
Control and Cybernetics

vol. 39 (2010) No. 1

Intelligent prediction of milling strategy

using neural networks∗

by

Simon Klancnik, Joze Balic and Franc Cus

University of Maribor, Faculty of Mechanical Engineering
Maribor, Slovenia

e-mail: {simon.klancnik; joze.balic; franc.cus}uni-mb.si

Abstract: This paper presents the prediction of milling tool-
path strategy using Artificial Neural Network (ANN), by taking the
predefined technological objectives into account. In the presented
case, the best possible surface quality of a machined surface was
taken as the primary technological aim. This paper shows how fea-
ture extraction from a 3D CAD model, and classification using a
self-organizing neural network, are done. The experimental results
presented in this paper suggest that the prediction of milling strat-
egy using the self-organizing neural network (SOM) is effective.
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1. Introduction

The rising complexity of industrial production and the need for higher efficiency,
better adaptability, higher quality, and lower costs have changed production
processes substantially over the last few years. Modern production science is
interdisciplinary and often employs the results of research from other fields of
science, such as: computer sciences, management, marketing and system theory
(see Buchmeister et al., 2008; Rahimic and Visekruna, 2007; Shishir, 2008; Tyagi
and Jain, 2008). The usage of artificial intelligence in production systems has
increased greatly over the last two decades because of the adequate efficiency
and availability of computers for a broader circle of researchers and industrial
users.

In the commercially available CAD/CAM systems, the problem of converting
a complex-free surface of the product into a formal building block, and later into
a technological building block, is still present. Most systems for the recognition
and connection of building blocks are based on basic geometrical solids, which
do not allow for the satisfactory cataloguing of complex-free surfaces, and their
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subsequent transformation into building blocks. CAD databases, from which
building blocks are captured and identified, do, neither, contain elements, which
would enable satisfactory recognition of the free surface as a conglomerate of
building blocks. This article introduces the design and implementation of a
system for selecting milling strategies by using a neural network (Tetickovic
and Klancnik, 2005), which does not require using a system of building blocks
when determining appropriate milling strategy, since it is replaced by a study
model of a neural network.

2. State of the art

In practice, milling strategies are chosen on the basis of intuition, and later on
the basis of experience. But experience can only be gained through years of
practice, during which we make a lot of errors and do not always select optimal
strategies. We wanted to create a model, which would be capable of choosing
appropriate processing strategies and parameters for the production of a cer-
tain product based on a 3D model, without any human interference. For this
purpose, many scientists and researchers have suggested artificial intelligence
tools for automatic definition of machining phases, and very few have been
discussed (the discussion being very limited). Among the methods of artificial
intelligence, the most widely used in CAD/CAM systems are genetic algorithms
(Colak, Kurbanoglu and Kayacan, 2005; Kovacic et al., 2005; Renner and Ekárt,
2003), fuzzy logic, neural networks (Azouzi and Guillot, 1997; Balic, 2004, 2007;
Benardos and Vosniakos, 2002; Carpenter and Maropoulos, 2000; Tsai, Chen
and Lou, 1999; Valenti, 1995), and expert systems.

The procedures of automatic milling strategy prediction from a surface CAD
model can generally be divided into two areas: feature extraction from a 3D
model (Boyer, Srikantiah and Flynn, 2002; Funkhouser et al., 2003; Hilaga et
al., 2001; Kazhdan et al., 2002, 2003; Löffler, 2000; Min, Chen and Funkhouser,
2002; Mokhtarian, Khalili and Yuen, 2001; Novotni and Klein, 2001; Quek,
Yarger and Kirbas, 2003), and feature recognition and classification (Potocnik,
2007).

3D objects can be stored in different formats, such as triangular meshes,
volumetric data, parametric or implicit equations, etc. There are different ap-
proaches for acquiring features from a 3D model.

2D methods are based on the fact that the 3D model is described with a series
of 2D images, acquired from different viewpoints. Useful data are retrieved from
these images with the help of methods used in digital image processing (Klanc-
nik, Balic and Planinsic, 2007). Different authors use different approaches,
namely: Löffler (2000) describes a method, which is based on the comparison of
shapes from images, while Min, Chen and Funkhouser (2002) introduced a 2D
procedure for the detection of 3D objects on an image.

The second group of methods for determining the features of a 3D model
is comprised of methods based on the mathematical descriptions of 3D objects,
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the so-called histogram methods. Boyer, Srikantiah and Flynn (2002) present a
procedure, which segments objects in a network of cells and then calculates the
so-called key value for each cell. Different values are used, such as: Gaussian
curvature and variation of normals. Mokhtarian, Khalili and Yuen (2001) and
Quek, Yarger and Kirbas (2003) represent the usage of differential equations
for describing 3D objects, specifically - an estimation of Gaussian and mean
curvature for describing 3D models. Then there are Kazhdan and associates
(2002, 2003), who describe an object with the help of reflexive symmetry, or
spherical harmonic representation (Funkhouser et al., 2003).

In the next group of methods for extracting features from a 3D model, there
are methods based on describing the topology of an object. Generally, the result
of describing an object is presented in the form of a graph. Exact comparison
of two graphs can be computationally very demanding. Hilaga et al. (2001)
suggested a method, which uses the so-called Reeb graph. The topology of the
object is indicated on the graph, according to the geodetic distances calculated
for all points on the surface of the body. Novotni and Klein (2001) present
a method, which belongs to a group of methods based on measuring errors
between objects.

In general, it is difficult to say, which of the here mentioned methods for
determining the features of a 3D object is better than the rest. Feature deter-
mination is a very important and interesting problem. Each of these methods
has its weaknesses but, as yet, an ideal method has still to be suggested.

After the data representing its characteristics are acquired from the 3D ob-
ject, they have to be arranged in classes, which are composed of prearranged
mutually-similar patterns. Many different methods of pattern classification can
be found in literature. In the following passages only methods more frequently
used in technical applications are mentioned.

Decision trees (Berikov and Litvinenko, 2003) are very suitable for pattern
classification. The basis of a decision tree corresponds to the definition of a
tree from graph theory. Bayesian classification (Domingos and Pazzani, 1997)
belongs to the group of probability decision functions. The use of probability
decision functions in classification has its advantages, since theory in the fields of
statistical communication and decision theory is very well developed and tested.
The next group consists of the so-called kernel methods (Cristianini and Shawe-
Taylor, 2000). These methods are encountered, in particular, in the field of
pattern classification when neural networks are used. The SVM-support vector
machine (Fradkin and Muchnik, 2006) is the most often used methodology for
pattern classification in this field.

Most of the pattern classification procedures, particularly decision trees, se-
parate the classes among themselves according to linear limit, which can be
an oversimplification for many real applications. Because of this, many real
applications use artificial neural networks for pattern classification, which yields
good results.
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3. Feature Extraction

During the classification procedure, it is extremely important to describe the
object using those of its essential characteristics, which are important for a given
assignment (Balic and Korosec, 2008). In the recognition process, patterns are
arranged in M classes, which means that from the perspective of pattern classi-
fication, the important characteristics of objects are only those that emphasize
the particularities of the individual pattern classes, so that classification into M
classes, rather than into any other number, arises. Such pattern characteristics
are called features. In the described application it is the triangle corners that
represent the pattern. In Fig. 1, a CAD model can be seen composed of trian-
gular readings of an STL file. The STL file was stored in one of the commercial
CAD packages (CATIA, SolidWorks,. . . ). Triangles describing the face of the
model are of different sizes (depending on the shape of the face).

Figure 1. CAD model example composed of STL triangles.

Data processing is done during the following phases:

• In phase one, the appropriate algorithm is used for removing faces, which
are invisible to us (Guid, 2001). The plane, from which the mesh of
points to the body is projected is defined first. The normal to this plane
represents the direction of our view.

• In the phase of segmentation (Lefebvre and Lauwers, 2004), the whole
face representing the body is partitioned into smaller sub-faces (surface
patches), and then each of these sub-faces is treated as an independent
model.

• In the plane, which defines the direction of our view a mesh of symmetrical-
ly-arranged points is created and projected to the model perpendicularly.

• In the last phase, the values obtained when projecting the network to
the model are standardized. They are written in the form of a vector
appropriate for input into our classifier.
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3.1. Removing the hidden surface of a body

Symmetrically arranged points are “shot” at the body in the application. Only
the front surface is important for describing the model. Therefore, the algorithm
appropriate for removing faces hidden from our view is used. The faces are
hidden by the body itself. They are the so-called back-faces. The normal vectors
of all faces of the body are needed for this, and they all have to be directed to
the outward form of the body or into the interior of the body. Each of the
faces is a plane polygon, in our case a triangle. The hidden-surface removal
algorithm uses the fact that the angle between the normal of the visible face
and the direction of view is smaller than 90◦, while the angle between the normal
of the hidden face and the direction of view is larger or equal to 90◦. In Fig. 2,
the direction of view is indicated by vector g. If the scalar product of the view
direction vector and the normal of the face is positive, the face is visible, while
in the opposite case it is not. An example of a CAD model drawn with the
help of our application is demonstrated in Fig. 7a. Fig. 7b represents the same
model after it has been processed using the hidden-surface removal algorithm.

Figure 2. Surface ∆ ABF is visible, because ρ1 < 90 and surface ∆CDF is
invisible, because ρ2 > 90.

3.2. Segmentation of the CAD model

During this phase, the entire surface of the CAD model has to be partitioned into
smaller sub-faces. Segmentation of the model has to be implemented according
to the sizes of the angles between the normals of the triangles representing
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the surface of the body. For each triangle (the “basic” triangle) its adjacent
triangles are searched for. These share two common corners with the “basic”
triangle. In this way each triangle can have one, two or a maximum of three
neighbours. Then the angle between the normal of the basic triangle and the
normal of its neighbours is calculated. If the calculated angle is smaller than
the threshold value, this triangle is added to the region established by the basic
triangle. If the angle is larger or equal to the threshold value, the triangle is
not added to the region and is treated when the members of the next region
are determined. Each new triangle added to the region has to be treated later
as a basic triangle and examined whether its neighbours satisfy the conditions
for being classified in this region. The algorithm is executed until each triangle
belongs to a certain region. An example of the workpiece drawn with the help
of our application can be seen in Fig. 7a. A segmented CAD model, in which
the segmentation algorithm divides the model into five regions, can be seen in
Fig. 7c. In the following procedure each of those regions obtained by the process
of segmentation is treated as an independent CAD model. The appropriate
treatment strategy is determined for each one separately.

3.3. “Scattering” of points over the model

Each region of the model is “scattered” with points in a certain raster. A
window with the size of the largest possible drawn-in rectangle is created in the
x-y plane. The symmetrically arranged points are identified in the window. The
reliability of our system is improved by increasing the number of points. This,
however, increases the amount of data representing the CAD model, and causes
more complex and slower processing. The number of points in directions x and
y is a parameter, which can be modified. During our tests 200 points in the
direction x and 200 points in the direction y were used.

Fig. 3 shows a schematic representation of points in the plane x−y, which are
projected to the body parallel to the z-axis. From the mathematical standpoint,
this means that for each point P (x, y), defined by the raster of points in the
plane x − y, the value of coordinate z is calculated, occupied in that position
by the surface of the model. Since the face-describing triangles are of different
sizes, our interest lies in the values of component Z for fixed coordinates X

and Y . Therefore, interpolation must be performed between these points. The
triangle-based interpolation was used as presented in detail in Watson and Philip
(1984).

The numbers of points and raster have to be identical for all the models in
the learning base. Configuration of the model in the direction Z is the most
influential for technological parameters. Only this information is used for input
into the neural network. Values Z, which are calculated for each point P (x, y),
are written in the form of vector SN = {x∗

1, x
∗

2, . . . , x
∗

N}. In the test example,
a raster of 200 points in direction x and 200 points in direction y were written,
yielding a vector of 40,000 elements.
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Figure 3. Schematic representation of points in the plane x − y, which are
projected on to the body parallel to the z-axis.

4. Pattern classification with the use of self organizing

maps

From among all types of artificial neural networks, the self-organizing neural
networks (Guid and Strnad, 2007) are the closest in structure and functioning
to the real biological neural networks. A self-organizing neural network consists
of K artificial neurons, which are arranged in one-dimensional, two-dimensional
or multi-dimensional lattices. Fig. 4 shows an example of a two-dimensional
self-organizing neural network composed of 3 x 3 neurons. Each neuron has two
kinds of input: outer or external input, and inner or internal input. The outer
input into the neuron is called the observation vector and is marked by x. In our
case, this observation vector is represented by a pattern (feature vector). Besides
external input, each neuron also has K-1 of internal input lines connected to the
rest of the neurons in the self-organizing neural network. These internal lines
are called lateral lines.

Self-organizing neural network was used for pattern classification by using
the nearest neighbour method. The number of necessary neurons in the lattice
depends on the number of samples in the training set of an individual class and
the size of the samples input space (domain, range). A neural network the size
of 2 x 2 neurons will suffice for small sets. Each self-organizing neural network i

is trained by a corresponding set of samples Si. If a neural network consists of K
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Figure 4. Schematic representation of a two-dimensional SOM neural network.

neurons, this means it also has K vectors of synaptic weights. An unidentified
sample is classified by first determining the winning neuron of an individual self-
organizing neural network. This is the neuron whose synaptic weights vector
most closely resembles the input vector. This is written mathematically as:
neuron ui,s is the s-th neuron from the network i, and is considered winning if:

d(x, wi,s) = min
r=0,...,K−1

d(x, wi,r) (1)

where d(x, wi,r) denotes the distance between sample x and the synaptic weights
vector of the r-th neuron in i-th neural network. As can be seen from (1), the
minimum of this distance is searched for between all the neurons in the i-th
network. For neural network i, this distance can be written as di = d(x, wi,s).
Based on distances di, the unidentified pattern x is classified by looking for the
minimal distance ds among all the distances di. This distance belongs to the
neural network s or class Cs, into which our unidentified sample is classified.
This rule is formalized as: sample x is classified in class Cs if:

ds = min
j

dj , (2)

where index j runs through all neural networks.

5. Testing the system

In the following section, the functioning, training and testing of NN will be
demonstrated on a practical example. This will be followed by a presentation of
the results. The system was trained by those chosen training models required by
the production of formally-demanding tools as mentioned by Balic and Korosec
(2002).
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5.1. Training phase

At the beginning, the representative 3D model best corresponding faces are
chosen of the products we intend to model and process. The models have
to be chosen so that they cover the most frequently-chosen shapes of faces
used in manufacturing products in a certain environment (tool manufacturing,
prototype workshop. . . ). The developed application allows for a simple addition
of new 3D models, and then performing the training of neural network according
to the added models. The representative 3D models shown on the picture were
chosen by referring to Balic and Korosec (2002).

Figure 5. Four models representing basic milling strategies.

Milling strategies for the presented models are chosen on the basis of their
adequacy for the selected technological aim. These strategies depend on the
chosen CAM system. A combination of milling strategies has to be chosen in
a manner that satisfies the chosen technological aim. The quality of surface
(middle profile roughness Ra) was chosen as a primary technological aim in the
test example. The chosen milling strategies for the presented training models
are:
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• Model NN1 representing ≫Profile finish≪ respectively ≫3D finish≪.

• Model NN2 representing Z-level finish.

• Model NN3 representing Profile finish (scallop height mode).

• Model NN4 representing a combination of Profile finishing and Z-finishing
(slope mode option). First, the flat surfaces are machined in “profile fin-
ishing” mode, respectively those surfaces which have slope angles smaller
than the boundary set angle, and then the rest of the surface is machined
in “Z finishing” mode.

These strategies, although under different names and descriptions, are con-
tained in almost all CAM systems. During the training phase, the model is
duplicated into several new training models by rotating the basic model in dif-
ferent directions. Duplication of the model and the course of training phase are
shown by the diagram in Fig. 6.

The initial and ending angles of rotation when duplicating the model, as well
as the angle of the step, can be chosen arbitrarily. In the test examples, every
basic CAD model was first rotated using a step of 3◦, in the zone from -15◦ to
+15◦, around axes X and Y . Then, after 121 rotations, the model was turned
around the Z-axis for 180◦ and another 121 rotations were performed around
axes X and Y . In this way, 242 new training models were obtained from one
basic training model. Duplication is performed for each of our four represen-
tative training models, after which, all the obtained models are processed by
a hidden-surface removal algorithm. This is followed by scattering points over
models in a certain raster. The training of SOM neural network is performed
during the last phase. An ASCII file is created for each model and in this file the
values for the synaptic weights of the trained SOM network for each individual
model are written. A two-dimensional SOM neural network of 5x5 neurons was
used. The training of the network was performed through 2000 training steps.

5.2. Automatic classification phase and pre-processing

Once the system has been trained, the milling strategy prediction can begin.
The milling strategy will be predicted according to the best possible achieved
surface quality (roughness). The functioning of the system will be demonstrated
on a test example shown in Fig. 7. It has to be stressed that neural network
has not yet seen the volume model and the face of the workpiece. This means
that this model was not a training model and has never been entered into the
neural network.

Fig. 7 shows individual phases of pre-processing (feature extraction phase) of
the test model; first the hidden surfaces were removed, after which the segmen-
tation of the model was performed. Fig. 7 shows that five regions were obtained
by using segmentation, each of which was later treated as an individual CAD
model which is scattered over by a network of raster 200 x 200 points. In this
way three vectors were obtained: SN1, SN2 and SN3, of the length of 40,000
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Figure 6. Flow chart of the system training phase.

elements and representing the features of individual regions. During the clas-
sification phase, vectors are classified by the nearest neighbour method, using
the pre-trained SOM neural network.
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Figure 7. (a) Example of CAD model drawn with the help of our application.
(b) The model after it has been processed with the hidden-surface removal
algorithm. (c) Segmented CAD model.

5.3. Results

Milling strategy prediction for known models (used in the neural network train-
ing processes) was performed in order to examine the effectiveness of neural
network training.

In Tables 1 and 2 the following symbols are used:

out1. . . . . .≫3D finish≪
out2. . . . . .≫Z-level finish≪
out3. . . . . .≫Profile finish≪ (scallop height mode)
out4. . . . . .≫Profile finishing + Z-finishing (slope mode option)≪

Table 1 presents the results of system testing obtained by using known train-
ing models and only with SOM networks, which were trained using the basic
positions of the training models (without duplication). In pattern classification
using the nearest neighbour method the smallest possible distance (Euclidean
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distance) between the sample and the winning neuron of all trained SOM net-
works is sought. The smallest numerical value for each line in Table 1 represents
the most appropriate milling strategy, as suggested by the system. The results
show that the neural networks have been efficiently trained, since an appropriate
processing strategy has been suggested for all the learning models.

Table 1. Results of milling strategy prediction for teaching models.

Milling strategy

model out1 out2 out3 out4
NN1 3.345.10−6 124.481 4.788.103 135.791
NN2 124.482 3.177.10−6 4.788.103 48.481
NN3 42.435 135.793 0.0032 124.482
NN4 135.791 48.481 4.789.103 0.0016

The appropriate milling strategy prediction has been performed for the
model in Fig. 7 during the system-testing phase. The CAD model was first
segmented (partitioned into five new models - regions) after which an appro-
priate milling strategy was determined for each of the newly obtained regions.
The smallest numerical values in Table 2 also represent the suggested milling
strategy for the test example. The system predicted the Z-level finish milling
strategy for region 1 and region 4. For regions 3 and 5, the system predicted the
3D finish milling strategy, and for region 2 predicted the Profile finish (scallop
height mode) milling strategy.

Table 2. Results for milling strategy prediction regarding the test model (Fig. 7).

Milling strategy

model out1 out2 out3 out4
Region 1 210.453 0.000043 1.579.105 0.324.104

Region 2 112.982 5.177.102 4.788.10−6 89.481
Region 3 2.442.10−5 119.923 2.733.103 126.768
Region 4 135.791 0.0016 4.789.103 48.481
Region 5 0.0023 144.564 54.545 3.654.103

6. Conclusion

System testing has shown that milling strategy can effectively be predicted with
the help of a SOM neural network. The described system provides NC program-
mers with an efficient tool, and a supplement, when working with modern CAM
systems. In the presented application, segmentation of the model was performed
in such a way that efficiency largely depends on appropriate threshold selection,
which varies from model to model. The entire system was implemented in the
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Matlab integrated development environment. The study, presented in this arti-
cle offers excellent groundwork for additional research, especially in expanding
the system for use with other processing technologies.
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