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Abstract: During the last couple of years a lot of component- or
object-oriented approaches have been presented to ease the imple-
mentation and reconfiguration of distributed control systems. Using
these frameworks, the structure of the control objects follows the
configuration of the mechanical components, and each object is in-
stantiated as often as the corresponding device occurs in a plant.
Having an object library, a control engineer will glue objects to-
gether, which means, in the context of the IEC 61499, connecting
function blocks by event and data connections. This rapid way of
implementation and reconfiguration makes also high demands on the
verification process, which has to be done after each change. This
means that the model of the plant has to be updated and the model
of the distributed controllers have to be automatically generated to
connect both in a closed loop. Both formal models should be modu-
lar to manage even large systems. Furthermore, the controller must
be able to interact with the plant not only via Boolean data but
via integer-valued data as well. Thus, the existing verification ap-
proaches have to be extended and an execution and a data process-
ing model defined. The execution model includes the function block
interface and the Execution Control Chart as well as their intercon-
nections. For the arithmetical operations of adding and subtracting
as well as the comparison of Boolean and integer-valued data it is
shown how the data processing inside the function blocks has to be
transformed to the formal model. Consequently, rules are defined for
the transformation of the execution and data processing of function
blocks with Boolean and integer-valued data. Due to the proposed
separation, the resulting data processing model is not limited to IEC
61499 Basic Function Blocks.

As formal model, Net Condition/Event modules (NCEM) and
structures are used. Modelling of the plant and the analysis of the
resulting closed-loop behaviour are presented using a small, but re-
alistic manufacturing system.
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1. Introduction

Object-oriented control implementation is a very common approach since the
1990s, meant to fulfill the requirements of modularity, reusability, flexibility, ex-
tendibility and reconfigurability of manufacturing systems (Maffezzoni, Ferrarini
and Carpanzano, 1999; Zhang et al., 1999). Consequently, there exists a clear
separation between the implementation of the control function, encapsulated
inside the objects, and the mechanism of data exchange and synchronisation
between the objects. This enables the control engineer to extend, modify and
reuse previously tested and verified control functions and to interconnect ob-
jects together instead of implementing them from scratch. To support this, the
paradigm of strict correspondence of each object to real mechatronic component
is often used and the structure of the software objects is derived from the hier-
archical structure of the mechanical components (Vyatkin, Karras and Pfeiffer,
2005). Thus, it is suitable to rapidly implement and reconfigure an even com-
plex manufacturing system using an object-oriented approach (Brennan et al.,
2008). But, nevertheless, the plant safety and the reliability of the implemented
control has to be guaranteed in any case by integrating the verification of the
closed-loop system into the control engineering practices (Vyatkin and Hanisch,
2003). Consequently, this means that also the formal models used have to sup-
port an object-oriented or modular modelling, and have to be automatically
updated if the control system or the plant model encounter changes.

The concept of object-oriented control implementation could be realised with
any kind of high level programming language, which would lead to various kinds
of data exchange and synchronisation mechanism, differing from manufacturing
system to manufacturing system. Thus, for everyday practice the Technical
Committee 65 of the International Electronical Commission launched several
standards, such as IEC 61131 and IEC 61499 to define the execution order and
the mechanism of data exchange as well as the graphical representation. Thus,
the programming language used is up to the runtime environment applied at
the control devices, and the implemented objects should have everywhere the
same behaviour. Using these definitions and the former publications about
verification of the execution of 61499 function blocks (Vyatkin and Hanisch,
2000; Stanica and Gueguen, 2003; Bonfe and Fantuzzi, 2003; Frey and Hussain,
2006; Dimitrova, Frey and Batchkova, 2007) an execution and data processing
model is defined in this contribution. Thereby, the view is extended from the
Non-Preemptive Multi-Threaded Resource execution model, which is used for
the known FBRT runtime as a reference implementation of the IEC 61499, and
is discussed in more detail in Suender et al. (2006), to a parallel one as well as
to the processing of integer-valued data.
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Due to the semantics of the used modular formal model Net Condition/Event
Systems (abbr.: NCES), defined in Pinzon et al. (2004), the modelled paral-
lel execution of function blocks incorporates also the Non-Preemptive Multi-
Threaded Resource execution model. Further, modelling and verification based
on NCE modules have been successfully applied for modelling of IEC 61499
function blocks beyond Vyatkin and Hanisch (1999), Missal, Hirsch and Hanisch
(2007), Iva-nova-Vasileva, Gerber and Hanisch (2007). Although it is often ne-
glected, correct behaviour can only be verified in a closed-loop model that incor-
porates also a model of the plant, because the safety constraints and the desired
production processes are specified by the manufacturing plant itself (Preusse
and Hanisch, 2008). The contribution, therefore, describes the modelling of such
closed-loop behaviour as well as verification of the resulting dynamic graph and
the trajectories visualisation, in order to check whether they fulfill the specifi-
cation or are a counterexample.

The interaction between the controller and the plant, as well as data pro-
cessing inside the controller, are not only based on Boolean data, but on integer-
valued as well. According to this, Heiner and Menzel (1998) proposed a binary
representation of integer-valued data and applied it by a Petri net model of a
Carry-Ripple-Adder to the verification of instruction list programs. Thereby,
each variable is modelled in a binary form, each bit being represented by two
places forming a place invariant. A similar approach is used for transforming
the function block data in- and outputs and internal variables of integer-valued
data types to basic NCE modules. All explanations of the presented NCE struc-
tures of the data processing model are written in a way to be easily adopted
to the previously defined execution model of IEC 61499 basic function blocks,
but they can be used also with any other execution model as long as the formal
model is a basic NCE module and a binary representation of integer-valued data
is chosen. Thus, it is possible to use the algorithm transformation rules at the
end of Section 5 of this contribution also for transforming controllers with a
different execution runtime than the one of the IEC 61499.

The paper is structured as follows. Section 2 describes briefly two different
testbeds, used in the work. Section 3 defines the execution model and extends
transformation rules to automatically generate formal models from function
blocks following IEC 61499. The transformation of data in- and outputs with
integer-valued data types are introduced. Based on this, the data processing
model is specified in Section 4 for arithmetic operations of adding and subtract-
ing, and for the comparison of Boolean and integer-valued data. The modelling
of the plant is described briefly in Section 5, while Section 6 concludes and
provides some directions for future studies.
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2. Subject of the study

2.1. EnAS-demonstrator

The EnAS demonstrator, shown in Fig. 1 and described in detail in Gerber
(2008a), consists of two identical plant modules, which are rotated by 180 to
each other. Thereby, the conveyors form a circuit and transport the pallets
cyclically from station to station in clockwise direction.

Figure 1. Application plant EnAS

The jack station, Fig. 2, can put workpieces from the sledge to the tin at
the pallet or vice versa. It can also open a tin and lay the cap to the pallet
or onto the tin again. To do this, the sucker of the jack station can drive to
a high and low position as well as to three different horizontal positions. The
middle position can only be reached if the jack station extends an additional
pole. There is also a low-pressure sucker mounted, which may be moved to a
lower position at the top of the workpiece or tin. By means of vacuum the cap
or the workpiece is lifted safely. Through the combination of these possibilities
several operations are realised.

The main function of the gripper station, Fig. 3, is to close the cap of all
tins, which are previously reloaded by the jack station. It is also possible to
lift a tin and hold it until the next pallet arrives. Through compressed air the
gripper is moved up and down and thereby activates the sensors gripper.up and
gripper.down.
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Figure 2. Jack Station Figure 3. Gripper Station
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Figure 4. Structural description of the sample automation system

As described in the Introduction, the composition of the software objects is
derived from the structure of the mechanical components (Fig. 4). This leads
to the definition of automation objects and intelligent actors, which have some
pre-programmed functionality. To represent the hierarchical structure of the
mechanical components, as well as the automation objects, class diagrams of
the informal modelling language UML are used. Thus, the EnAS Demonstra-
tor is composed of two stations with one gripper station, one jack station, one
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conveyor with one light barrier and two conveyors with two light barriers. The
design and verification of distributed controllers, according to IEC 61499 stan-
dard, are some of the crucial topics for industry nowadays. In order to satisfy the
initially mentioned requirements on manufacturing system, a hierarchical con-
trol approach with a multi-layered architecture was proposed by Missal, Hirsch
and Hanisch (2007). This architecture includes distributed master controllers
as a layered composition. This approach was developed by using the previously
introduced definitions of automation objects.

Each basic automation object will get a fully reusable task controller, which
controls all basic operations of this mechanical component. On the example of
the gripper station, the ECC presented at Fig. 5 realises the three actions close,
hold and deposit a tin (Gerber, Hirsch and Hanisch, 2009).

2.2. Servo Control System

Another common control example of industrial plants is a position control sys-
tem, which could be found in disc drives, automotive products, robotics and
process control. A simple position control system is shown in Fig. 6 and con-
sists of a servomotor, an optical or magnetic position sensor and a controller.
Thereby, the shaft position is detected by the position sensor and expressed
in a 8 bit Gray code, depending on the desired solution precision. This signal
will be decoded by the controller first and then subtracted from the provided
reference position. Thus, the output of the 8 bit adder in subtract mode will be
the position error, which is the input to an or logic to decide whether the motor
should be turned on or off and in which direction. A more detailed description
concerning the control and simulation of such a servo control system could be
found in Readman (2005).

8 bit binary
decoder

8 bit Gray code

+ / -

Gray code shaft

encoder

8 bit

reference
8 bit

adder
OR

logic

On / Off

direction

DC

motor

Figure 6. CE300 position control system

The challenges of the two presented control systems lie in the complexity
of the execution and the data processing. In the distributed control system
of the EnAS Demonstrator a hierarchical control structure with several mas-
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ter and task controllers is used. This leads to a complex execution structure,
but otherwise to a simple data processing with mainly Boolean values. Con-
trary to this, the servo control system has a linear execution structure from the
decoder, to the adder and finally to the logic, but a complex data processing
with integer valued data. Both control systems are implemented with function
blocks following the IEC 61499 and should be verified using a closed-loop model.
Therefore, a formal model divided into execution and data processing models
of such function blocks will be described in the following.

3. Execution model

3.1. Interface with Boolean data inputs

The transformation of the ECC, presented in Fig. 5, and the associated algo-
rithms can be done according to the rules 3 and 4 of Ivanova-Vasileva, Gerber
and Hanisch (2007). Also the graphical transformation of the function block to
a NCE module can be done according to rule 1. Only rule 2 for transformation
of the interface has to be extended. As can be seen from Fig. 7, there is only
one in- and one output event, connected with the data in- and outputs. Thus,
the data values are only sampled and updated if the relevant event occurs.

Figure 7. Task controller of the gripper station

Transformation rule 2 - Interface.

Transformation rule 2.1 - Event In- and Outputs:

The event in- and output of each function block are transformed to event
in- and outputs of an NCE module and for basic function blocks this has to be
extended by the NCE structure in Fig. 8.

It consists of places* Set and* Released and transitions* Set and * Release,
connecting them. Furthermore, transition * Release gets the switching mode
instant, which means it has to be fired before any spontaneous transition.
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Figure 8. NCE structure representing an event in- and output

For every data input associated to an event input or data output to an event
output two event arcs have to be inserted with their source at * Set and their
sinks at + toTrue and + to False where + stands for the name of the data in-
or output and is represented by the attribute Var of the With tag, which is a
child element of the Event tag.

If it is an event input, an event arc has to connect the input and the transition
* Set and if it is an event output the event arc has to connect the transition
* Release with the output.

Transformation rule 2.2 - Data In- and Outputs:
All data in- and outputs of each function block are translated to condition in-

and outputs of an NCE module. For basic function blocks, the NCE structures
shown in Fig. 9 and 10 have to extend the condition in- and outputs to model
the sampling and updating of data.

gripper_down

gripper_down_False

gripper_down_True

gripper_down_toTrue

v gripper_down_toFalsev

EventInput ECC
Algorithms

Figure 9. NCE structure representing a data input

The NCE structure consists of the places + True and + False as well as the
connecting transitions + toTrue and + toFalse.
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Figure 10. NCE structure representing a data output

The data input transformed to a condition input is connected by an inhibitor
arc to the transition named + toFalse and by a condition arc to the transition
+ toTrue.

By transforming a data output, there is also a buffer for internal value change
by any algorithm created. The names of the places are + Buffer True and
+ Buffer False and the transitions are named + Buffer toTrue and + Buffer
toFalse. The place + Buffer True is connected with an inhibitor arc to the
transition + toFalse and by a condition arc to the transition + toTrue.

According to rule 2.1, the transitions + toTrue and + toFalse are the event
sinks of the outgoing event arc from the transition * Set.

3.2. Interface with integer-valued data inputs

To proceed with the hierarchical verification of the distributed master controller
design pattern, proposed in Missal, Hirsch and Hanisch (2007), the several mas-
ter controllers have to be transformed. If associated task controllers can perform
several actions, the master controller has to coordinate the timed as well as the
causal action performing with the other master controller.

As shown in Fig. 11, the timed coordination will be done by the event in-
and output Gripper and GripperO and the causal coordination by the event
qualifier action. The transformation of the interface can be done according to
the defined rules, except for the data input action. Therefore, rule 2.2 has to
be improved to the following:

Transformation rule 2.2.1 - Integer-valued Data In- and Outputs.

For each data in- or output with an integer-valued data type, rule 2.2 is
repeated n times, where n represents the number of bits used for the data type.
After the “+”sign the string “ 2pn” is inserted. To complete the transformation
a place with the name of the data input and the capacity of the highest possible
value has to be inserted. This place is connected through flow arcs of the
arcweight 2n to the transitions named + 2pn toTrue and + 2pn toFalse and
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Figure 11. Master controller of the gripper station

lies at the post of the first and at the pre of the second transition. The result
for the data input action is shown in Fig. 12, and for a possible data output
OUT, in Fig. 13.
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(255)
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128
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ECC

Algorithms

Figure 12. NCE structure representing a data input with integer-valued data
type (8 bits)
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Figure 13. NCE structure representing a data output with integer-valued data
type (8 bits)

3.3. Interconnection between interface and ExecutionControlChart

Inside the ECC the integer-valued data in- or output can be part of a guard
condition controlling the clearing of an ECTransition. Therefore, rule 3.3 for
transforming an ECTransition of Ivanova-Vasileva, Gerber and Hanisch (2007)
has to be extended to model every possible condition, consisting of an event
input or a guard condition only, or of combination of both, Dubinin and Vyatkin
(2008).

For example, in this approach, a condition is used consisting of the event
input Gripper and a guard condition checking the value of the data input action:

Gripper ∧ (action = 0 ∨ action = 3 ∨ action = 6).

This means that this ECTransition will clear only if it receives the mentioned
event and if the data input has the value 0 OR 3 OR 6. For modelling this, the
brackets have to be solved first, by the use of the distribution law. This leads
to the disjunctive term:

Gripper ∧ action = 0 ∨ Gripper ∧ action = 3 ∨ Gripper ∧ action = 6.

Each conjunctive term of this disjunction can be modelled by transitions,
which are controlled by the combination of event, condition and inhibitor arcs.
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In our example, the ECTranstion from the ECState Start to hold is transformed
to the transitions START hold 0, START hold 1 and START hold 2, which are
controlled by an event arc from the transition Gripper Release and a condition
and an inhibitor arc from the place action with the arc weights according to
Fig. 14.

Transformation rule 3.3 - ECTransitions

By using the law of distribution and de Morgan all brackets have to be solved
to get n conjunctive terms connected through disjunctions. Each conjunctive
term has to be modelled by a transition between the § Finished place of the
previous ECState and the $ Run place of the following ECState with the name
as concatenation of the names of both ECStates and the string n.

If the first variable of a conjunctive term is an event, an event arc from the
transition * Release to the current transition has to be inserted, otherwise the
switching mode of the current transition has to be set to instant (Fig. 14). The
remaining part of the term represents a Boolean equation of internal variables
and data in- and outputs, which can be modelled with condition and inhibitor
arcs connecting the place + True and the current transition.

If there is a comparison inside a Boolean equation between a variable X with
integer-valued data type and a defined value i, then the following rules have to
be taken into account.

Transformation rule 3.3.1 – X > i:
In order that X be greater than i, a condition arc with arc weight i + 1 has

to be connected to the transition with its source at place X .

Transformation rule 3.3.2 – X ≥ i:
In order that X be greater or equal i, a condition arc with arc weight i has

to be connected to the transition with its source at place X .

Transformation rule 3.3.3 – X < i:
In order that X be lower than i, an inhibitor arc with the arc weight i has

to be connected to the transition with its source at place X .

Transformation rule 3.3.4 – X ≤ i:
In order that X be lower or equal i, an inhibitor arc with the arc weight

i + 1 has to be connected to the transition with its source at place X .

Transformation rule 3.3.5 – X = i:
In order that X be equal i, a condition arc with the arc weight i and an

inhibitor arc with the arc weight i + 1 have to be connected to the transition
with their sources at place X .

Transformation rule 3.3.6 – X 6= i:
In order that X not be i, transformation rules 3.3.1 and 3.3.3 have to be

combined. Thus, an inhibitor arc with the arc weight i has to be connected to
one transition and a condition arc with arc weight i + 1 to a second transition.
Both arcs have as their source place X . The two transitions are a part of the pre
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and post of a place with two tokens and the capacity of four. Furthermore, they
are connected via event arcs to the resulting transition with the event mode or.

Figure 14. Transformation rule 3.3 - ECTransitions

4. Data processing model

With the defined execution model of function blocks, following the IEC 61499
in the previous section and the transformation rule 4 for algorithms, defined in
Ivanova-Vasileva, Gerber and Hanisch (2007), one can get a formal model of the
presented task and master controller of the EnAS Demonstrator, because the
master controller uses the integer-valued data only in a guard condition of an
ECTransition. But if the integer-valued data is processed like it is done by the
servo control system in Fig. 15, it is not feasible, because the transformation
of data processing is limited to set, reset and negate Boolean variables. Thus,
a data processing model including all necessary operations of the servo control
system will be derived from the proven methods of informatics in the following.
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Figure 15. Control of the servo control system

Asknown fromBecker,Drechsler and Molitor (2005), Schiffmann and Schmitz
(2001), the basic operation of all four mathematical operations is the adding
of n-digit binary numbers, which have to be realized first. Instead of direct
subtraction of one value from another, the negated value of the second one and
an additional carry bit can be added. The multiplication of two values can be
done by adding the first value n times to zero, where n equals the second value,
and division is n times subtracting the second value from the first until zero and
n will be the result.

In the presented examples IN 1 and IN 2 will be used as input variables
and due to the execution model described in the previous section and derived
from the approach of Heiner and Menzel (1998), they are represented as place
invariants of the places IN1 2pi True and IN1 2pi False as well as IN2 2pi True
and IN2 2pi False. The variable to store the result is the data output OUT of
a function block and due to the defined execution model of function blocks a
buffer of OUT will be changed during the internal data processing. This is done
by forcing the transitions OUT Buffer 2pi toTrue and OUT Buffer 2pi toFalse.
By occurrence of the associated output event the actual buffer value is published.

4.1. Carry-ripple-adder

In a first sketch, the modelling of a Carry-Ripple-Adder (CR), also known as
Carry-Chain-Adder (CCR) will be presented. The CR calculates the sum OUTi

and the carry ci from the lowest to the highest digit i as follows (⊕ . . .XOR):

OUTi = IN1i ⊕ IN2i ⊕ ci−1

ci = IN1iIN2i ∨ ci−1(IN1i ⊕ IN2i).

Because of calculating bit by bit the result and the carry for the next bit, n

steps have to be fired at the formal NCE model of the CR. Each adding step is
triggered from the algorithm by an event shown grey inside Fig. 16. Thereby,
only one transition of the modelled adding step will be condition enabled to
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switch the resulting bit of the modelled output buffer OUTi to true or false.
The conditions modelled at the triggered transitions are done according to Ta-
ble 1 by condition and inhibitor arcs connected to the place IN1 2pi True or
IN2 2pi True. Inside our model the left 4 or at the first step the left 2 transi-
tions are representing the cases where the result of OUTi becomes true and the
others switch the result to false.
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Figure 16. Carry-ripple-adder
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Table 1. Carry-ripple-adder

IN2 IN1 Carry
OUTi = true 1 1 1

1 0 0
0 1 0
0 0 1

OUTi = false 0 0 0
0 1 1
1 1 0
1 0 1

ci =true 1 1 1
0 1 1
1 1 0
1 0 1

4.2. Carry-lookahead-adder

One point to cope with the state explosion problem during the reachability
calculation is the use of efficient NCE structures. To do this the linear number
of fired steps should be reduced in the following to a logarithmic one, by deriving
the NCE model of a Carry-Lookahead-Adder. The main idea of Ladner and
Fischer was to improve the calculation of the carry bits. Thereby, the attribute
generate gi,j or propagate pi,j is evaluated for each digit block [i, j] with j ≤

i < n.
First, this attribute is evaluated for the block j = i as follows.

pi,i = IN1i ⊕ IN2i

gi,i = IN1iIN2i.

Afterwards, the attributes of the blocks [i, k + 1] and [k, j] will be merged
until j = 0, by the following rules:

pi,j = pi,k+1pk,j

gi,j = gi,k+1 ∨ pi,k+1gk,j

The attribute generate is left hand stable, which means that if the most
significant block [i, j] has the attribute generate, then the block [i, 0] has it
also. So, inside the NCE model there will be only a place named † gi0, and
any transition evaluating the generate attribute to true will have a post arc to
this place. Thus, also the transitions named † 11 gii evaluating the generate
attribute at the first step by checking the digit i of variable IN1 and IN2.
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As shown for Step n in Fig. 17 the propagate attribute is modelled by the
place † pij 1 at every evaluation step. Only at the first step this place has the
capacity of two.

By merging the blocks [i, k + 1] and [k, j] the token at the place † pkj or
† gkj will condition enable only one transition, which switches the state of the
modelled attribute of the new block [i, j] to propagate or generate. During the
evaluation process, the n tokens of place † add flow directly to the place † gi0
or through place † pii to † gi0 or to † pi0.

Using this information, the resulting sum of digit i is:

OUTi = pi,i ⊕ (gi−1,0 ∨ pi−1,0c−1).

Due to the modelling of an adder the input carry c1 will be zero, which
reduces the formula above to OUTi = pi,i ⊕ gi−1,0 and the resulting truth table
to Table 2.

Table 2. Carry-lookahead-adder

OUT
i

p
i,i

g
i 1,0

0 0 0 p
i 1,0

1 1 0 p
i 1,0

g
i 1,0

p
i 1,0

0 1 1 g
i 1,0

1 0 1 g
i 1,0

According to the number of rows, the modelling as an NCE structure is done
by five different transitions with inhibitor and flow arcs from place † pii and
flow arcs from place † pi-10 or † gi-10. Only the transition representing the
second row has two inhibitor arcs to the mentioned places. This means that the
block [i − 1, 0] absorbs any carry. The names of the transitions are † ag p 2pi,
† p a 2pi, † p p 2pi, † p g 2pi and † ag g 2pi. The place † add is the post place
of all transitions. Thus, the number of tokens there will be n at the start of the
calculation and at the end again.

4.3. Subtraction

With the use of the NCE structure representing the basic operation of adding
it is easy to get an NCE structure for subtracting IN2 from IN1. This is
because the negation of the integer-valued data IN2 can be done by connecting
the condition and inhibitor arcs of the first evaluating step instead to the place

1Here and further on, the sign † is used to denote the algorithm name and the line number,

if not otherwise explicitly stated.
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IN2 2pi True to IN2 2pi False and to calculate the sum with an input carry c−1

equal to true. This will change the formula of OUTi to OUTi = pi,i ⊕ (gi−1,0 ∨

pi−1,0) and the truth table to Table 3.

Table 3. Carry-lookahead-adder: subtraction
OUT

i
p
i,i

g
i 1,0

p
i 1,0

0 0 0 0 not modelled 

1 0 0 1 p
i 1,0

!

1 0 1 0 g
i 1,0

!

1 0 1 1 not possible 

1 1 ! 0 0 p
i 1,0
g
i 1,0

0 1 ! 0 1 p
i 1,0

!

0 1 ! 1 0 g
i 1,0

!

0 1 1 1 not possible 

The first row must not be modeled, because the token has remained at the
place † add, and the sum bit OUTi is switched to false at the beginning of the
calculation. Furthermore, it will not be possible for a block [i, 0] to be generating
and propagating at the same time. As can be seen in Fig. 19, the number of
used transitions is equal to the adder model, only the destination of the event
arc is different, due to the value of OUTi. The used names are also the same.

In the formal model of the servo control system IN2 would get the value of
the decoded actual position of the shaft and IN1 has the value of the reference
position. The result X of the subtraction is the position error.

4.4. Comparison

To map the comparison to the formal NCE structures one has to check if it is
done between Boolean or integer values and also if it is done between a variable
and a static value or between two variables. A Boolean comparison, e.g. whether
the value of a variable is true or false or whether two variables are equal, can
simply be modelled by condition and inhibitor arcs. The comparison of an
integer-valued data with a static integer value can be modelled as presented
in the execution model at the ECTransitions. In this paper we introduce the
comparison between two integer-valued variables.

According to the previous description of transforming function blocks to
formal models both variables are available as binary values. Thus, the solution
will be a multistage one. At first, a decision is taken for every bit i if IN1i is
greater or smaller than IN2i according to the truth Table 4.

Next, it must be checked if the most significant decision is “greater” or
“smaller”. This will switch the result of the whole comparison accordingly. If
variables are equal, no decision can be made, and it is still undefined. Fig. 18
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shows the NCE structure model of a greater-than-comparator for integer-valued
data.

Table 4. Truth table

IN1i IN2i IN1i = IN2i IN1i < IN2i IN1i > IN2i

0 0 true undefined undefined
0 1 false true false
1 0 false false true
1 1 true undefined undefined

Byentering the comparing model, ntokens are added to the place † undefined,
because n bits have to be checked. The next fired transition † CompareBits is
the event source of the transitions † 2pi toGreater and † 2pi toLower to dis-
tinguish whether IN 1 is greater or smaller than IN 2 at bit i. Modelling of
“greater” and “smaller” is done conform to Table 4 by inhibitor and condition
arcs. Every fired transition takes one token from the place † undefined , and
only if both variable values are equal, all tokens remain there. Afterwards, the
most significant decision about greater and smaller turns the result of the com-
parator accordingly. Modelling is done by a transition at the post of the place
† 2pi Greater and † 2pi Lower and connecting them by inhibitor arcs with all
places † 2pj Greater and † 2pj Lower and j > i. Firing one of these transitions
removes the token from the preplace and stores one token at the place † Greater
or † Lower and again one at † undefined. Further, the token is removed from all
places † 2pk Greater or † 2pk Lower and k < i, and transferred to † undefined,
by triggering the post transitions with the event mode ∨. Thus, at the end,
place † Fin is marked, n tokens are at the place † undefined again and depend-
ing on the value of IN 1 and IN 2, the place † Greater or † Lower is marked
also.

Depending on the transformed algorithm, the result can be used as needed,
but it has to be made sure that all tokens are removed from the given NCE
structure model.

4.5. Derived modelling rules

Before the presented examples and the derived rules could be used to model
the data processing of IEC 61499 function blocks, a lexical analysis had to be
done for each algorithm by an a priori defined formal grammar to identify each
statement and the used variables. Due to the freedom to choose any kind of
programming language, the lexical analysis is out of the scope of this contribu-
tion, but as result a collection of statements is received. This collection could
be transformed by the following rules to a formal data processing model in
NCE structures. Further, these rules will extend rule 4 for transformation of
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algorithms of Ivanova-Vasileva, Gerber and Hanisch (2007) and will be imple-
mented in an automatic data processing modeller of IEC 61499 function blocks
with integer-valued data types. The extended rule is still split into the general
and conditional part, and rule 4.1 for the general part remains untouched to
provide the connections between the execution and data processing model. In
the conditional part one has to distinguish between Boolean and integer-valued
data, which leads to the following rule:

Transformation rule 4.2 - Conditional Part:

Each line i of the algorithm is activated by a transition named AlgName Li-
1 Li and finished by a place named AlgName Li Fin. Further, the name of each
transition and place gets a prefix consisting of the algorithm name and the line
number AlgName Ln (abbr. †), where n stands for the current line number.

First it is checked if Boolean or integer-valued data is used in the algorithm
line by checking for each variable if there exists a place named + True, where
+ is the name of the variable. If it is true, only Boolean data is used, and this
line has to be transformed according to rule 4.2.1, otherwise by 4.2.2. Both
rules have subrules to set the variables of this type to certain static values, to
perform value assignment by given equations and to compare them.

Transformation rule 4.2.1 - Boolean-valued Data:

4.2.1.1 - Reset - Set Data: If the Boolean equation only sets or resets a
Boolean data output, an event arc has to connect the transition activating
this line with the transition + Buffer toFalse to reset it, or to the transition
+ Buffer toTrue to set it.

To negate the Boolean value of the variable, an event arc has to connect the
transition + Buffer toFalse and another one + Buffer toTrue. Thereby, the
symbol + stands for the name of the data output or internal variable.

4.2.1.2 - Boolean equation: In Boolean equations the law of distributivity
and de Morgan have to be used to resolve all brackets of the term after the
equation sign to get n conjunctive terms connected by disjunctions. Each con-
junctive term is modelled by a transition with the switching type instantaneous
and named † j, where j stands for the number of the conjunctive term, and
every transition is connected by an event arc to the transition + Buffer toTrue.
Furthermore, there is a transition with the switching type spontaneous con-
nected by an event arc to the transition + Buffer toFalse, which will only fire
if none of the other transitions is condition enabled. All these transitions have
as preplace the place of the algorithm line before and as post place the place of
this algorithm line.

4.2.1.3 - Boolean comparison: A Boolean comparison checks if the value of
two terms is equal or not. Similar to the transformation of Boolean equations
all brackets of both term have to be resolved first by the law of distributivity
and de Morgan to receive n conjunctive terms connected by disjunctions.
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If the left and right term consist only of a single variable, the transformation
of an equal to comparison is done by inserting two transitions with the switching
type instantaneous and connecting one of them by condition and the other by
inhibitor arcs to the places + True, where + stands for both variable names.
A not equal to comparison of these two variables is done by inserting also two
transitions with the switching type instantaneous and connecting the first with
an inhibitor arc to the place + True of one variable and by a condition arc
to the place + True of the other variable. The second transition is connected
vice versa by signal arcs. Both transitions have as preplace the place of the
algorithm line before. At the post area of both transitions is the place † True.
Furthermore, transitions with the switching type spontaneous connecting the
place of the algorithm line before and † False have to be inserted.

If the left and right terms consist of n conjunctive terms, the transformation
is separated into the steps that model the calculation of the value of each term
and compare the values.

1. Two places †TL undefined and †TR undefined have to be inserted. These
places are connected by the transition AlgName Li-1 Li to the place of
the previous algorithm line. The transformation of the left n conjunctive
terms results in n instantaneous and one spontaneous transition. The in-
stantaneous transitions are connected by condition and inhibitor arcs to
the places + True, according to the represented conjunctive term, where
+ stands for the variable name. At the pre area of every transition place
† TL undefined is located, and at the post area the place † TL True. The
spontaneous transition has no incoming signal arc and connects the places
† TL undefined and † TL False. The transformation of the right n con-
junctive terms is done in a similar way.

2. If an equal to comparison is transformed, a transition with the places
† TL True and † TR True at the pre area and a transition with the
places † TL False and † TR False have to be inserted and connected at
the post area to the place † True. Further, a transition connected to the
places † TL True and † TR False and a transition connected to the places
† TL False and † TR True have to be inserted. Both have at the post area
the place † False.

In a not equal to comparison the post flow arcs of last four transitions are
exchanged.

Transformation rule 4.2.2 - Integer-valued Data:

4.2.2.1 - Set Integer-valued Data: To set a variable with an integer-valued
data type to a certain value n, event arcs have to connect the transition of this
algorithm line with the transition + 2pi Buffer toFalse or + 2pi Buffer toTrue
according to the binary representation of the certain value.
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4.2.1.2 - Add Integer-valued Data: For transforming the adding of two n-
bit integer-valued variables IN1 and IN2 and as result OUT, there have to be
inserted first a sequence of 2 + log2(n) places and transitions named † Stepi.
The place † Step1 is located at the post area of the transition activating this
algorithm line, and the transition † Stepj is at the pre area of the place † Fin
(j = 2 + log2(n)). Next, the place † add has to be inserted, having a pre arc
with the arc weight n to the transition activating this algorithm line and a post
arc with the same arc weight to the transition reaching the next algorithm line.
Further, the transition activating this line has event arcs to every transition
OUT Buffer 2pi toFalse.

Now, the model of the Carry-lookahead-adder has to be inserted, step by
step as described in Section 4.2.

1. For every bit i three transitions, named † 10 p ii, † 01 p ii and † 11 g i0
and having the place † add at the pre area and an incoming event arc from
the transition † Step1 have to be inserted. The first two transitions are
connected to the place † p ii, which has a capacity of two, by a post flow
arc. The third transition has a post flow arc to the place † g i0. The first
transition has a condition arc to the place IN2 2pi True and an inhibitor
arc to the place IN1 2pi True, and the second transition vice versa. The
third transition has a condition arcs to both places.
Inserting of the transition † 11 g i0 and the place † g i0 and all connecting
arcs is neglected at the most significant bit.
At the least significant bit the pre arcs of place † p ii have the arc weight 2.

2. For every bit i with

i < n ∧ i = 2∗2x∗y + 2x + z ∧

x < log2(n) ∧ y <
n

2x+1
∧ z < 2x

two transitions, named † pp ij and † pg ij, with an incoming event arc
from the transition † Stepx, as well as a place named † p ij have to be
inserted (j = 2∗2x∗y).
At the pre area of both transitions is the place † p ik. If i = k then this
place is also at the post area of the transition (k = 2∗2x∗y + 2x).
Further, the transition † pp ij has a post flow arc to the place † p ij and a
condition arc to the place † p lj. The transition † pg ij has a post flow arc
to place † p i0 already inserted at step 1 and a condition arc from place
† g lj (l=k -1).
At the most significant bit this is neglected.

3. For every bit i five transitions named † ag p 2pi, † p a 2pi, † p p 2pi,
† p g 2pi and † ag g 2pi with a post arc to the place † add and an event
arc from the transition † Stepj have to be inserted (j = 2+log2(n)). Every
transition with the prefix † p has a pre flow arc to the place † p ii and all
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other an inhibitor arc to this place. The transitions † p a 2pi, † p p 2pi
and † ag g 2pi get an event arc to the transition named OUT Buffer 2pi
toTrue.
Further, the transitions with the prefix † ag p and † p p have a pre flow
arc to the place † pj0, the transitions † p g and † ag g have a pre flow arc
to the place † gj0, and the transition † p a has two inhibitor arcs to the
places † pj0 and † gj0 (j = i − 1).

4.2.1.3 - Subtract Integer-valued Data: To transform the subtraction of one
n-bit integer-valued variable IN1 from IN2 and storing the result at OUT, point
1 and 3 of the previous adding rule have to be changed. In 1 the destination
of the condition and inhibitor arcs has to be changed from IN2 2pi True to
IN2 2pi False. In 3 the event arcs to the transition OUT Buffer 2pi toTrue
have to be changed as follows:

• † ag p 2pi new event arc
• † p p 2pi no event arc

Sum_L1_p_66

Sum_L1_p_50

Sum_L1_g_50

Sum_L1_ag_g_2p6

Sum_L1_p_p_2p6

Sum_L1_p_a_2p6 OUT to_Buffer_2p6_ True

OUT to_Buffer_2p6_ True

OUT to_Buffer_2p6_ True

Sum_L1_p_g_2p6

Sum_L1_ag_p_2p6

Figure 19. Changes for substraction in the Carry-lookahead-adder

4.2.1.4 - Compare Integer-valued Data: The transformation of the compar-
ison of two n-bit integer-valued variables IN1 and IN2 to the formal model
is done by inserting the places † CompareBits and † Fin and the connecting
transition † CompareBits. Further, the place † undefined with the capacity of n

is inserted and connected to the transition reaching this line by a pre arc with
the arc weight of n.

Now, the model of the comparator, as described in Section 3, starting with
the creation of the places † Greater and † Lower has to be inserted.

1. Two transitions named † 2pi toGreater and † 2pi toLower as well as two
places † 2pi Greater and † 2pi Lower are inserted for every bit i. At
the pre area of every transition the place † undefined is located and
additionally every transition has an incoming event arc from transition
† CompareBits. Further, transition † 2pi toGreater has a condition arc
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to the place IN1 2pi True and an inhibitor arc to IN2 2pi True. The
transition † 2pi toLower is connected, vice versa, by the signal arcs.

2. For every bit i two transitions named † 2pi Greater and † 2pi Lower are
inserted, connecting the places † 2pi Greater and † Greater and the places
† 2pi Lower and † Lower. Every transition has an incoming inhibitor arc
from all places † 2pj Greater and † 2pj Lower (j > i).
Except at the most significant bit, two transition are inserted with the
event mode ∨ having the place † 2pi Greater or † 2pi Lower at the pre
area and an incoming event arc from the transitions † 2pj Greater and
† 2pj Lower (j > i).
All transitions have at the post area the place † undefined.

5. Plant modelling

Each manufacturing system consists of several mechanical components, like con-
veyors, cylinders, valves, tanks and storages, as well as digital and analogue
sensors and actuators. The sum of all components describes the physical equip-
ment of the plant, which changes the properties of the workpieces during the
processing. To be applicable to an engineer, the formal model should provide
a modular way of modelling the plant and workpiece behaviour. Each module
encapsulates the discrete and uncontrolled behaviour of the represented me-
chanical units. This means every behaviour, feasible at each physically possible
state under each order of arbitrary assignment of the actuator state has to be
described, as shown in Hanisch, Kemper and Lueder (1999).

During the last decade a library of often used NCE modules encapsulating
the uncontrolled behaviour of several mechanical components was built up to
facilitate the manual development of the plant models as described in Vyatkin
and Hanisch (2003) by interconnecting these modules with event and condition
arcs. This composition of large models from smaller ones is obvious to any
engineer, who has ever modelled a system in a block diagram oriented way.

The structural description of the used plant is shown in Fig. 4. The gripper
station consists of two valves, two cylinders and two sensors. For each plant
part a separate timed NCE module is used and interconnected inside the gripper
module by event and condition arcs (Fig. 20).

Depending on the true and false state of the control output, the connected
pneumatic valve switches to ON or OFF. This enables the flow of compressed
air into or out of the corresponding cylinder, which extends or retracts. Doing
so, the gripper moves up and down or is closed and opened again. The up and
down movement turns the positioning sensors immediately to ON or OFF, if
the end positions are reached. Also, if a closed gripper starts moving up or
finishes its down moving, a tin is immediately taken from or deposited on the
pallet. For modelling this synchronous behaviour event arcs are used. Despite
this, a tin is only closed correctly after the gripper is closed for a certain period
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of time, which results in modelling the connection between the closing cylinder
and the tin attribute by a condition arc. Also the physical gripper can interact
in different plants or even at the same plant with different kinds of workpieces
and at our plant with three different pallets with different loading states. This
workpiece behaviour is modelled inside other NCE modules to make the gripper
module reusable.

The modelling of the uncontrolled behaviour of the jack station is done
similarly to the gripper station, but according to Fig. 4 there are four modules
of the type valve, three modules representing a cylinder and five sensor modules
used and interconnected by condition and event arcs. A model of a conveyor of
the EnAS Demonstrator is obtained by interconnecting an engine and a conveyor
module by event arcs. This is done because both have a mechanical connection,
and if the engine starts to rotate, also the conveyor starts to move. Both modules
have inside a place invariant of the places ON and OFF, because the engine could
only be switched on or off, and accordingly the conveyor. The movement of the
three pallets is modelled in a separate module and is enabled by a condition
signal from the six different conveyors. Each position sensor is connected by
event arcs to the three pallets module, which announce an event if they reach
the sensor position and if they leave it. Also the loading state of the tins on
the pallets is modelled separately, and, combined with movement modules, it
represents the appropriate workpiece behaviour. As result a hierarchical NCE
module, describing the physical plant interconnected with a material model, is
achieved.

To get the model of the plant more realistic and to cope with the state explo-
sion problem, discrete times are introduced to the cylinder and pallet module.
These discrete times describe the time relations and not the exact times between
the different plant modules and the control. Due to the not known execution
times for algorithms and the event propagation, only the input scan gets a dis-
crete time at the control model. This ensures also that the control is faster
than the plant. To illustrate a significant problem of the different temporal
behaviour of the plant and the control, consider the following example. During
the movement of the cylinder, which takes approximately 1 second, the control
unit rereads its inputs roughly every 5 ms and checks if something changed or
not. If not, it waits until the next reread. According to the semantics of timed
NCE modules and systems, the sequence of the input reread would occur 200
times without any important information for the model checking. Thus, only
discrete times with a value representing the time relations between the different
actions like cylinder and pallet movement and input reread are used. Therefore,
time delays are used in the controller models that are three to five times smaller
than the smallest time delay in the plant modules. On the other hand, this
ensures that the dynamic graph is kept as small as possible.

To model the shaft encoder of the servo control system, an 8-bit Gray code
counter is modelled as basic NCE module. The upward counting describes the
left and the downward the right movement of the shaft. As known from infor-



226 Ch. GERBER, I. IVANOVA-VASILEVA, H.-M. HANISCH

matics, the state change of bit i occurs only if the bit i−1 is true and every less
significant bit is false. This could be modelled by condition and inhibitor arcs,
and the resulting module is afterwards connected to the transformed function
blocks, as shown in Fig. 21.

6. Conclusion and future work

With the transformation rules of Ivanova-Vasileva, Gerber and Hanisch (2007)
and their extensions described in this contribution it is possible to get a formal
execution and data processing model including integer-valued data processing
and comparison for almost every basic and composite function block at the ap-
plication level as well as their interconnections. The behaviour of the presented
data processing models is derived from the proven methods of informatics, and
a further validation was done by simulation using the closed-loop model of the
servo control system.

Despite the automatic function block transformation, the plant model has
to be created up to now manually, but it is facilitated by using premodelled
timed NCE modules for actuators and sensors as well as for other plant equip-
ment. Both formal models are interconnected by condition arcs, and using
the TNCES-Workbench, implemented inside the expert system SWI-Prolog, a
dynamic graph for the closed-loop behaviour can be calculated.

For the closed-loop system of the modelled plant and the task controller of
the gripper station the result is a graph with 1347 states. At a first sketch a
visual verification by the user like it was done in Ivanova-Vasileva, Gerber and
Hanisch (2007) may not be suitable, but if the graph layout algorithm neato
(Kamada and Kawai, 1989) from the graph visualization software Graphviz is
used and important steps including transitions of the plant model are marked
with different colours, it becomes feasible for this system like presented in Gerber
(2008b).

Further, an interesting trajectory can be visualized by drawing a Gantt chart
including the marking of places. An example for the closed-loop system of the
gripper performing the action to close a tin is shown at Fig. 22. The figure
shows several groups like sensor with the up sensor draw in dark and the down
in light grey or the lower group showing the state of the corresponding actu-
ator. The group event shows the received events INIT, REQ (dark grey) and
the published event CNF (light grey). Using the group ECC, the current exe-
cution state schedule algorithm (white), waiting for completion (grey) and idle
(dark grey) of each modelled ECState can be checked. This Gantt chart can
now be compared with the provided specification as Symbolic Timing Diagrams
(Preusse and Hanisch, 2008; Schloer, Josko and Werth, 1998) or Timing Dia-
grams (Fisler, 1999; Vyatkin and Bouzon, 2008). The same can be done for the
closed-loop systems of the modeled plant with the task controller of the jack
station and with the task controller of the conveyor. Thereby, dynamic graphs
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of 2699 states for the jack station and 624 states for the conveyor are calculated
and visually verified as described above.

ECC

Action

Events

Close

Lower

Sensor

0 25 50 75 100 125 150 175 200

fired Steps

Figure 22. Visualisation of a trajectory of the gripper system

If the considered system gets even larger, at the next step of the hierarchi-
cal verification, a formal verification by temporal logic with CTL and eCTL
formulae have to be done. Therefore, rules have to be defined in future work
to transform the dynamic graph to a Kripke structure, for which verification
tools like NuSMV, Uppall and so on exist. The counterexample to the provided
formal specification can be visualised as a Gantt chart, as well, for finding the
failures faster.

For completing our work, we will fully implement the presented rules of
modelling the function block interface and the connection to the ECC inside
the expert system SWI-Prolog and the resulting TNCES-Workbench will be
made available to the public until the middle of the year 2009.
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