v̂, X̂, DEnk) ≤ m∗

k(v̂, X̂, DEnk) are of the following
form:

b∗k(v̂, X̂, DEnk) =

lp
∑

i=1

loi
∑

j=1

[

cri,j,k · 1̂(v̂, x̂i,j+̂tri,j,k, DEnk)
]

(20)

where: tri,j,k — the moment of the k-th non-renewable resource allocation to
an activity, lp — the number of projects, loi — the number of i-th project
activities, cri,j,k — the number of the k-th non-renewable resource units used
by activity Oi,j , 1̂(v̂, â, DEnk) — the fuzzy unit step function (16).

The value of the function 1̂(v̂, â,DEnk) is called characteristic point of the
fuzzy unit step function. In formula (20), where the fuzzy unit step functions
are added, the characteristic points determine the moments (x̂i,j+̂tri,j,k), when
the activities Oi,j require assumed quantities (cri,j,k) of the k-th resource units.

Such points are called characteristic points of the function b∗k(v̂, X̂,DEnk).
By analogy to the case of renewable resources, changes of the function

b∗k(v̂, X̂,DEnk) may occur only in such characteristic points.

m∗
k(v̂, X̂, DEnk) =

lp
∑

i=1

loi
∑

j=1

[

csi,j,k · 1̂(v̂, x̂i,j+̂tsi,j,k, DEnk)
]

+ znk (21)

where: tsi,j,k — moment, when the k-th non-renewable resource is allocated to
activity Oi,j , lp — the number of projects, loi — the number of the i-th project
activities, csi,j,k — the number of units of the k-th non-renewable resource, used
by activity Oi,j , 1̂(v̂, â, DEnk) — the fuzzy unit step function (16).

By analogy to b∗k(v̂, X̂, DEnk), the values of (x̂i,j+̂tsi,j,k) are called the

characteristic points of the function m∗
k(v̂, X̂, DEnk).

With functions b∗k(v̂, X̂, DEnk), m∗
k(v̂, X̂, DEnk) (see (20) and (21)) and

Property 4, the condition b∗k(v̂, X̂, DEnk) ≤ m∗
k(v̂, X̂, DEnk), can be trans-

formed to the following inequality:

znk −

lp
∑

i=1

loi
∑

j=1

[

cri,j,k · 1̂(v̂, x̂i,j+̂tri,j,k, DEnk)
]

+

lp
∑

i=1

loi
∑

j=1

[

csi,j,k · 1̂(v̂, x̂i,j+̂tsi,j,k, DEnk)
]

≥ 0 (22)

where: lp and loi are the same as before, 1̂(v̂, â, DEnk) is the fuzzy unit step
function (16).
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It follows from Lemma 2 that execution of activities is deadlock-free when
condition (22) holds for each moment v̂ in time horizon H . Values of the func-
tions b∗k(v̂, X̂, DEnk) and m∗

k(v̂, X̂, DEnk) can change only for variable values
corresponding to characteristic points. The variable v̂ in formula (22) can then
be replaced by a set of relevant characteristic points. Consider the characteristic
points of the function b∗k(v̂, X̂, DEnk), for which the left hand side of inequality
(22) decreases. Then, the following Theorem 2 holds.

Theorem 2 Given the set of projects P , take assumptions imposed by the ref-
erence model regarding specification of activities X̂, T̂ , TPi,j, TZi,j, DPi,j, H,

and functions b∗k(v̂, X̂, DEnk) , and m∗
k(v̂, X̂, DEnk), according to (20), (21).

If for each moment v̂ in the assumed time horizon H and for each k-th resource,
k ∈ {1, 2, . . . , ln}, conditions (23) hold, then execution of the set of projects will
be deadlock free with uncertainty level DEn = mink∈{1,2,...,ln}{DEnk} .















































































































































































znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂1,1, x̂i,j+̂tri,j,k, DEnk,1,1)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂1,1, x̂i,j+̂tsi,j,k, DEnk,1,1)
]

≥ 0

znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂1,2, x̂i,j+̂tri,j,k, DEnk,1,2)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂1,2, x̂i,j+̂tsi,j,k, DEnk,1,2)
]

≥ 0

...

znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂1,lo1
, x̂i,j+̂tri,j,k, DEnk,1,lo1

)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂1,lo1
, x̂i,j+̂tsi,j,k, DEnk,1,lo1

)
]

≥ 0

znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂2,1, x̂i,j+̂tri,j,k, DEnk,2,1)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂2,1, x̂i,j+̂tsi,j,k, DEnk,2,1)
]

≥ 0

znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂2,2, x̂i,j+̂tri,j,k, DEnk,2,2)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂2,2, x̂i,j+̂tsi,j,k, DEnk,2,2)
]

≥ 0

...

znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂2,lo2
, x̂i,j+̂tri,j,k, DEnk,2,lo2

)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂2,lo2
, x̂i,j+̂tsi,j,k, DEnk,2,lo2

)
]

≥ 0

...

znk −
∑lp

i=1

∑loi

j=1

[

cri,j,k · 1̂(x̂lp,lolp
, x̂i,j+̂tri,j,k, DEnk,lp,lolp

)
]

+
∑lp

i=1

∑loi

j=1

[

csi,j,k · 1̂(x̂lp,lolp
, x̂i,j+̂tsi,j,k, DEnk,lp,lolp

)
]

≥ 0

(23)

for k = 1, 2, . . . , ln, where ln is the number of non-renewable resources, and
DEnk = mink∈{1,2,...,ln}{DEnk,1,1, DEnk,1,12, ..., DEnk,lp,lolp

}.

Proof. Conditions (23) can be seen as a generalization of inequality (22) at
moments v̂, corresponding to characteristic points of functions b∗k(v̂, X̂, DEnk),

m∗
k(v̂, X̂, DEnk). Due to formulae (20), (21), the change of the state of projects

P can take place only at such characteristic points. Therefore, when inequality
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(22) holds for each characteristic point (see function b∗k(v̂, X̂, DEnk)), such that
the left hand side of this inequality decreases its value, then it holds for any
moment v̂ in the time horizon H . This observation, due to Property 4 (and
Lemma 2) provides the guarantee that activity execution in whole time horizon
(i.e. project execution taking into account non-renewable resources) is deadlock-
free with a given uncertainty level.

4. Problem formulation

The introduced model provides the formal framework making it possible to state
the problem considered.

4.1. Problem statement

Given are: time horizon H = {0, 1, . . . , h}, set of projects (specified by the set
of production routes) P , set of resources and their availabilities, Zo within H ,
initial amount of the non-renewable resource, zo1, precise and imprecise decision
variable values, treated as fuzzy numbers, i.e. the sequences T̂i, T̂Pi,j , T̂Zi,j .
For these data, the following questions should be answered:

(1) Does a given resources allocation guarantee that the production order
makespan does not exceed the deadline h and that the amount of each non-
renewable resource is positive at any moment of time horizon H? Response to
this question results in the determination of the sequences X̂1, X̂2, ..., X̂lp.

(2) Do there exist resource allocations such that production order makespan
does not exceed the deadline h and the amount of each non-renewable resource
is positive at any moment of time horizon H? Response to this question results
in determination of the sequences: T̂1, T̂2, ..., T̂lp.

The questions stated above correspond to the direct and reverse problems
of the multi-product scheduling, respectively.

4.2. Constraint satisfaction problem

Since a constraint can be treated as a relation among several variables, each one
taking a value in a given (usually discrete) domain, the idea of constraint pro-
gramming (CP ) approach to problem solving can be employed. More formally,
CP is a framework for solving combinatorial problems specified by pairs: (a set
of variables and associated domains, a set of constraints restricting the possible
combinations of the variable values). In this context, the constraint satisfaction
problem (CSP ) (Barták, 2004) is defined as follows:

CS = ((A, D), C), (24)

where:
A = {a1, a2, . . . , ag} — a finite set of discrete decision variables,



Knowledge-based and CP-driven approach to production flow 85

D = {Di | Di = {di,1, di,2, . . . , di,j , . . . , di,ld}, i = 1, . . . , g} — a family of
finite domains,

C = {Ci | i = 1, . . . , L} — a finite set of constraints limiting the domains of
variables.

The solution to the CS is a vector (d1,i, d2,k, . . . , dn,j) with coordinates satis-
fying each constraint of the set C. Of course, solutions considered are admissible.

The inference mechanism consists of the following two components: con-
straint propagation and variable distribution. Constraint propagation uses con-
straints actively to prune the search space. The aim of the propagation tech-
niques, i.e., local consistency checking, is to reach certain level of consistency
in order to accelerate search procedures by drastically reducing the size of the
search tree (Banaszak, 2006). In general case, however, the consistency tech-
niques are incomplete. For instance, in the problem CS = ({a1, a2, a3}, {{0, 1},
{0, 1}, {0, 1}}, {a1 6= a3, a1 6= a2, a2 6= a3}) constraints propagation is not effec-
tive and domains of variables are not reduced. Moreover, an admissible solution
does not exist.

4.3. Knowledge base representation

The CSP can be seen as a well suited representation of the knowledge base. Let
us assume that the knowledge base (KB), describing a system, is represented
in the form of the sets U, W, Y, defining some system properties U ∈ U,
W ∈ W, Y ∈ Y. U consists of input variables, Y consists of output variables,
and W consists of auxiliary variables. The knowledge specifying the properties
of the system under consideration is described in the form of a set of facts
F (U, W, Y ). Facts F (U, W, Y ) are propositions encompassing the relationships
(i.e., constraints) between individual variables of U , W , Y .

The decision maker is usually faced with the problem whether a query he is
interested in is properly, or not, addressed in the context of the DSS at hand.
So, in the case of query: what sufficient conditions guarantee the existence of
an admissible solution? the relevant decision problem can be formulated as
follows. Given are sets of input U = {u1, ..., un}, output Y = {y1, ..., ym},
and auxiliary W = {w1, ..., wk} variables, where ui, yi belong to domains Dui,
Dyi, Dwi (where: U = Du1 × Du2 × ... × Dun, Y = Dy1 × Dy2 × ... × Dym,
W = Dw1 × Dw2 × ... × Dwk) and F (U), F (Y ) are the sets of constraints
(properties), linking variables from different domains. The decision problem
consists in finding R ⊂ U × W × Y such that F (U) implies that F (U) ⇒ F (Y )
holds.

Due to the logic-algebraic method (LAM ), Bubnicki (1999), the following
solution is considered:

Ru = Su1\Su2, (25)

Su1 = {U : w(F (U, W, Y )) = 1, w(F (Y )) = 1, U ∈ U}, (26)

Su2 = {U : w(F (U, W, Y )) = 1, w(F (Y )) = 0, U ∈ U}, (27)
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where:
w(F (.)) — the logical value of the fact F (.).

w(F (.)) =

{

1 if F (.) holds
0 if F (.) does not holds

The set Su1 consists of those elements of U , for which all facts of sets
F (U, W, Y ) and F (Y ) hold. The set Su2, in turn, consists of those elements
of U , for which all facts from the set F (U, W, Y ) are true, and at least one
fact from the set F (Y ) does not hold. Therefore, Ru 6= ∅ and Ru = ∅ denote
existence, and lack of an answer to the query, respectively. In other words, the
response DO NOT KNOW is not allowed.

Consequently, the CSP considered can be determined as follows:

CS = ((U ∪ Y ∪ W, D), {w(F (U, W, Y )) = 1}), (28)

where D = {DU ∪ DY ∪ DW } is the set of values of input (U) and output (Y )
variables, and w(F (U, W, Y )) = 1 denotes a set of facts, {w(F1(U, W, Y )) =
1, . . . , w(FK(U, W, Y )) = 1}.

Finally, relation R, i.e. solution to the problem CS, is obtained from the
following equations:

CSSu1 = ((U ∪ Y ∪ W, D), {w(F (U, W, Y )) = 1}, w(F (Y )) = 1}), (29)

CSSu2 = ((U ∪ Y ∪ W, D), {w(F (U, W, Y )) = 1}, w(F (Y )) = 0}). (30)

The set Ru = Su1\Su2, where sets Su1 and Su2 are solutions to problems
(29) and (30), includes alternative solutions, for which the implication F (U) ⇒
F (Y ) holds. For a detailed discussion of the advantages of method proposed
see Banaszak, Bocewicz and Bach (2008). We shall provide here just a short
overview:

• The CSP framework provides a declarative way of problem specification,
without a guarantee, though, that any feasible solution exists (constraint
propagation techniques cannot guarantee reduction of variable domains
nor that any admissible solution exists),

• The CSP framework allows for taking into account constraints composed of
variables not contained by other constraints (i.e. the queries as to whether
a given subset of variables implies another one cannot be considered),

• The CSP framework is useless for queries checking whether a given subset
of variables implies another one (i.e. the case when the same preconditions
imply mutually contradicting post-conditions can be considered),

• The LAM provides a framework for knowledge base representation (for-
ward and backward reasoning, i.e. the direct and the reverse problems can
be considered),

• The LAM can be directly implemented in the CSP framework (meaning
that queries such as whether a given subset of variables implies another
one can be considered as well),
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• The LAM implemented in CSP framework allows using commercially avail-
able CP/CLP platforms (that is, decision problems can be easily formu-
lated in a declarative knowledge base in a uniform way and solved with
guarantee that the response DO NOT KNOW will not occur), such as
Oz/Mozart (Schulte, Smolka and Wurtz, 1998), Ilog (Puget, 1994).

5. Illustrative example

Consider the project P1 composed of eight activities (Fig. 1), where W1 and W2

are manufactured. The problem of production flow prototyping can be seen as
an iterative process of adjustment and evaluation of decision variables.

Case of the direct problem 1. The activity times are treated as fuzzy variables
and determined by z-cuts: T̂1 = (t̂1,1, t̂1,2, ..., t̂1,8):

t̂1,1 = ({[1, 3], [2, 3], [3, 3]}, {0; 0.5; 1}), t̂1,2 = ({[2, 6], [3, 5], [4, 4]}, {0; 0.5; 1}),

t̂1,3 = ({[1, 3], [1, 2], [1, 1]}, {0; 0.5; 1}), t̂1,4 = ({[3, 5], [3, 4], [3, 3]}, {0; 0.5; 1}),

t̂1,5 = ({[2, 4], [3, 4], [4, 4]}, {0; 0.5; 1}), t̂1,6 = ({[1, 5], [2, 4], [3, 3]}, {0; 0.5; 1}),

t̂1,7 = ({[2, 4], [2, 3], [2, 2]}, {0; 0.5; 1}), t̂1,8 = ({[5, 5], [5, 5], [5, 5]}, {0; 0.5; 1}),

Five different renewable resources ro1, . . . , ro5 are used. Resource allocation
follows Table 1. Hence, DPi,j = (dpi,1,j , dpi,2,j, . . . , dpi,8,j):

DP1,1 = (1, 0, 1, 0, 0, 0, 0, 0), DP1,2 = (0, 1, 0, 1, 1, 0, 0, 0),

DP1,3 = (0, 0, 0, 1, 0, 0, 1, 1), DP1,4 = (1, 0, 0, 0, 1, 1, 0, 0, ),

DP1,5 = (0, 1, 0, 0, 0, 0, 1, 1).

It is assumed that the instants of resource allocation and release follow the
instants of activity beginning and completion. Therefore, tp1,j,k = 0, j =
1, 2, . . . , 8, k = 1, 2, . . . , 5. Assumed are the following sequences: t̂zi,j,k = t̂1,j ,
j = 1, 2, . . . , 8, k = 1, 2, . . . , 5. (t̂zi,j,k means fuzzy variable corresponding to
tzi,j,k, as well as Zo = (zo1, . . . , zo5), such that zo1 = zo2 = · · · = zo5 = 1.
Given are also: the discrete time horizon H = {0, 1, . . . , 20} and the uncertainty
threshold DE ≥ 0.8.

There is one non-renewable resource rn1, e.g. money, with the initial amount
zn1 = 8. The cash outflows associated with activities are given by CR1,1 =
(2, 2, 2, 2, 2, 1, 2, 2). In turn, the cash inflows associated to activities are given
by CS1,1 = (0, 0, 0, 0, 4, 6, 2, 5).

The question considered: Does there exist a production schedule with makes-
pan not exceeding the given deadline of 20 units of time and for which the
amount of cash is positive at any moment of time horizon H? concerns the
values of X̂1 = (x̂1,1, x̂1,2, ..., x̂1,8), assuming the moments x̂i,j are fuzzy numbers
with triangle membership functions.

Therefore, the problem considered can be seen as a CSP (see the formu-
lae (24)), where the moments x̂i,j of beginning of operations play the role of
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fuzzy decision variables. The set of constraints C consists: activity order con-
straints, (2), (3), (4), renewable resource constraints (18), and non-renewable re-
source constraints (23). Due to the approach proposed in Section 4.3 the Logic-
Algebraic Method (LAM) was implemented for solution search. The sought
values x̂i,j belong to the set Ru, (25), determined by CSSu1 and CSSu2, (29),
(30) (note that decision variables x̂i,j correspond to variables ui ∈ U in (26),
(27)).

The CSP considered has been implemented in OzMozart system (Schulte,
Smolka and Wurtz, 1998). In 30 seconds of AMD Athlon(tm)XP 2500 + 1.85
GHz, RAM 1.00 GB the response found to the question: Does there exist a
production schedule with makespan not exceeding the given deadline of 20 units
of time and for which the amount of cash is positive at any moment of time
horizon H ? was negative.

However, in the case of a similar question assuming extension of the consid-
ered deadline to 21 units of time the admissible solution X̂1 = (x̂1,1, x̂1,2, ..., x̂1,8)
has been found in 300 seconds, see Fig. 2, where:

x̂1,1 = ({[0, 0], [0, 0], [0, 0]}, {0; 0.5; 1}),

x̂1,2 = ({[0, 0], [0, 0], [0, 0]}, {0; 0.5; 1}),

x̂1,3 = ({[2, 4], [3, 4], [4, 4]}, {0; 0.5; 1}),

x̂1,4 = ({[6, 6], [6, 6], [6, 6]}, {0; 0.5; 1}),

x̂1,5 = ({[10, 12], [10, 11], [10, 10]}, {0; 0.5; 1}),

x̂1,6 = ({[2, 4], [3, 4], [4, 4]}, {0; 0.5; 1}),

x̂1,7 = ({[10, 12], [10, 11], [10, 10]}, {0; 0.5; 1}),

x̂1,8 = ({[16, 16], [16, 16], [16, 16]}, {0; 0.5; 1}).

Case of the reverse problem. Besides the assumptions considered in the
former case, let us assume that the activity times are not known, but are linked
through following constraints:

C1 : t̂1,8+̂t̂1,3=̂6̂, C2 : t̂1,6+̂t̂1,7=̂5̂,

C3 : t̂1,1+̂t̂1,4=̂6̂∗, C4 : t̂1,2+̂t̂1,5=̂8̂,

where:

6̂ = ({[6, 8], [6, 7], [6, 6}, {0; 0.5; 1}), 5̂ = ({[3, 9], [4, 7], [5, 5}, {0; 0.5; 1}),

6̂∗ = ({[4, 8], [5, 7], [6, 6}, {0; 0.5; 1}), 8̂ = ({[4, 10], [6, 9], [8, 8]}, {0; 0.5; 1}).

The constraints are relations at̂i,j+̂bt̂k,l=̂ĉ, defined using the operators given in
the Appendix.

Five different renewable resources ro1, . . . , ro5 are used. Resource allocation
follows Table 1. Assume Dpi,j , tpi,j,k, t̂zi,j,k, Zo are defined as in the direct
problem 1 before. Given the discrete time horizon H = {0, 1, . . . , 20}, and the



Knowledge-based and CP-driven approach to production flow 89

Figure 2. Admissible solution for time horizon H ={0,1,. . . ,21}

uncertainty threshold DE ≥ 0.8 the question considered is: What activity times
T̂1 = (t̂1,1, t̂1,2, ..., t̂1,8) (if any) guarantee that projects will be completed within
the time horizon and the amount of cash will be positive at any moment of time
horizon H?

Assume that activity times T̂1 = (t̂1,1, t̂1,2, ..., t̂1,8) and moments, when ac-
tivities begin, x̂i,j , are characterized by triangle fuzzy numbers. The constraints
on the order of activities, (2), (3), (4), resource use conflicts (18), (23), and tim-
ing relations (C1, C2, C3, C4 have been implemented in OzMozart (Schulte,
Smolka and Wurtz, 1998). The first admissible solution T̂1 = (t̂1,1, t̂1,2, ..., t̂1,8),
was obtained within 30 minutes with AMD Athlon(tm)XP 2500 + 1.85 GHz,
RAM 1.00 GB. The activity times are treated as fuzzy variables and determined
by z-cuts (α = {0; 0.5; 1}):

t̂1,1 = ({[1, 3], [2, 3], [3, 3]}, {0; 0.5; 1}), t̂1,2 = ({[2, 6], [3, 5], [4, 4]}, {0; 0.5; 1}),

t̂1,3 = ({[5, 5], [5, 5], [5, 5]}, {0; 0.5; 1}), t̂1,4 = ({[3, 5], [3, 4], [3, 3]}, {0; 0.5; 1}),

t̂1,5 = ({[2, 4], [3, 4], [4, 4]}, {0; 0.5; 1}), t̂1,6 = ({[2, 4], [2, 3], [2, 2]}, {0; 0.5; 1}),

t̂1,7 = ({[1, 5], [2, 4], [3, 3]}, {0; 0.5; 1}), t̂1,8 = ({[1, 1], [1, 2], [1, 3]}, {0; 0.5; 1}).

Case of the direct problem 2. The activity times are treated as fuzzy variables
and determined by z-cuts: T̂1 = (t̂1,1, t̂1,2, ..., t̂1,8) from the previous problem.
Given the discrete time horizon H = {0, 1, . . . , 20}, the uncertainty threshold
DE ≥ 0.8, and the amount of available cash, rn1 = 8, we consider the question:
Does there exist a production schedule makespan which does not exceed the
given deadline and the amount of cash is positive at any moment of time horizon
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H? This question concerns the values X̂1 = (x̂1,1, x̂1,2, ..., x̂1,8), assuming the
moments x̂i,j are fuzzy numbers with triangle membership function.

First admissible solution X̂1 = (x̂1,1, x̂1,2, ..., x̂1,8) (see Fig. 3) was obtained

within 300 seconds, with X̂1 = (x̂1,1, x̂1,2, ..., x̂1,8):

x̂1,1 = ({[0, 0], [0, 0], [0, 0]}, {0; 0.5; 1}), x̂1,2 = ({[0, 0], [0, 0], [0, 0]}, {0; 0.5; 1})

x̂1,3 = ({[4, 4], [4, 4], [4, 4]}, {0; 0.5; 1}), x̂1,4 = ({[6, 6], [6, 6], [6, 6]}, {0; 0.5; 1}),

x̂1,5 = ({[11, 11], [11, 11], [11, 11]}, {0; 0.5; 1}),

x̂1,6 = ({[3, 5], [4, 5], [5, 5}, {0; 0.5; 1}),

x̂1,7 = ({[10, 12], [10, 11], [10, 10]}, {0; 0.5; 1}),

x̂1,8 = ({[14, 16], [15, 16], [16, 16]}, {0; 0.5; 1}).

Requirements concerning intuitively comprehensible decision making imply
the transformation of the fuzzy schedule obtained (see Fig. 3a) into the crisp
one, e.g. by providing results with the membership grade ≥ 0.5 (see Fig. 3b)).

6. Concluding remarks

The proposed approach to task allocation in a multi-product job shop provides
a framework allowing for taking into account both the direct and the reverse
problem statements. The advantage can be seen in the possibility of answering,
besides the standard questions, like: Is it possible to complete a given set of
production orders within a given deadline? also the questions like: What values
of decision variables guarantee that execution of production orders follows the
assumed values of performance indexes? The examples provided illustrate the
reference model implementation in the constraint programming environment, as
well as capabilities of its use in the course of production flow control problem
solution. Some experimental results (Bach, Muszyński and Bocewicz, 2008),
confirm feasibility and validity of the approach proposed for the scale of real-life
problems that the Small and Medium Enterprises usually face.

Moreover, besides the time-window constraints, imposed on renewable and
non-renewable resources, the approach proposed provides the framework allow-
ing for accounting for both an accurate and an uncertain specification of activity
times of robots and workers. The study can also be considered as a contribu-
tion to project-driven production flow management applied in make-to-order
manufacturing as well as for prototyping of the virtual organization structures.
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a)

b)

Figure 3. Admissible solution for time horizon H = {0,1,. . . ,20}
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Appendix A

Imprecise variables, specified by fuzzy sets and defined by a convex membership
function µi(v) can be characterized by α-cuts (Piegat, 1999), and then by pairs:

(Ai, αi), (A1)

where:
Ai = {Azi,1, Azi,2, ..., Azi,lcut

} — finite set of discretized α-cuts, furthercalled
z-cuts,

αi = {αi,1, αi,2, ..., αi,lcut
} — finite set of α-cut levels, αi,1 = 0, αi,lcut

= 1,
lcut — the number of z-cuts,
Z-cut Azi,k

— a set of values corresponding to levels αi,k : Azi,k = {v : v ∈
N, µi(v) ≥ αi,k}, represented by the following formulae in short:

Azi,k = [ai,k, bi,k]
N

. (A2)

where: ai,k, bi,k are the smallest and the highest values of the k-th z-cut,
aik, bi,k ∈ N .

The z-cut can be seen as a discretized form of the α-cut, i.e. Azi,k =
Aαi,k

⋂

N , see Fig. A1.

Figure A1. Fuzzy set v̂i specified by: a) α-cuts, b) discretized α-cuts, i.e., z-cuts

Note that in the assumed specification the distinct values are represented as
singletons.

Imprecise character of decision variables, e.g. x̂i,j ,t̂i,j , implies imprecise char-
acter of constraints, in which they appear, which, in turn, can be considered as a
consequence of implementation of assumed operations. Therefore, consider the
set of fuzzy operations: “=̂”, “<̂”, “>̂”, mapping standard algebraic operations,
such as: =, 6=, <, >, ≥, ≤. Of course, the considered fuzzy operations, linking
two fuzzy variables v̂i, v̂l have to follow the condition

E(v̂i<̂v̂l) + E(v̂i=̂v̂l) + E(v̂i>̂v̂l) = 1 (A3)

where: E(a) is the fuzzy logic value of the proposition a, E(a) ∈ [0, 1]
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In order to define fuzzy operations used for description of the deadlock avoid-
ance conditions, (18), (23), the auxiliary sets v̂L

i , v̂∗i , v̂P
i and v̂L

l , v̂∗l , v̂P
l are

defined, as well as the concept of size of fuzzy variable, Si, and the sizes of
subsets SL

i , SP
i , SL

l , SP
l , S∗ of Si.

For each pair of fuzzy variables v̂i, v̂l, defined by {(µi(v), v)} ∀v ∈ Ki, where
Ki is the domain of variable v̂i, the following sets can be distinguished: v̂L

i ,
v̂∗i , v̂P

i , v̂L
l , v̂∗l , v̂P

l . For instance, for the set v̂l the following subsets can be
determined:

v̂L
i — the set of elements v smaller than all elements from v̂l,

v̂∗i — the set of elements shared with v̂l,

v̂P
i — the set of elements v bigger than all elements from v̂l.

The sets v̂L
i , v̂∗i , v̂P

i are defined as follows:

vL
i = {(µL

i (v), v)}, ∀v ∈ Ki, (A4)

where:

µL
i (v) =

{

µi(v) − µl(v) if µi(v) ≥ µl(v), v < wmin

0 if µi(v) < µl(v) and v < wmin) or v ≥ wmin

wmin = min {Kw} , Kw = {v : v ∈ Ki, µl(v) = 1}

v∗i = {(µ∗
i (v), v)}, ∀v ∈ Ki, (A5)

where: µ∗
i (v) = min {µi(v), µl(v)} .

vP
i = {(µP

i (v), v)}, ∀v ∈ Ki, (A6)

where:

µP
i (v) =

{

µi(v) − µl(v) if µi(v) ≥ µl(v), v > wmin

0 if (µi(v) < µl(v) and v > wmin) or v ≤ wmax

wmax = max {Kw} , Kw = {v : v ∈ Ki, µl(v) = 1} .

Subsets v̂∗l , v̂P
l , corresponding to fuzzy variable v̂l are defined in the same way.

For each fuzzy variable v̂i, v̂l and the corresponding subset v̂L
i , v̂∗i , v̂P

i , v̂L
l ,

v̂∗l , v̂P
l an associated size value can be determined. For instance, the size value

Si corresponding to the fuzzy variable v̂i, and specified in terms of z-cuts can
be defined as:

Si =

lcut
∑

k=1

‖Azi,k‖ , (A7)

where: ‖Azi,k‖ — the number of elements of the set Azi,k.
In a similar way, the values SL

i , S∗
i , SP

i , SL
l , S∗

l , SP
l , corresponding to the

sets v̂L
i , v̂∗i , v̂P

i , v̂L
l , v̂∗l , v̂P

l are defined.
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In the case considered, equality S∗
i = S∗

l holds for the given v̂∗i , v̂∗l , because
the decision variables v̂i, v̂l belong to the time domain. Therefore, for the sake
of simplicity, in further considerations, sizes S∗

i , S∗
l are denoted by the same

symbol S∗.
Given fuzzy variables v̂i, v̂l, consider algebraic-like fuzzy operations following

the condition (A3). Fuzzy logic value of the proposition v̂i=̂v̂l is defined by:

E(v̂i=̂v̂l) =
2S∗

Si + Sl

, (A8)

where Si — the size of v̂i, Sl — the size of v̂l, S∗ — the size of the common
part of sets v̂i, v̂l. Fuzzy logic value of the proposition v̂i<̂v̂l is defined by:

E(v̂i<̂v̂l) =
SL

i + SP
l

Si + Sl

, (A9)

where: Si — the size of v̂i, Sl — the size of v̂l, SL
i — the size of v̂L

i , SP
l — the

size of v̂P
i .

Fuzzy logic value of the proposition v̂i>̂v̂l is defined by

E(v̂i>̂v̂l) =
SP

i + SL
l

Si + Sl

, (A10)

while the fuzzy logic value of the proposition v̂i≥̂v̂l is defined by

E(v̂i≥̂v̂l) =
2S∗ + SP

i + SL
l

Si + Sl

, (A11)

and the fuzzy logic value of the proposition v̂i≤̂v̂l is defined by

E(v̂i≤̂v̂l) =
2S∗ + SL

i + SP
l

Si + Sl

, (A12)

Formulae (A8)-(A12) allow for designing the constraints describing basic
relations among two fuzzy variables, i.e. equal, less than, greater than, less or
equal, and greater or equal.

In order to take into account other constraints, e.g. including crisp variables,
fuzzy operations, such as fuzzy addition and fuzzy subtraction have to be em-
ployed as well. The definitions of relevant operations, “+̂”, “−̂”, can be found in
Piegat (1999).


