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1. Introduction

In this paper, we denote by ‖ ·‖ the Euclidean norm and by 〈·, ·〉 the usual inner
product. For ρ > 0 we introduce the notation

B(0; ρ) := {x ∈ R
n : ‖x‖ < ρ} and B̄(0; ρ) := {x ∈ R

n : ‖x‖ ≤ ρ}.

The open (respectively closed) unit ball in R
n is denoted by B (respectively B̄).

For a set A ⊂ R
n, comp A, intA, bdryA and cl A are the complement (with

respect to R
n), the interior, the boundary and the closure A, respectively.

Now let S ⊂ R
n be a nonempty closed set and let x ∈ S. We recall that

a vector ζ ∈ R
n is said to be a proximal normal to S at x provided that there

exists σ = σ(x, ζ) ≥ 0 such that

〈ζ, s − x〉 ≤ σ‖s − x‖2 ∀s ∈ S. (1)
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The relation (1) is commonly referred to as the proximal normal inequality.
No nonzero ζ satisfying (2) exists if x ∈ intS, but this may also occur for
x ∈ bdryS, as is the case when S is the epigraph of the function f(z) = −|z|
and x = (0, 0). For such points, the only proximal normal is ζ = 0. In view of
(1), the set of all proximal normals to S at x is a convex cone, and we denote it
by NP

S (x).
Let x ∈ bdry S, and suppose that 0 6= ζ ∈ R

n and r > 0 are such that

B

(

x + r
ζ

‖ζ‖
; r

)

∩ S = ∅. (2)

Then, ζ is a proximal normal to S at x and we say that ζ is realized by an

r-sphere. Note that ζ is then also realized by an r′-sphere for any 0 < r′ < r.
One can show that ζ being realized by an r-sphere is equivalent to the proximal
normal inequality holding with σ = 1

2r
; that is,

〈
ζ

‖ζ‖
, s − x〉 ≤

1

2r
‖s − x‖2 ∀s ∈ S. (3)

Our general reference regarding proximal normals as well as other constructs of
proximal analysis is Clarke et al. (1998).

For a point x ∈ bdry S, if there exists r > 0 such that some 0 6= ζ ∈ NP
S (x)

is realized by an r-sphere, then we say that S satisfies an exterior r-sphere

condition at x. In terms of spheres, this is equivalent to the existence of yx 6∈ S

such that

B(yx; r) ∩ S = ∅ and ‖x − yx‖ = r.

If this holds (for a single r > 0) at every boundary point x, then S is said to
satisfy an exterior r-sphere condition, and if there exists such an r, we simply
say that S satisfies the uniform exterior sphere condition.

When S = cl (int S) (the closure of the interior), the uniform exterior sphere
condition is equivalent to (int S)c (the complement of the interior) satisfying a
uniform interior sphere condition, which is familiar from control theory, where it
is required in connection with regularity properties of the minimal time function;
see e.g. Cannarsa and Frankowska (2006), Cannarsa and Sinestrari (1995, 2004)
and Sinestrari 2004.

If, for a point x ∈ bdry S, r > 0 is such that every 0 6= ζ ∈ NP
S (x) is realized

by an r-sphere, then S is said to be r-proximally smooth at x. Analogously
to the preceding terminology, if this holds at every boundary point x for some
positive r, then we say that S is r-proximally smooth, and if there exists such
an r, S is simply said to be uniformly proximally smooth.

Uniform proximal smoothness of S implies that NP
S (x) 6= {0} for all x ∈

bdry S. Furthermore, if S is closed and convex, then the proximal normal
inequality holds at every x ∈ S with σ = 0; hence this class of sets is uniformly
proximally smooth, and every x ∈ bdry S is realized by an r-sphere of arbitrarily
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large radius. It appears that uniform proximal smoothness was first studied by
Federer (1959), who referred to the property as positive reach. Another reference
in this vein is Gorniewicz (1995), who called proximally smooth sets “proximal
retracts”. In Clarke, Stern and Wolenski (1995) (see also Canino, 1998, and
Shapiro, 1994), proximal smoothness was studied in detail in a Hilbert space
setting, but here we will not require those results. Related properties such
as prox-regularity and ϕ-convexity are investigated in Poliquin and Rockafellar
(1996), Poliquin, Rockafellar and Thibault (2000), Rockafellar and Wets (1998),
Colombo and Marigonda (2005) and Colombo, Marigonda and Wolenski (2006).

One goal of the present expository note is to compare the exterior sphere
condition with proximal smoothness. Obviously, if S is r-proximally smooth,
then it satisfies the exterior r-sphere condition. We will answer the following
two questions concerning possible reverse implications:

(∗) If S satisfies an exterior r-sphere condition and S is known to be uniformly

proximally smooth, is it necessarily r-proximally smooth?

(∗∗) If S satisfies a uniform exterior sphere condition, is S necessarily uni-

formly proximally smooth? (Here there is no mention of radius.)

We will also discuss the equivalence between S satisfying the uniform interior
sphere condition and S being the union of uniform spheres, and thereby clarify
a semantic ambiguity in the literature concerning these properties. A conjecture
regarding these properties will be stated.

In the next section, we shall see, by means of counter examples, that the
answer to both questions (∗) and (∗∗) is “no”. Then, in Section 3 geometric
conditions will be provided, under which equivalence between the uniform ex-
terior sphere condition and uniform proximal smoothness does hold. Section 4
is devoted to the comparison of the uniform interior sphere condition and the
union of uniform balls property, and the framing of an open question in the
form of a conjecture.

Full details and proofs of our results can be found in Nour, Stern and Takche
(2009).

2. Examples

As mentioned above, it is clear from the definitions that if S is r-proximally
smooth, then it possesses the exterior r-sphere condition. That the reverse
implication is not necessarily true is illustrated by the following simple example.

Example 1 Let S := {(x, |x|) : x ∈ R} ⊂ R
2. This set possesses the exterior

r-sphere condition for any r > 0, but fails to be r-proximally smooth for any
r > 0, and thereby provides a negative answer to Question (∗∗). Indeed, for
each x ∈ ]0, +∞[ the vector ζ = (−1, 1) is a proximal normal to S at (x, x), but
the radius of the sphere which realizes ζ must approach 0 as x ↓ 0.
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In the preceding example, the set S has an empty interior. We now will
focus our attention on sets S satisfying S = cl (intS), which are of the type
commonly used in control theory as targets in minimal time optimal control
problems. We shall refer to such sets as standard sets. Consider the following.

Example 2 Let S be the standard region inside the rectangle and outside the
two large circles in Fig. 1. This set satisfies an exterior 1-sphere condition.
(Observe that the non-vertically oriented circle has 1 as radius.) But, while S

is clearly uniformly proximally smooth, it fails to be 1-proximally smooth, since
the unit vector (0,−1) normal to S at (0, 1

2
) cannot be realized by 1-sphere.

This shows that Question (∗) has a negative answer.

x

-0.5

0.5

y

S

Figure 1. Example 2

While it is true that the set S in the previous example is not 1-proximally
smooth, it is r-proximally smooth for any 0 < r ≤ 1

2
, and therefore it does not

address Question (∗∗). The following example does so.

Example 3 Let S be the standard region inside the infinite rectangle and out-
side the circles (of radius 2) of Fig. 2. The intersection of two consecutive circles
Cn and Cn+1 consists of two points of the form pn =(an, 1

2n
) and qn =(an,− 1

2n
),

x
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Figure 2. Example 3
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where an ∈ R and n ≥ 1. Then S satisfies the exterior 1-sphere condition, but
fails to be r-proximally smooth for any r>0, since vertical proximal normals at
pn and qn are realizable only by spheres of radius equal at most 1

2n
.

The set S of the previous example is connected, but it fails to be compact.
The following is a two dimensionsal compact counterexample for Question (∗∗)
in which the set S is not connected. Example 4 is due to Zvi Artstein (private
communication). A similar example, but in another context, can be also found
in Marigonda (2006).

Example 4 Let S be the infinite union of the “curved” triangles of Fig. 3. The
curved sides of these triangles are arcs of unit circles tangent to the horizontal
bases of the triangles. The points an and bn are chosen in such a way that
the sequences |bn − an| and |an+1 − bn| converge to 0 and such that the curved
triangles converge to a point (included in the set S); note that S is therefore
compact. Clearly, S satisfies the exterior 1-sphere condition but fails to be
r-proximally smooth for any r > 0. Indeed, the radius of the spheres, which
realize horizontal proximal normals at the points bn must approach 0.

a0 a1 a2b0 b1 b2
º

Figure 3. Example 4

Remark 1 It is an open question whether a two dimensional connected and
compact counterexample to Question (∗∗) exists.

We shall conclude this section with a third negative example for Question
(∗∗), but where S is a three dimensional compact and connected set.

Example 5 Consider the following three surfaces in R
3, shown in the left pic-

ture of Fig. 4:

• S1 is the part of the sphere x2 + y2 + (z − 2)2 = 4 with x ≤ 0, y ≤ 0 and
z ≤ 2.

• S2 is the part of the cylinder y2 + (z − 2)2 = 4 with 0 ≤ x ≤ 2, −2 ≤ y ≤ 0
and z ≤ 2.

• S3 is the part of the cylinder x2 + (z − 2)2 = 4 with −2 ≤ x ≤ 0, 0 ≤ y ≤ 2
and z ≤ 2.

Now, define S to be the region between the surface S1 ∪ S2 ∪ S3 and the plane
z = 0, as is shown in the right picture of Fig. 4. Clearly, S is a standard set.
Moreover, S satisfies the exterior 1-sphere condition, but it fails to be uniformly
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Figure 4. Example 5

proximally smooth. Indeed, similarly to Example 1, for each x ∈ ]0, 2[ the vector
ζ = (0, 1, 0) is a proximal normal to S at (x, 0, 0), but the radius of the sphere
which realizes ζ necessarily approaches 0 as x ↓ 0.

3. An equivalence result

Recall that a closed set S is said to be wedged (or epi-Lipschitz) at a boundary
point x, if near x the set S can be viewed, after application of an orthogonal
matrix, as the epigraph of a Lipschitz continuous function. Specifically, there
exists an open neighborhood V of x, a unit vector e, and for the hyperplane

H := {x′ : 〈e, x′ − x〉 = 0}

through x, a Lipschitz continuous function f : H ∩ V −→ R such that for some
open neighborhood W of x one has

W ∩ S = W ∩ {x′ + te : x′ ∈ H ∩ V and f(x′) ≤ t < ∞}.

This geometric definition was introduced by Rockafellar (1979). The property
is also characterizable in terms of the nonemptiness of the topological interior
of the Clarke tangent cone, which is also equivalent to the pointedness of the
Clarke normal cone; see Clarke et al. (1998) and Rockafellar and Wets (1998).
If S is wedged at x for all x ∈ bdry S, then we simply say that S is wedged.

In Nour, Stern and Takche (2009) various results (some of them local in
nature and quite technical) were provided concerning the equivalence of the
exterior sphere condition and proximal smoothness. For our purposes in this
expository note, the following (non-local) result is the easiest to state and also
of the greatest interest:

Theorem 1 Let S ⊂ R
n be a wedged set with compact boundary. Then S satis-

fies a uniform exterior sphere condition if and only if S is uniformly proximally

smooth.
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Remark 2 The set of Example 3 is wedged but does not have a compact bound-
ary. This shows that the preceding corollary fails if we drop that compactness
assumption. On the other hand, the sets of Example 4 and Example 5 are not
wedged but possess compact boundary. This shows that the corollary also fails
if we drop the wedgedness assumption.

4. Interior sphere condition and a conjecture

We continue to assume that our set S is standard; that is, S = cl (int S). In the
control theoretic literature on can find two definitions of the interior r-sphere
condition. The first one (see Alvarez, Cardaliaguet and Monneau, 2005; Can-
narsa and Cardaliaguet, 2006, and Cannarsa and Frankowska, 2006) is comple-
mentary to the notion of exterior r-sphere condition which we have been using;
that is, for each x ∈ bdry S there exists yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S.

The second one (see Cannarsa and Sinestrari, 1995, 2004, and Sinestrari, 2004)
says that for all x ∈ S there exists yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S.

This means that S is the union of closed r-balls. Equivalently, there exists
S0 ⊂ S such that S0 +rB̄ = S. Clearly, if S is the union of closed r-balls then it
satisfies the interior r-sphere condition. The following example shows that the
reverse implication is not necessarily true and then the two definitions are not

equivalent.

Example 6 Let S be the closed region inside the three circles of Fig. 5. Clearly,
this set satisfies the interior 1-sphere condition (in the first sense) since the three
circles are of radius 1. But the origin cannot be covered by a 1-ball contained
in S; in fact, the maximal radius for a family of covering balls is 1√

3
. Therefore

the interior sphere condition does not hold for S in the second sense.

If a closed set C ⊂ R
n is r-proximally smooth, then the complement of

its interior, (int C)c, is the union of closed r-balls. To see why, consider any
x ∈ (intC)c. If dC(x) > r, then clearly there is an r-ball centered at x which is
contained in (intC)c. If dC(x) ≤ r, consider any closest point s ∈ C to x. Then
ζ := x − s is a proximal normal to C at s. Since ζ is realizable by an r-sphere,
there is a closed r-ball centered at s + r ζ

‖ζ‖ , which is contained in (intC)c, and

x is in this ball.

Therefore we have
(intS)c is uniformly proximally smooth ⇒
S is the union of uniform closed balls ⇒
S has the uniform interior sphere condition.
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Figure 5. Example 6

The reverse implications are not necessarily true, as shown by Examples 3,
4 and 5. Indeed, in those examples the set (intS)c has the union of uniform
balls property, but S is not uniformly proximally smooth.

From Theorem 1 we obtain the following corollary, which asserts that the
wedgedness of S together with boundary compactness guarantee the equivalence
between the three properties under consideration.

Corollary 1 Assume that S is wedged and that bdryS is compact. Then the

following assertions are equivalent:

(i) (intS)c is proximally smooth.

(ii) S is the union of uniform closed balls.

(iii) S possesses the uniform interior sphere condition.

Remark 3 Let us reconsider Example 6. We noted that while S has the interior
1-sphere property, it is not the union of closed 1-balls. But it certainly is the
union of closed r-balls for r ≤ 1√

3
. It remains an open question as to whether

the uniform interior sphere condition for S implies that S is a union of uniform
closed balls. We conclude by expressing this question as a formal conjecture,
and in a way that is free of terminology.

Conjecture 1 Suppose that S is a closed set and that there exists r > 0 as
follows: For each x ∈ bdry S there exists yx ∈ S for which x ∈ B̄(yx; r) ⊂ S.
Then there exists r′ > 0 such that S is the union of balls of radius r′.
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