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Abstract: According to the goal of the Conference in Bedlewo,
dedicated to the 50-th anniversary of Optimal Control theory, and
considering that the 2008 year marked the centennial birthday of Lev
Semenovich Pontryagin, I decided to devote my talk to a brief ac-
count on the discovery of the maximum principle and to an analysis
of its basic feature, the Hamiltonian format.
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1. Discovery of the maximum principle

1.1. Introductory remarks

In mid-1950s Lev Semenovich Pontryagin abandoned topology and completely
devoted himself to purely engineering problems of mathematics. He organized
at the Steklov Institute of Mathematics a seminar in applied problems of math-
ematics, often inviting theoretical engineers as speakers, since he considered
professional command over the purely engineering part of the problem under
investigation to be mandatory for its adequate mathematical handling.

He was led to the formulation of the general time–optimal problem by an
attempt to solve a concrete fifth–order system of ordinary differential equations
with three control parameters, related to optimal maneuvers of an aircraft,
which was proposed to him by two Air Force engineers in the early Spring of
1955. Two of the control parameters entered the equations linearly and were
bounded, hence from the beginning it was clear that they could not be found by
classical methods, as solutions of the Euler equations. The problem was highly
specific, and very soon Lev Semenovich realized that some general guidelines
were needed in order to tackle the problem. I remember that he even said
half–jokingly, “we must invent a new calculus of variations”. As a result, the
general time–optimal problem was formulated by him exactly in the form and
in notations often used even today.

∗Submitted: January 2009; Accepted: November 2009.
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1.2. Formulation of the problem and the adjoint equation

Initially, it was supposed that the control vector u attains its values from an
open set U ⊂ R

r. The crucial case for the control problems, that of a closed
set U , was considered later. To denote control parameters, the letter “u” was
chosen, as the first letter of the Russian word “control” — “upravlenie”. Thus
the following time–optimal problem was formulated:

dx

dt
= f(x, u), x ∈ R

n, u ∈ U ⊂ R
r

dx(t)

dt
= f(x(t), u(t)),

x(t0) = x0, x(t1) = x1,

u(t) ∈ U, t1 − t0 = min.















It should be noticed that the general optimal problem with an arbitrary
integral–type functional is easily reduced to the formulated time–optimal prob-
lem, so that by solving the time–optimal problem with fixed boundary conditions
we actually overcome all essential difficulties inherent in the general case.

The first and the most important step toward the final solution was made by
Lev Semenovich right after the formulation of the problem, during three days, or
better to say, during three consecutive sleepless nights: he suffered from severe
insomnia and very often used to do maths all night long in bed. As a result,
he completely disrupted his sleep and systematically took barbiturates in great
quantities.

Thanks to his wonderful geometric insight, he derived from very simple du-
ality considerations about the first order variational equation the initial version
of necessary conditions, introducing an auxiliary covector–function ψ(t), subject
to the adjoint (linear) differential equation,

dψ

dt
= −ψ

∂f

∂x
(x, u).

This was the first time the adjoint system, which turned out to be of crucial
importance for the whole subject appeared in optimal control theory. Actually,
Pontryagin constructed for the first time, for the needs of optimization, what
is now called the Hamiltonian lift of the initial family of vector fields on the
configuration space of the problem into its cotangent bundle, the phase space
of the problem.
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1.3. Formulation of necessary conditions

The initial formulation of necessary conditions reported by Lev Semenovich at
the seminar right after they were derived is expressed in formulas

dx(t)

dt
= f(x(t), u(t)), (a)

dψ(t)

dt
= −ψ(t)

∂f

∂x
(x(t), u(t)), (b)

ψ(t)
∂f

∂ui
(x(t), u(t)) = 0, i = 1, . . . , r; (c)

x(t0) = x0, x(t1) = x1, u(t) ∈ U, ∀t ∈ [t0, t1].







































(1)

This formulation supposes that the set U of admissible values of the control
function is open, though, as I already mentioned, from the very beginning it was
clear that the ultimate result should have been applicable to closed sets as well.
The r “finite” equations (c) were considered as relations which “dynamically”
eliminate, “in the generic case”, r unknown control parameters as we proceed
along the trajectory, thus admitting a unique solution of differential equations
(a)–(b) with given initial conditions.

The system of equations (c) is solvable with respect to u1, . . . , ur in the
neighborhood of a given optimal solution x(t), u(t), t0 ≤ t ≤ t1, if the Hessian
matrix of ψf with respect to the u’s along the extremal,

∥

∥

∥

∥

ψ(t)
∂2f

∂ui∂uj
(x(t), u(t))

∥

∥

∥

∥

= ψ(t)
∂2f

∂u2
(x(t), u(t)),

is nondegenerate — a condition which should be included into the generic case
conditions.

I shall describe now Pontryagin’s very simple and straightforward geometric
arguments leading to the equations (1).

1.4. Proof of necessary conditions (1)

Since the set U is open, we can assume that the variation δu of a given optimal
control u(t), t0 ≤ t ≤ t1, is an arbitrary piecewise continuous function. Consider
the corresponding first order variation

δx(t), t0 ≤ t ≤ t1, δx(0) = 0,

of the optimal trajectory x(t), t0 ≤ t ≤ t0, i.e. the solution of the linear
(nonhomogeneous) variational equation,

d

dt
δx =

∂f

∂x
(x(t), u(t))δx +

∂f

∂u
(x(t), u(t))δu(t), δx(t0) = 0.
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Introducing fundamental matrices of solutions Φ(t),Ψ(t) of the correspond-
ing homogeneous and adjoint equations,

d

dt
Φ =

∂f

∂x
(x(t), u(t))Φ,

d

dt
Ψ = −Ψ

∂f

∂x
(x(t), u(t)),

Φ(t) = Ψ−1(t) ∀t ∈ [t0, t1],







we represent δx(t) as

δx(t) = Φ(t)

t
∫

t0

Ψ(τ)
∂f

∂u
(x(τ), u(τ))δu(τ)dτ, t ∈ [t0, t1].

The linear mapping L from the vector space of all variations δu(t) into R
n,

defined by the last expression for t = t1,

{δu(t), t0 ≤ t ≤ t1} 7→ δx(t1) = L(δu(t)),

is a subspace Γ ⊂ R
n, and Π = x(t1) + Γ is a plain through x(t1). Since x(t)

is optimal, the implicit function theorem immediately implies, provided some
general position assumptions are satisfied, that dimΠ = dimΓ ≤ n− 1. Hence,

∃χ 6= 0 : χδx(t1) = 0 ∀δx(t1) ∈ Γ.

Finally,

χδx(t1) = χΦ(t1)

t1
∫

t0

Ψ(τ)
∂f

∂u
(x(τ), u(τ))δu(τ)dτ =

t1
∫

t0

χΦ(t1)Ψ(τ)
∂f

∂u
(x(τ), u(τ))δu(τ)dτ =

t1
∫

t0

ψ(τ)
∂f

∂u
(x(τ), u(τ))δu(τ)dτ = 0 ∀ δu(τ),































































where

ψ(t) = χΦ(t1)Ψ(t), t0 ≤ t ≤ t1, ψ(t1) = χ 6= 0.

⇓

d

dt
ψ(t) = −ψ(t)

∂f

∂x
(x(t), u(t)),

ψ(t)
∂f

∂u
(x(t), u(t)) = 0 ∀t ∈ [t0, t1].











Thus we come to the optimality conditions (1). They readily imply the
Euler–Lagrange equations for the Lagrange problem of the classical calculus of
variations.
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1.5. The second variation

As soon as equations (1) were obtained, Lev Semenovich recognized, as I al-
ready mentioned, the decisive role of the covector–function ψ(t) and the adjoint
equation for the whole problem. He considered, in the generic case, r finite
equations (1)–(c) as conditions, which dynamically eliminate the r–dimensional
control parameter u from system (1) as we proceed along the trajectory, thus
making it possible to solve uniquely the 2n–th order system of differential equa-
tions (1)–(a) – (1)–(b) with a given initial condition x(t0) = x0 and an arbitrary
(nonzero) initial condition for ψ. All such solutions were declared as extremals
of the problem, among which the optimal solutions were to be looked for.

Further development of this initial picture, based on the equations (1),
brought Lev Semenovich to the idea about a universal procedure of elimination
of the vector control parameter that reduces the problem of finding extremals to
the solution of the system of ordinary differential equations with given bound-
ary conditions. The ultimate realization of this idea found its expression in
the Maximum Principle, which was formulated by him several months after his
first report at the seminar and was supported by the subsequent advancements
achieved meanwhile in the framework of the seminar.

After his talk in the seminar, Pontryagin suggested to V. Boltyanski and me,
his former students and close collaborators at that time, to join him in his in-
vestigations of the problem. V. Boltyanski held a formal position at the Steklov
Institute as Pontryagin’s assistant, helping him in everyday computations and
manuscript editing; I was a young member of the department of the Steklov
Institute, headed by Pontryagin.

I decided to apply Pontryagin’s geometric approach to the second order
approximation of the optimal solution and thus started to investigate the second
variation of the problem.

My second order considerations heavily demanded from the very beginning
general position assumptions, which were overcome only in the final version of
Boltyanski’s proof of the Maximum Principle. The set of admissible values of
the control parameters was still assumed to be open.

Take an arbitrary “generic” solution of the optimal problem, x(t), u(t),
t ∈ [t0, t1], which means that the plane Π introduced above is of maximal possi-
ble dimension n− 1 and the trajectory x(t) intersects L at x(t1) transversally.
Hence, Π divides R

n into distinguishable half–spaces, R
n
− — before x(t) inter-

sects L and R
n
+ — after the intersection. Additionally, we assume that the

Hessian of ψf(x, u) along the extremal under the consideration,

∥

∥

∥

∥

ψ(t)
∂2f

∂ui∂uj
(x(t), u(t))

∥

∥

∥

∥

,

is nondegenerate.
It is evident that second order displacements of the endpoint of the optimal

trajectory should be considered only for control variations δu(t) that annihi-



964 R.V. GAMKRELIDZE

late the corresponding first order displacements δ1x(t1), which we denote from
now on with the subscript 1. In other words, we consider the second order
displacements of the endpoint of the optimal trajectory on the kernel

K =







δu
∣

∣

∣
δ1x(t1) = Φ(t1)

t1
∫

t0

Ψ(τ)
∂f

∂u
(x(τ), u(τ))δu(τ)dτ = 0







.

The second variation δ2x(t), t0 ≤ t ≤ t1, of x(t) (with the initial condition
δ2x(t0) = 0) is defined as the solution of the linear nonhomogeneous equation,

d

dt
δ2x =

∂f

∂x
(x(t), u(t))δ2x+ δu(t)∗

∥

∥

∥

∥

∂2f

∂ui∂uj
(x(t), u(t))

∥

∥

∥

∥

δu(t)+

δ1x(t)
∗

∥

∥

∥

∥

∂2f

∂xi∂uj
(x(t), u(t))

∥

∥

∥

∥

δu(t) + δ1x(t)
∗

∥

∥

∥

∥

∂2f

∂xi∂xj

∥

∥

∥

∥

δ1x(t),

which differs from the first order variational equation only by the nonhomoge-
neous part, quadratic in δu.

Geometric considerations, similar to those described above, and applied to
the same configuration, lead us to the conclusion that the second order displace-
ment δ2x(t1) of the endpoint is contained in the half–space R

n
−. This yields, for

the correctly normalized endpoint ψ(t1) (directed toward the half–space R
n
+ ),

to the inequality,

ψ(t1)δ2x(t1) =

t1
∫

t0

{

δu(τ)
∗

∥

∥

∥

∥

ψ(τ)
∂2f

∂ui∂uj
(x(τ), u(τ))

∥

∥

∥

∥

δu(τ)+

δ1x(τ)
∗

∥

∥

∥

∥

ψ(τ)
∂2f

∂xi∂uj
(x(τ), u(τ))

∥

∥

∥

∥

δu(τ)+

δ1x(τ)
∗

∥

∥

∥

∥

ψ(τ)
∂2f

∂xi∂xj
(x(τ), u(τ))

∥

∥

∥

∥

δ1x(τ)

}

dτ ≤ 0

∀δu ∈ K.























































After some elaborate investigation of this integral quadratic form, I came to the
conclusion that its nonpositivity on K and general position assumptions imply
the nonpositivity on K of its singular part, hence the pointwise nonpositivity of
the nondegenerate quadratic form in δu,

δu∗
∥

∥

∥

∥

ψ(t)
∂2f

∂ui∂uj
(x(t), u(t))

∥

∥

∥

∥

δu ≤ 0

∀δu ∈ R
r, t ∈ [t0, t1].











(2)

Together with equations (1) we come to the optimality conditions up to the
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second order,

dx(t)

dt
= f(x(t), u(t)), x(t0) = x0, x(t1) = x1,

dψ(t)

dt
= −ψ(t)

∂f

∂x
(x(t), u(t)), ψ(t0) 6= 0,

ψ(t)
∂f

∂u
(x(t), u(t)) = 0, u(t) ∈ U, ∀t ∈ [t0, t1],

δu∗
∥

∥

∥

∥

ψ(t)
∂2f

∂ui∂uj
(x(t), u(t))

∥

∥

∥

∥

δu ≤ 0 ∀δu ∈ R
r.















































1.6. Local form of the maximum principle

Collecting necessary conditions (1), (2) together, I recognized that a certain sta-
ble combination of symbols reappears in all of them, namely, the scalar function
of three arguments ψ, x, u,

H(ψ, x, u) = ψf(x, u). (3)

It enables us two rewrite the system (1), (a)–(b), as a Hamiltonian system (4)
with the Hamiltonian function (3), together with additional conditions (1)–(c),
(2), written as (5)–(6):

dx(t)

dt
=
∂H

∂ψ
(ψ(t), x(t), u(t)),

dψ(t)

dt
= −

∂H

∂x
(ψ(t), x(t), u(t));















(4)

∂H

∂ui
(ψ(t), x(t), u(t)) = 0,

∀t ∈ [t0, t1], i = 1, . . . , r;







(5)

δu∗
∥

∥

∥

∥

∂2H

∂ui∂uj
(ψ(t), x(t), u(t))

∥

∥

∥

∥

δu ≤ 0,

∀ δu ∈ R
r.











(6)

They assert that generic extremals are solutions of the Hamiltonian system (4),
and, according to (5), their points are stationary points of the Hamiltonian (3)
with respect to the control parameters ui. Moreover, according to (6), along
generic (regular) extremals (for which the form (6) is definite by definition), the
function H attains its local maximum with respect to u.

Since the admissible set U is open, we can combine two independent condi-
tions (5)–(6) into one condition and write,

H(ψ(t), x(t), u(t)) = max
u∈Ot

H(ψ(t), x(t), u), (7)
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where Ot is a neighborhood of u(t). Furthermore, the equations (4)–(5) imply,

dH

dt
(ψ(t), x(t), u(t)) =

(

∂H

∂ψ

dψ

dt
+
∂H

∂x

dx

dt

)

+
∂H

∂u

du

dt
≡ 0.

It is also easy to show that H(ψ(t), x(t), u(t)), as a function of t, is continuous,
even if the control function u(t) has jumps. Hence, taking into account the
generic character of the solution — the trajectory x(t) is transversal to L at
x(t1) — we obtain,

H(ψ(t), x(t), u(t)) ≡ const =

ψ(t1)f(x(t1), u(t1)) > 0.

}

(8)

After the relations (4), (7) were written, Lev Semenovich realized that the
universal elimination method of the control parameters, he was looking for, was
found. He replaced the local maximum condition (7) by the global maximum
over the whole set U , the “Pontryagin maximum condition” (9), which made
any restrictive assumptions about the admissible set U superfluous,

H(ψ(t), x(t), u(t)) =

max
u∈U

H(ψ(t), x(t), u) ≡ const ≥ 0.
(9)

Thus, he came to the final formulation of the Maximum Principle, combining the
Hamiltonian system (4) with the maximum condition (9) and dropping off any
assumptions about genericity of the solutions or the structure of the admissible
set U .

1.7. Final form of the Maximum Principle

Suppose a controlled equation is given,

dx

dt
= f(x, u), x ∈ R

n, u ∈ U ⊂ R
r,

where the admissible set U is arbitrary. We introduce the Hamiltonian function
of the problem (3), which depends on three arguments — the covector ψ and the
vectors x and u. If u(t), t0 ≤ t ≤ t1, is a time–optimal control, x(t), t0 ≤ t ≤ t1,
the corresponding time–optimal trajectory, then there exists a nonzero covector
function ψ(t) such that the triple ψ(t), x(t), u(t), t0 ≤ t ≤ t1, is a solution of
the Hamiltonian system (4), and the maximum condition (9) holds.

In this final form, the maximum condition (9) could be viewed not only as
a universal elimination method of the undetermined parameter u, but also as
a generalization of the Legendre transformation from the state–space variables
(x, u) to the phase space variables (ψ, x).
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It took approximately a year before a full proof of the Maximum Principle
in its final formulation was accomplished. This became possible after Boltyan-
ski introduced a new type of variations, the “needle variations” of the control
function. These variations are zero everywhere on the time–interval, except
on several segments with a small total length, where they can attain arbitrary
admissible values, and they have an important property of admitting an oper-
ation of convex combination, regardless of the shape of U , and still supplying
a sufficiently rich first order attainable set. These variations made possible to
prove the Maximum Principle in full generality, as formulated above. This was
Boltyanski’s major contribution to the subject.

Though formulated in 1955, the Maximum Principle was never changed, nor
slightly generalized since then. All (first order) advancements were directed to-
ward generalizations of the optimal problem itself, especially toward developing
nonsmooth optimization, with corresponding first–order necessary conditions
shaped after the Maximum Principle. Still it would be useful to give here
an invariant formulation of the maximum principle and a brief analysis of its
Hamiltonian format.

2. About the Hamiltonian format of the maximum

principle

2.1. Introductory remarks

The native Hamiltonian format of Pontryagin’s maximum principle is its basic
feature, inherent in the principle regardless of any regularity conditions imposed
on the optimal problem under consideration. It assigns canonically to the prob-
lem a family of Hamiltonian systems, indexed with the control parameter, and
complements the system with the maximum condition, which makes it possible
to solve the initial value problem for the system, “dynamically” eliminating the
parameter as we proceed along the trajectory, thus providing the extremals of
the problem.

Much was said about the maximum condition since its discovery in 1956, and
all achievements in the field were mainly credited to it, whereas the Hamiltoni-
an format of the maximum principle was always taken for granted and never
discussed seriously.

Meanwhile, the very possibility of formulating the maximum principle is
intimately connected with its native Hamiltonian format and with the parame-
terization of the problem with the control parameter.

As I described it above, both these starting steps were made by L. S. Pontrya-
gin in 1955 on a completely empty spot, in fact, out of nothing, and they
eventually led to the discovery of the maximum principle.

In this section, I shall consider this, now semi-historical, topic and give a
short analysis of the Hamiltonian format of the maximum principle.
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For the simplicity of considerations, I shall start with an invariant formula-
tion of the Principle for the time optimal autonomous case, to which the general
optimal problem (with an integral-type functional) is easily reduced.

2.2. Invariant formulation of the maximum principle

A controlled equation is given on the configuration space M of the time-optimal
problem,

dx

dt
= X(x, u) = X, x ∈M, u ∈ U.

Canonically associated with every family of vector fields X (indexed by the
control parameter u) on M is a scalar-valued function HX on the cotangent
bundle π : T ∗M −→ M , linear in ψ and indexed by the parameter u, the
Hamiltonian of the problem,

HX(ψ, u)
def
= < ψ,X(πψ, u) >, ψ ∈ T ∗M, u ∈ U,

where < ·, · > are the duality brackets between the vectors and covectors on
M , and every fiberwise linear scalar-valued function from C∞(T ∗M) could be
obtained in this way.

Thus, the Hamiltonian of the optimal problem is canonically defined by

the problem itself. Denoting by
−→
HX the family of Hamiltonian vector fields

generated on T ∗M by the family of Hamiltonians HX , we obtain the controlled
Hamiltonian equation of the problem containing the control parameter u,

dψ

dt
=

−→
HX(ψ, u).

Finally, the maximum condition takes the form,

HX(ψ, u) = max
v∈U

HX(ψ, v).

As I described it in Section 1, the canonical construction of the Hamiltonian

vector field
−→
HX on the cotangent bundle T ∗M was actually introduced by L.S.

Pontryagin in 1955, and turned out to be the first step towards the discovery of
the maximum principle.

The maximum principle is formulated in the following way.

Pontryagin’s maximum principle. Every extremal over a point x ∈M of the
time-optimal problem could be obtained as a common solution ψ(t) to the initial
value problem ψ(0) = ψ0 6= 0, πψ0 = x, for the system

dψ(t)

dt
=

−→
HX(ψ(t), u(t)),

HX(ψ(t), u(t)) = max
v∈U

HX(ψ(t), v).
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Hence, u(t) could be considered to be obtained, in some generalized sense, in
the process of “dynamical elimination” of the parameter u by the maximum con-
dition as we proceed along the trajectory ψ(t).

2.3. The regular case

Assume that the maximum condition, written as an equation in u,

HX(ψ, u) = max
v∈U

HX(ψ, v), (∗)

has a unique smooth solution u = u(ψ) in some region O ⊂ T ∗M . Substituting
u = u(ψ) into HX(ψ, u), we obtain the “master Hamiltonian” HX (without a

parameter) and the corresponding “master Hamiltonian vector field”
−→
HX of the

optimal problem,

HX(ψ) = HX(ψ, u(ψ)),
−→
HX =

−→
HX(ψ, u(ψ)),

ψ ∈ O ⊂ T ∗M.

Then, the extremals over a given point x ∈ M of the problem are represented

as a flow ψ(t, ψ0) generated by the Hamiltonian vector field
−→
HX and the given

initial conditions,

d

dt
ψ(t, ψ0) =

−→
HX(ψ(t, ψ0)),

ψ(0, ψ0) = ψ0 6= 0, πψ0 = x, ψ ∈ O ⊂ T ∗M.

Thus, in the regular case, the maximum condition gives a canonical transiti-
on from the tangent bundle description of the optimal motion (the “Lagrangian
picture”) to the cotangent bundle description (the “Hamiltonian picture”), and
could be considered to be a generalization of the Legendre transformation.

Still, restriction of our considerations to the regular case only, though it con-
tains all regular problems of the classical calculus of variations, is very limiting
and completely unacceptable for the optimal control theory, where the strongly
degenerate problems, such as linear control problems, are of paramount impor-
tance, which, in fact, stimulated the discovery of the maximum principle and
the development of the discipline as a whole.

2.4. Identification of the Pontryagin vector field
−→
HX

Since the family of vector fields
−→
HX is canonically derived from X , it is natural

to expect that
−→
HX could be expressed through standard differential-geometric

first order invariants of the configuration space M . The corresponding expre-
ssion could be obtained in the following way.
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Denote the C∞(M)-modules of fiberwise constant and fiberwise linear smooth
functions on T ∗M , and their direct sum, respectively by

M(0) = π∗C∞(M), M(1) = V ectC∞(M),

M = M(0) ⊕ M(1) ⊂ C∞(T ∗M).

For a given X , the derivation adX on V ectC∞(M),

adX : Y 7→ adXY = [X,Y ], adX · aY = Xa · Y + a · adXY,

where [·, ·] are the Lie brackets, could be plainly extended from M(1) to the
direct sum M, if we put

adX · π∗a = π∗ ·Xa ∀a ∈ C∞(M).

Hence, adX preserves both C∞(M)-submodules, M(0),M(1), therefore it could
be uniquely extended as a derivation onC∞(T ∗M), i.e. as a vector field on the
cotangent bundle T ∗M . We shall assume further under the symbol adX exactly
this vector field.

Straightforward computations show that the vector fields
−→
HX and adX coin-

cide on fiberwise constant and fiberwise linear scalar valued functions on T ∗M ,
hence they are identical on T ∗M for every fixed value of the parameter u,

−→
HX = adX .

Thus, for ∀t, the vector field
−→
HX(ψ, u(t)) is a Hamiltonian lift over X to

the cotangent bundle T ∗M ,

π∗(
−→
HX)ψ = Xπψ ∀ψ ∈ T ∗M,

and preserves the C∞(M)-module of vector fields V ectM on M . Therefo-
re, the flow Gt generated on the cotangent bundle T ∗M by the nonstationary

Hamiltonian lift
−→
HX(ψ, u(t)), where u(t) is an arbitrary control function, is a

bundle flow over the flow gt on M , generated by the nonstationary vector field
X(x, u(t)), i.e. transforms every fiber T ∗

zM linearly (and nondegenerate) to the
fiber T ∗

gtz
M .

Let LX be the Lie derivative over the vector field X (for a fixed value of u),
i.e. a vector field on the tangent bundle TM , generating on TM the flow etX∗ ,
the differential of the flow etX on M ,

etLX = etX∗ : TM −→ TM.

There exists a natural duality between the flows etLX and etadX on TM

and T ∗M , which it is convenient to express considering these flows, as well as
the flow etX on M , also as flows of the corresponding pullback automorphisms
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of the algebras C∞(TM), C∞(T ∗M), C∞(M), respectively. Then the duality
relation could be expressed by the identity

etX < ω, Y >=< etLXω, etadXY >

∀Y ∈ V ectM, ω ∈ Λ(1)(M),

which is easily derived from the relation

Ad etX · Y
def
= etX ◦ Y ◦ e−tX = etadXY ∀Y ∈ V ectM.

The identity asserts that

etadX =
(

etLX

)∗−1
=

(

e−tLX

)∗
,

where the upper star on the flow denotes conjugation,

< ω, (etLX )∗Y >
def
= e−tX < etLXω, Y >

∀X,Y ∈ V ectM, ω ∈ Λ(1)(M).

Thus, for every fixed u, the flow e
−→
HX generated by the Pontryagin vector

field
−→
HX is inverse to the conjugate of the differential etLX of the flow etX.

Differentiating the duality relation between the flows given above with re-
spect to t and then putting t = 0, we obtain the “infinitesimal” version of the

above duality between the corresponding vector fields LX and adX =
−→
HX (the

generalized Leibnitz rule),

X < ω, Y >=< LXω, Y > + < ω, adXY >

∀Y ∈ V ectM, ω ∈ Λ(1)(M).

The obtained relations completely identify the Pontryagin vector field
−→
HX ,

hence the Hamiltonian format of the maximum principle.




