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Abstract: When slow and fast controlled dynamics are coupled,
the variational limit, as the ratio of time scales grows, is best de-
picted as a trajectory in a probability measures space. The effective
control is then an invariant measure on the fast state-control space.
The paper presents the form of the Pontryagin Maximum Principle
for this variational limit and examines its relation to the Maximum
Principle of the perturbed system.
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1. Introduction

This paper examines singularly perturbed optimal control problems of the fol-
lowing form:

Problem 1.1

minimize C(x(b))

subject to
dx

dt
= f(x, z, u)

ε
dz

dt
= g(x, z, u)

x(a) = x0, z(a) = z0,

(1.1)

where [a, b] is a fixed time interval. The state variables x ∈ Rn and z ∈ Rm

belong to the n-dimensional and, respectively, the m-dimensional Euclidean
spaces; the control variable u is in a subset U of Rd; the coefficient ε > 0 is
fixed and thought of as a small parameter.
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The letter C in the formulation of (1.1) stands for “cost”. It is clear that

an integral cost, say
∫ b

a
c(x, z, u)dt, can be incorporated within the form (1.1)

by adding another coordinate to the x-state. Notice, however, that the cost
depends only on the final x-state; the reason is that for ε small the z-state
can be steered from one state to another on small time intervals, hence with
negligible cost. Also, notice that Problem 1.1 is with free end condition. We
allude to the reason for this after stating the convergence result.

The optimal (i.e., infimal) possible cost for Problem 1.1 is denoted by val(ε).

We are interested in the case where the parameter ε in (1.1) is small and, in
fact, we examine the limit characteristics of the system as ε → 0. Small ε signi-
fies the state variable z as the “fast state”, while x is the “slow state”. Indeed,
the pace in which the dynamics of the z coordinate evolves is ε−1 times the rate
at which x evolves. Such singularly perturbed problems arise naturally in many
applications, see the classical monograph Kokotovic, Khalil and O’Reilly (1986)
and references therein.

An approach to decipher what is the limit behavior as ε → 0 of (1.1) is to
produce a “variational limit” or “nominal”, problem; namely, an optimal control
system whose optimal value is the limit as ε → 0 of val(ε), and, if possible, the
solution of the limit problem induces, for ε small, approximate solutions to (1.1).

A classical construction of a nominal limit system to the singularly per-
turbed equation (1.1) is by setting the parameter ε in (1.1) to be equal to 0;
this approach was initiated and developed by Petar Kokotovic with students
and colleagues; it is an adaptation to the control environment of the Tikhonov
method in ordinary differential equations. The Kokotovic method has become a
key tool in the theory, and has proven very effective in a variety of concrete ap-
plications; see Kokotovic, Khalil and O’Reilly (1986). See also Dontchev (1983)
for the perturbation analysis of singularly perturbed optimal control systems.

However, the Kokotovic approach does not cover some interesting problems.
Indeed, the approach is based on detecting a manifold of points (x, z, u) that are
stationary and asymptotically stable with respect to the fast dynamics, namely,
the z-equation in (1.1) when x is held fixed. There are, however, singularly
perturbed optimal control problems, for which such a manifold does not exist,
or may exist but it does not produce the limit optimal values of (1.1). Indeed,
Leizarowitz (2002 a,b) showed that the situation where the Kokotovic approach
cannot be applied is, in some sense, generic. In some cases, e.g. when z is
a scalar, the Kokotovic approach is guaranteed to be valid, see Artstein and
Leizarowitz (2002).

The problems that do not fall under the Kokotovic approach are charac-
terized by the rapid oscillations exhibited on the fast time scale by the near
optimal trajectories of (1.1) for small ε. Suggestions of how to cope with such
a situation were raised back in the 1980s, see Dontchev and Veliov (1983, 1985)
and Gaitsgory (1986, 1991, 1992). The analysis in the present paper makes
use of a nominal system that captures the limit distributions of these oscilla-
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tions. Such a theory within rapidly oscillating parameters was developed by the
author, see Artstein (1993) and references therein; the corresponding general-
ization of Tikhonov’s theory was presented in Artstein and Vigodner (1996), see
also Artstein (2002a) and its references; the control theory framework, namely
generalizing Kokotovic’s theory, was initiated in Vigodner (1997) and in Art-
stein and Gaitsgory (1997). In Section 2 we give a telegraphic introduction to
this theory, while displaying the setting for the present paper.

The main results of this paper examine the form that the Pontryagin max-
imum principle takes when optimal solutions are made of probability measure-
valued maps, and the relations between the Pontryagin principle of the limit
problem with the corresponding necessary conditions of the singularly perturbed
system (1.1).

A feature of the control system that serves as the variational limit of the
singularly perturbed system is that the control set depends on the state. Control
theory handles this case by addressing the differential inclusion induced by the
controls. We display the resulting maximum principle in Section 3. We also
display, in Section 4, the maximum principle for the limit equation under an
assumption that the effective control is not state dependent (many systems
that do not satisfy this assumption can be transformed into ones that do). The
relation with the maximum principle for the perturbed system is analyzed in
Section 5. We argue, in particular, that the adjoint equations for the perturbed
system are stiff and in general do not converge to the corresponding equations
of the variational limit; we pinpoint a condition that implies the convergence;
we also include an observation by Asen Dontchev concerning the convergence
within the Kokotovic framework. An illustrative example demonstrating, in
particular, how the dependence of the effective control on the slow state can be
eliminated, is given in the closing section.

2. The variational limit

The ingredients of the variational limit problem are briefly displayed in this
section, along with some technical assumptions that will be used throughout.
We start up front with the description of the optimal control problem that we
suggest to be the limit of (1.1) as ε → 0. Only then the technical conditions
under which the scheme works, and the main consequence of the construction,
are displayed.

Recall some useful notions: A probability measure µ on a separable metric
space M is a countably additive function from the Borel subsets of M into
[0, 1] with µ(M) = 1. The distribution of a mapping h(t) : [t1, t2] → M is
the probability measure µ(h(·); t1, t2) which assigns to a Borel set B of M the
value µ(h(·); t1, t2)(B) = (t2 − t1)

−1λ({t : h(t) ∈ B}) where λ is the Lebesgue
measure; namely, µ(h(·); t1, t2)(B) is the proportion of time within the interval
in which h(·) takes values in B. The weak convergence of measures makes
the family of probability measures on M into a metric space that we denote
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by P(M); a specific metric, which induces the convergence, is the Prohorov
metric ρ(·, ·), namely, ρ(µ, ν) is the smallest η such that µ(B) ≤ ν(Bη) + η

and ν(B) ≤ µ(Bη) + η where Bη is the η-neighborhood of B in M . Let h(t) :
[t1,∞) → M ; if the probability measures µ(h(·); t1, t2) converge as t2 → ∞,
in the weak convergence of measures, to µ0, then the latter is called the limit

occupational measure induced by h(·).
Consider now a control system

dz

ds
= g(z, u), (2.1)

defined for s ∈ [0,∞), with z ∈ Rm and u ∈ U . An admissible dynamics of
(2.1) is a pair (z(·), u(·)) of functions from an infinite time interval [s1,∞) into
Rm × U , that solves the equation, namely, such that dz

ds
(s) = g(z(s), u(s)) for

almost every s ∈ [s1,∞).

Definition 2.1 A probability measure µ0 on Rm × U is called an invariant

measure (or a limit occupational measure) of the control system (2.1), if it is
the limit in P(Rm × U), as s2 → ∞, of µ((z(·), u(·)); s1, s2), where (z(·), u(·))
is an admissible dynamics of (2.1). We say then that (z(·), u(·)) generates µ0.

Thus, invariant measures of (2.1) are limit occupational measures of admis-
sible trajectories. As mentioned, the notion emerged from the studies reported
in Artstein (1993, 2002a,b), Artstein and Gaitsgory (1997), Artstein and Vigod-
ner (1996), and Vigodner (1997), see references therein. Such measures in the
control theory framework have been characterized in Gaitsgory (2004), Gaits-
gory and Leizarowitz (1999). The justification for the terminology “invariant
measure” is that a limit occupational measure is, indeed, an invariant measure
in a control-free dynamics; in the control setting a limit occupational measure
is a projection of an invariant measure of the flow when the dynamics induced
by (2.1) is lifted to the skew product dynamics of shifts; see Artstein (2004b).
The invariance, indeed, plays a role in the analysis of such systems.

The following notation is standard; we display it since it plays a key role in
the presentation.

Notation When h(m) : M → V is a mapping from a metric space M into
a vector space V , and when µ is probability measure on M , we write h(µ)
for

∫
M

h(m)µ(dm), namely, h(µ) is the average of h(·) with respect to µ. For
instance, if µ is a probability measure over Rm × U then

f(x, µ) =

∫
Rm

×U

f(x, z, u)µ(dz × du). (2.2)

Such averages play a prime role in our analysis.
Now we have all the ingredients needed to formulate the variational control

limit, as ε → 0, of (1.1). Following the formulation we list some technical
conditions and the main consequence of the construction.

Consider the control system derived from (1.1) and given as follows.
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Problem 2.1

minimize C(x(b))

subject to
dx

dt
= f(x, µ)

x(a) = x0

µ ∈ M(x),

(2.3)

with a state variable x ∈ Rn and where for any given x the control set M(x)
consists of the invariant measures (i.e., limit occupational measures) of the sys-
tem

dz

ds
= g(x, z, u) (2.4)

with x fixed.

Notice that an admissible trajectory of (2.3) has the form (x(·), µ(·)), namely,
its second coordinate is measure-valued. We denote the optimal cost of Problem
2.1 by val(0).

Now we display the conditions under which our results are derived. In order
not to blur the main message no attempt is done here to identify the most
general conditions (some conditions can be easily lifted, relaxation of other,
however, is a challenge). We say that a state z1 can be steered (in regard to
a given control problem) to z2 within a time period [0, τ0] if for some feasible
control and initial condition z(0) = z1 the trajectory satisfies z(τ) = z2 for some
τ ≤ τ0.

Assumption 2.1
1. The function f(x, z, u) is continuously differentiable in the x-variable; both

f(x, z, u) and g(x, z, u) are Lipschitz in (x, z) and continuous in u.
2. The constraint set U is compact.
3. The cost function C(x) is continuously differentiable.
4. Boundedness: There exist δ0 > 0 and ε0 > 0, and there exists a bounded

set B in Rn × Rm such that whenever (xε(·), zε(·), uε(·)) is admissible
(namely, solve (1.1)) for ε ≤ ε0 and the cost it induces, say cε, satisfies
|cε − val(ε)| ≤ δ0, then (xε(t), zε(t)) ∈ B for all t.

5. Controllability: Within the set B specified in the previous assumption,
the fast system is totally controllable uniformly in x, namely, there exists
a bound τ0 such that whenever (x, z1) and (x, z2) are in B, the state z1

can be steered to z2 within the time interval [0, τ0], this with respect to
the fast equation with x fixed.

6. Lipschitz Continuity: Denote by MB(x) those invariant measures in M(x)
that are generated by an admissible trajectory (x, z(·), u(·)) of (2.4) with
x fixed, that is included in the set B. Let F (x) = {f(x, µ) : µ ∈ MB(x)}.
Then, F (x) is a Lipschitz set-valued map with respect to the Hausdorff
metric.
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Remark 2.1 It is easy to see that the controllability assumption, item (5) of
Assumption 2.4, implies that for any x ∈ B the set MB(x) defined in item (6)
of the assumption is convex and compact in the space of probability measures;
hence the set F (x) is compact and convex in Rn.

In order to verify that Problem 2.1 is a variational limit as ε → 0 for Problem
1.1, we need to understand in what sense admissible trajectories
(xε(·), zε(·), uε(·)) of (1.1) converge to an admissible trajectory (x0(·), µ0(·)) of
(2.3). The convergence we consider for the x-component is the uniform conver-
gence of functions on [a, b]. The convergence in the measure-valued coordinates
is taken in the sense of Young measures (similar to the convergence in the sense
of relaxed controls). Namely, (zj(·), uj(·)) converge to µ(·) if for every continu-

ous and bounded function h(z, u) : Rm×U → R the integrals
∫ b

a
h(zj(t), uj(t))dt

converge to
∫ b

a
h(z, µ)dt (for elaborations see, e.g., Artstein, 1993, 2002a).

We are ready to state the key result on the desired variational limit. The fol-
lowing standard terminology is used: The family of feasible trajectories
(xε(·), zε(·), uε(·)) of (1.1) is near optimal if the costs they generate, say cε,
satisfy cε − val(ε) → 0 as ε → 0.

Theorem 2.1 Under Assumption 2.4 the optimal values val(ε) converge to
val(0) as ε → 0. Furthermore, any sequence of near optimal feasible trajectories
(xεj

(·), zεj
(·), uεj

(·)) of (1.1), with εj → 0, has a subsequence which converges
to a feasible optimal trajectory (x0(·), µ0(·)) of (2.3), and for any feasible opti-
mal trajectory (x0(·), µ0(·)) of (2.3) there are feasible near optimal trajectories
(xε(·), zε(·), uε(·)) of (1.1) that converge to it.

Proof. Variants of the result, under similar conditions, were established in var-
ious places; see, e.g., Artstein and Gaitsgory (2000) and Artstein (2004a). We
therefore present here only a telegraphic overview. From the assumptions we
can deduce that the trajectories (xεj

(t), zεj
(t), uεj

(t)) are in the compact set
B × U . Compactness of the convergence in the sense of Young measures im-
plies that a convergence of a subsequence exists, and boundedness of f(·, ·, ·) on
B × U implies that the x-coordinate converges uniformly. Denote the limit by
(x0(·), µ0(·)). On a small t-interval the slow variable hardly changes, hence,
when ε is small, the dynamics of (1.1) on a small interval is very close to
the dynamics of (2.4) with a fixed x; in the limit, as ε → ∞, the measure
µ0(t) is, for almost every t, an invariant measure in M(x0(t)) and, clearly, be-
longs to MB(x0(t)). The definition of convergence and the continuity of the
cost function imply that the cost induced by the limit measure is the limit of
the respective costs. This establishes the first claimed convergence and that
val(0) ≤ lim inf val(ε). To verify the converse inequality and the second approx-
imation claim consider an admissible trajectory (x0(·), µ0(·)) of (2.3). By the
definition of invariant measures the measure µ0(t), for a given t, can be approx-
imated by the distribution of an admissible trajectory of the fast equation (2.4)
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with x = x0(t). For ε small this trajectory can be considered on a small interval
around t, on which the slow variable x changes only a little. The Lipschitz
condition on F (·) allows, with the aid of the total controllability assumption,
to compose out of these local approximations an approximation on the entire
interval [a, b] of the Young measure µ0(·). The definition of convergence and
the continuity of the cost function imply then that the cost induced by the ap-
proximation is close to the one induced by the measure-valued control. This
implies both the second approximation claim and that val(0) ≥ lim sup val(ε);
this completes the proof.

Remark 2.2 The condition that F (x) is a Lipschitz set-valued map cannot be
removed or, say, replaced by continuity. A nice counterexample was given in
Alvarez and Bardi (2009), see a variant of it in Artstein (2004a).

Remark 2.3 The proof of Theorem 2.1 indicates how to employ an optimal
solution of the variational limit Problem 2.1 in order to generate near optimal
solutions to the perturbed systems (1.1). We refer to such possible constructions
in the sequel, in the context of the necessary conditions.

Remark 2.4 From the proof of Theorem 2.1 it is clear why we do not intro-
duce an end condition into Problem 1.1. Indeed, with an end condition only
the convergence in the first part of the proof is justified; in particular, the ap-
proximation of an optimal solution to the limit problem may not satisfy the end
condition.

3. Pontryagin principle for the limit problem

In this section we display the differential inclusions version of the Pontryagin
Maximum Principle for Problem 2.1. The classical version under, however,
an additional condition is displayed in the next section. Relations with the
corresponding principle of the perturbed system are explored in Section 5.

The reason we resort to the differential inclusions version of the Pontryagin
maximum principle is that the control set in Problem 2.1 is inherently state-
dependent. To this end consider the system

Problem 3.1

minimize C(x(b))

subject to
dx

dt
∈ F (x)

x(a) = x0,

(3.1)

with F (x) given in item 6 of Assumption 2.1.

With the formulation of the previous control problem and the framework
of the maximum principle for differential inclusions, a Pontryagin maximum
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principle for the variational limit Problem 2.1 can be formulated. The differ-
ential inclusion in (3.1) coincides with the one suggested by Gaitsgory (1992)
and used by Gaitsgory and Grammel (1997) to produce a Pontryagin Principle
for such systems. In our case the parameterization of the right hand side of the
inclusion by the invariant measures will play a major role. In regard to a maxi-
mum principle for differential inclusions see Clarke (2005a,b) for an overview of
classical and for the recent developments of the theory; see also Vinter (2000)
for Hamiltonian formulations. Our assumptions, however, allow us to resort to
more classical results as follows; recall that these assumptions were introduced
in order to assure that Problem 2.1 is indeed a variational limit of Problem 1.1.
Here and throughout an expression, e.g. pv, denotes the scalar product of p and
v and ∂ denotes the generalized gradient, possibly the gradient if it exists.

Theorem 3.1 Under Assumption 2.1 let (x∗(·), µ∗(·)) be an optimal trajectory
for Problem 2.1. Then an n-dimensional vector function p(·) exists, that is
absolutely continuous and satisfies almost everywhere the inclusions

d

dt
p(t) ∈ −∂xH(x∗(t), p(t))

d

dt
x∗(t) ∈ ∂pH(x∗(t), p(t))

(3.1)

where the Hamiltonian is defined by

H(x, p) = max{pv : v ∈ F (x)}; (3.2)

furthermore, the transversality condition −p(b) = λ∂C(x∗(b)) is satisfied for
some λ ≥ 0.

Proof. In terms of an optimal trajectory x∗(·) of Problem 3.1 the result follows
from Loewen and Vinter (1987) together with the derivations on differential
inclusions displayed in Clarke (1983, Chapter 3). Indeed, it is easy to see that
our assumptions imply that the conditions for the Pontryagin principle as stated
in Loewen and Vinter (1987) (see also Vinter, 2000, Chapter 7) are valid within
the framework of Problem 3.1. The identification of an optimal solution of
Problem 3.1 with a solution of the form (x∗(·), µ∗(·)) of Problem 2.1, namely,
the translation of v ∈ F (x) into f(x, µ) for µ ∈ M(x), follows from standard,
classical, selection arguments. This completes the proof.

The second inclusion in (3.1) amounts to

f(x∗(t), µ∗(t)) ∈ ∂pH(x∗(t), p(t)), (3.3)

namely, reflecting the maximum principle within the necessary condition. This
can be characterized in terms of optimization of a semi-infinite control problem.
We provide such a characterization in Proposition 4.1 below, in the context of
the Pontryagin principle under an additional condition.



Pontryagin maximum principle for coupled slow and fast systems 1011

4. Pontryagin principle for the limit problem in a special

case

We present in this section the Pontryagin maximum principle for Problem 2.1
under the following additional condition.

Assumption 4.1 The control sets MB(x) in Problem 2.3 do not vary with x;
we denote the common set by MB.

Remark 4.1 The previous assumption need not be satisfied in general. It is
satisfied, for instance, when the function g(x, z, u) in (1.1) does not depend on x

(this situation is, in fact, frequently examined in the literature). In many cases,
however, it is possible to re-parameterize the optimal control problem and make
the control set independent of the state in a way that the Pontryagin principle
for state-independent control sets can be applied. One such example, within the
context of the present paper, is displayed in the closing section.

Theorem 4.1 Under Assumptions 2.1 and 4.1 let (x∗(·), µ∗(·)) be an optimal
trajectory for Problem 2.1. Then, an n-vector function p(·) exists satisfying the
equation

d

dt
p(t) = −p(t)Dxf(x∗(t), µ∗(t)) (4.1)

and such that for almost every t the expression

p(t)f(x∗(t), µ) ≤ p(t)f(x∗(t), µ∗(t)) (4.2)

is satisfied for all invariant measures µ ∈ MB, and the transversality condi-
tion −p(b) = λ∂C(x∗(b)) is satisfied for some λ ≥ 0 (here Dx is the Jacobian
operator and ∂ is the gradient).

Proof. The conditions fit the standard Pontryagin maximum principle, see Clarke
(2005b).

As in the standard manner the Pontryagin principle is applied, the maximiza-
tion in (4.2) (which corresponds to (3.3)) may be employed in the computations.
It is of interest then to formulate it in terms of the original data (rather than
in terms of invariant measures), as follows:

Proposition 4.1 Within the statement of Theorem 4.1, suppose that µ∗(t) is
generated by an admissible trajectory (x∗(t), z(·), v(·)) of (2.4); then (z(·), v(·))
is a solution to the optimal control problem

maximize lim
S→∞

1

S

∫ S

0

p(t)f(x∗(t), z, u)ds (4.3)
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subject to (x∗(t), z(s), u(s)) being a feasible trajectory of

dz

ds
= g(x∗(t), z, u) (4.4)

with (x∗(t), z(s)) (here x∗(t) is fixed) constrained to belong to B. Conversely, if
(z(·), u(·)) solves (4.3)-(4.4) and generates a measure µ∗ then the latter satisfies
(4.2).

Proof. The necessity follows easily from the fact that if a measure µ is the limit
occupational measure of a mapping (z(·), u(·)) : [t1,∞) → Rm × U then for a
fixed p the weak convergence of measures implies that

pf(x, µ) = lim
S→∞

1

S

∫ S

0

pf(x, z(s), u(s))ds. (4.5)

Conversely, suppose that an admissible pair (z(·), u(·)) that solves (4.3)-(4.4)
generates µ. If µ does not satisfy (4.2) then a measure that establishes the
contradiction to (4.2) is generated by an admissible pair that contradicts the
assumption that (z(·), u(·)) solves (4.3). This completes the proof.

Discussion 4.1 The preceding result allows for employing the maximum prin-
ciple in the generation of near optimal solutions to the perturbed problem with
small ε, mimicking the manner the Pontryagin maximum principle is employed
in computational schemes. Indeed, the end condition p(b) for the adjoint equa-
tion (4.1) can, in many cases, be identified via the transversality condition (e.g.,
when there is only an integral cost that is augmented into the slow state by
an additional coordinate, say, x1, then the support vector of a global minimum
would be p(b) = (−1, 0, . . . , 0)). Then one solves (4.3)-(4.4) for the end point
p(b). The solution (z(·), u(·)) may not generate an invariant measure, but with
the aid of the controllability guaranteed in Assumption 2.1, a solution that
generates an invariant measure can be constructed. Then, in successive steps,
backward values, say x((b − ∆) and p(b − ∆) can be computed when plugging
the invariant measure into the differential equations in (2.3) and (4.1) respec-
tively, and an estimate for the invariant measure at t − ∆ can be constructed,
etc. The combination of slow solution and the computed fast solution is an
approximation to a candidate optimal solution for ε small.

5. Pontryagin principle for the perturbed problem

We relate in this section the maximum principle of the variational limit as
displayed in Theorem 4.1, to the maximum principle of the perturbed system
(1.1). The latter reads as follows.

Theorem 5.1 In addition to Assumption 2.1 suppose that both f(x, z, u) and
g(x, z, u) are continuously differentiable in (x, z). Let (x∗

ε(·), z
∗

ε (·), u∗

ε(·)) be an
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optimal trajectory of Problem 1.1. Then an (n + m)-vector function (p(·), q(·))
exists, satisfying the equations

d

dt
p(t) = −p(t)Dxf(x∗

ε(t), z
∗

ε (t), u∗

ε(t)) − q(t)
1

ε
Dxg(x∗

ε(t), z
∗

ε (t), u∗

ε(t)

d

dt
q(t) = −p(t)Dzf(x∗

ε(t), z
∗

ε(t), u∗

ε(t)) − q(t)
1

ε
Dzg(x∗

ε(t), z
∗

ε (t), u∗

ε(t))

(5.1)

and such that for almost every t the control u∗

ε(t) maximizes the expression

p(t)f(x∗

ε(t), z
∗

ε (t), u) + q(t)
1

ε
g(x∗

ε(t), z
∗

ε(t), u) (5.2)

for all control elements u ∈ U ; in addition, the transversality condition −p(b) =
λ∂C(x∗(b)) is satisfied for some λ ≥ 0.

Proof. The conditions fit the standard smooth version of the Pontryagin maxi-
mum principle; the displayed condition is the form it takes in our case.

A simple inspection reveals that the Pontryagin principle for the perturbed
equation with small ε utilizes a stiff system that is hard to examine and to
compute. We may, however, inquire about the limit as ε → 0 of these equations.
Since the q-coordinates are dual variables for the fast state variable and since
the latter may exhibit rapid oscillations, it is unlikely that a meaningful limit
of these variables can be detected. A limit of the slow-state adjoint variables
exists under some conditions as follows.

Theorem 5.2 Within the setting of Theorem 5.1 let (x∗

ε(·), z
∗

ε (·), u∗

ε(·)) be opti-
mal solutions to Problem 1.1 that converge as ε → 0 to a solution (x∗(·), µ∗(·))
of Problem 2.1. Let (pε(·), qε(·)) and p0(·) be the respective solutions of (5.1)-
(5.2) and (4.1)-(4.2) with a common end condition p(b). Suppose further that
the expression qε(t)

1
ε
Dxg(x∗

ε(t), z
∗

ε (t), u∗

ε(t)) converges weakly (say in the space
L2) to zero. Then, pε(t) converges uniformly on [a, b] to p0(t).

Proof. The uniform convergence of x∗

ε(·) to x∗(·) together with the convergence
in the sense of Young measures of (z∗ε(·), u∗

ε(·)) to µ∗(·) and the continuity of
Dxf(x, z, u) in x imply that the time-varying linear coefficient of the p-equation
in (5.1), namely, Dxf(x∗

ε(·), z
∗

ε (·), u∗

ε(·)), converges weakly to the corresponding
coefficient on (4.1), namely Dxf(x∗(·), µ∗(·)). With the additional assumption
of the weak convergence of the inhomogeneous term to zero, the claim follows
from a standard continuous dependence argument.

Remark 5.1 It is not clear what general conditions would imply the weak
convergence to zero of qε(t)

1
ε
Dxg(x∗

ε(t), z
∗

ε (t), u∗

ε(t)). A simple example, that
was already mentioned earlier in connection with the Pontryagin principle (see
Remark 4.1), is that g(x, z, u) is independent of x.
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Remark 5.2 Asen Dontchev has pointed out to me that when the Kokotovic
framework is applicable, the convergence of the slow adjoint variable is guaran-
teed, however, to a limit different than the one proposed in this paper. Suppose
we know that the optimal solutions (x∗

ε(t), z
∗

ε (t), u∗

ε(t)) of (1.1) converge uni-
formly to a solution (x∗

0(t), z
∗

0(t), u∗

0(t)) of the Kokotovic limit problem (namely,
the differential-algebraic system obtained when ε = 0 is used in (1.1)); further,
we suppose that u∗

0(t) is such that the fast dynamics in (1.1) when x∗

0(t) and
u∗

0(t) are frozen, is exponentially stable (the asymptotic stability of this fast dy-
namics is a pivotal property needed in the Tikhonov-Kokotovic scheme). This is
reflected in the property that Dzg(x∗

0(t), z
∗

0(t), u∗

0(t)) is a stable matrix (i.e., all
its eigenvalues have negative real part). We apply now to the necessary condi-
tions (5.1) a change of variables εr(t) = q(t) and τ = −t (the latter means that
we solve the equation starting from the end point). Then, (5.1) is transformed
into

d

dτ
p(τ) = p(τ)Dxf(x∗

ε(τ), z∗ε (τ), u∗

ε(τ)) + r(τ)Dxg(x∗

ε(τ), z∗ε (τ), u∗

ε(τ))

ε
d

dτ
r(τ) = p(τ)Dzf(x∗

ε(τ), z∗ε (τ), u∗

ε(τ)) + r(τ)Dzg(x∗

ε(τ), z∗ε (τ), u∗

ε(τ)).

(5.3)
The aforementioned stability of the coefficients implies that if the data
(x∗

ε(τ), z∗ε (τ), u∗

ε(τ)) in (5.3) are fixed, the system becomes a classical Tikhonov
system. In particular, with the fixed data and fixing the initial condition r(b),
the solutions converge as ε → 0 to the solution of the corresponding differential-
algebraic equation (see Dontchev, 1983, Lemma 3.1, for explicit estimates for the
convergence rate). The uniform convergence of the data to (x∗

0(τ), z∗0 (τ), u∗

0(τ))
together with the assumptions employed in Theorem 5.1 imply that the corre-
sponding solutions converge to the solution of (5.3) when the data are replaced
by (x∗

0(τ), z∗0 (τ), u∗

0(τ)), namely, the system

d

dτ
p(τ) = p(τ)Dxf(x∗

0(τ), z∗0 (τ), u∗

0(τ)) + r(τ)Dxg(x∗

0(τ), z∗0(τ), u∗

0(τ))

ε
d

dτ
r(τ) = p(τ)Dzf(x∗

0(τ), z∗0(τ), u∗

0(τ)) + r(τ)Dzg(x∗

0(τ), z∗0 (τ), u∗

0(τ)).

(5.4)
Here the stationary limit, say r0(τ), of the solutions rε(τ), is

r0(τ) = −p(τ)Dzf(x∗

0(τ), z∗0 (τ), u∗

0(τ))(Dzg(x∗

0(τ), z∗0(τ), u∗

0(τ)))−1. (5.5)

Plugging the r0(τ) in the p-equation of (5.4) gives rise to an equation for the
limit of the slow adjoint variable, namely,

d

dτ
p(τ) = p(τ) (Dxf(x∗

0(τ), z∗0 (τ), u∗

0(τ))+

Dzf(x∗

0(τ), z∗0 (τ), u∗

0(τ))(Dzg(x∗

0(τ), z∗0 (τ), u∗

0(τ)))−1).
(5.6)
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Notice that this limit equation differs from equation (4.1) exhibited in Theorem
4.1, which governs the adjoint variable of our variational limit; indeed, (4.1) is
developed within a different framework. Also note that since rε(·) converges to a
finite value, the fast adjoint variable q(t) in the Kokotovic framework converges
to zero.

6. An illustrative example

The purpose of this section is to demonstrate the form the abstract conditions
take on a concrete example and examine the power of working with the limit.
We also demonstrate the possibility to re-parameterize the system in order to
arrive at a state independent control set. The example is a variant of an example
previously suggested by Veliov (1996) and examined in Artstein (2002b).

Example 6.1

minimize

∫ 1

0

−|z1(t) − 2z2(t)| dt

subject to
dx1

dt
= u

ε
dz1

dt
= −z1 + ux1

ε
dz2

dt
= −2z2 + ux1

x1(0) = 1, z1(0) = z2(0) = 0,

(6.1)

with x1, z1 and z2 scalars, and u ∈ [−1, 1]. The problem can be set in the form
(1.1) by augmenting it with the addition of a coordinate, say x2, to the slow
variable, that satisfies

dx2

dt
= −|z1(t) − 2z2(t)|, x2(0) = 0; (6.2)

then replacing the cost in (6.1) by C((x1, x2)) = x2.

Had x1 been fixed, the problem solved in Artstein (2002b) could be modified
as to cover the present version. In particular, the optimal solution of the limit
problem involves an invariant measure supported on a periodic trajectory in
the (z1, z2) space. The average control on this periodic solution is zero, hence
the x1 coordinate would not change. A direct inspection, however, reveals that
the larger |x1| the better is the optimal value. Therefore, it may make sense to
have a positive average of the control in order to increase this coordinate. Thus,
there is a tradeoff between the advantage in increasing x1 and the instantaneous
contribution to the value. The Pontryagin Principle for the limit system reveals
the right balance between the two.
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As displayed, (6.1) does not satisfy Assumption 4.1; indeed, the invariant
measures clearly depend on x1. Consider, however, the change of variables

y1 = xz1

y2 = xz2,
(6.3)

this for, say, x > 0 (which is the domain we are interested in any way since
x1(0) > 0). With this change of variables (6.1) becomes, in its augmented
version,

minimize x2

subject to
dx1

dt
= u

dx2

dt
= −x1|y1(t) − 2y2(t)|

ε
dy1

dt
= −y1 + u

ε
dy2

dt
= −2y2 + u

x1(0) = 1, x2(0) = 0, y1(0) = y2(0) = 0.

(6.4)

The fast equation now is free of the slow variable and, in particular, the invariant
measures of the fast system do not depend on the slow variable. It is also easy
to see that all the other conditions needed for Theorem 4.1 are satisfied hence
the theorem can be implemented. The resulting necessary conditions for the
optimization of the variational limit are as follows.

The nature of the problem (in particular since x2 does not appear in the
right hand side of the state equation) yields that the second coordinate, namely
p2(t), of the adjoint vector is fixed and can be set as −1 (compare, e.g., with
Lee and Markus, 1967, Chapter 4). Given an optimal pair (x∗(t), µ∗(t)), the
first coordinate p1(t) of the support vector then satisfies (applying (4.1) with
p2(t) = −1)

d

dt
p1(t) =

∫
R2

|y1 − 2y2| µ∗(t)(dy1, dy2) (6.5)

and with terminal condition p1(1) = 0. In turn, the invariant measure µ∗(t) is
generated by a solution to (see (4.3)-(4.4))

maximize lim
S→∞

1

S

∫ S

0

(p1(t)u(s) + x1(t)|y1(s) − 2y2(s)|) ds (6.6)

where p1(t) and x1(t) are fixed (recall that x1(t) > 0) and (u(s), y1(s), y2(s))
solves the two fast equations, namely,

dy1

ds
= −y1 + u

dy2

ds
= −2y2 + u.

(6.7)
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A variant of the infinite horizon problem (6.6)-(6.7) was solved in Artstein
(2002b), namely without the term p1(t)u(s) and with x1(t) = 1 in the integrand.
Much of the analysis in Artstein (2002b) is valid here as well. In particular, the
fast dynamics are identical and the bang-bang arguments in Artstein (2002b,
Sections 3) are valid; they imply that the optimal invariant measure for (6.6)-
(6.7) is determined by two numbers, say η1 and η2, with −1 < η1 < η2 < 1 as
follows. Consider the periodic solution of (6.7) that consists of two pieces: One
that goes through the point (η2,

1
2
η2) is R2 with u = −1 and the second, that

goes through the point (η1,
1
2
η1) is R2 with u = 1. The intersection of these two

trajectories determine the switching points between the two bang-bang values
u = −1 and u = 1 of the optimal solution. The two points η1 and η2 can now
be determined by minimizing (6.6), which becomes now periodic (in Artstein,
2002b, the case with p1(t) = 0, then η1 = η2, is solved explicitly). The opti-
mal invariant measure and the optimal value depend, of course, on the adjoint
variable p1(t) and the state x1(t). In turn, the optimal value determines in an
obvious way the right hand side of the adjoint equation (6.5) for p1(·). All in all,
we get an explicit system for the adjoint equation and the optimal value, from
which a candidate for an optimal solution (which is indeed the optimal solution,
due to existence and uniqueness of solutions) of the variational limit can be
determined (possibly numerically, which is beyond the scope of the present pa-
per). Once η1 and η2 above are determined, a feedback solution to the problem
can easily be constructed, see Artstein (2002b); this feedback solution is a near
optimal solution to the perturbed equation with ε small.
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