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Abstract: We consider an optimal control problem of the Mayer-
type for a single-input, control affine, nonlinear system in small di-
mension. In this paper, we analyze effects that a modeling extension
has on the optimality of singular controls when the control is re-
placed with the output of a first-order, time-invariant linear system
driven by a new control. This analysis is motivated by an opti-
mal control problem for a novel cancer treatment method, tumor
anti-angiogenesis, when such a linear differential equation, which
represents the pharmacokinetics of the therapeutic agent, is added
to the model. We show that formulas that define a singular control
of order 1 and its associated singular arc carry over verbatim under
this model extension, albeit with a different interpretation. But the
intrinsic order of the singular control increases to 2. As a conse-
quence, optimal concatenation sequences with the singular control
change and the possibility of optimal chattering arcs arises.
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1. Introduction

Applications of optimal control to mathematical models in biomedical problems
have a long history with some early research in the seventies (see Eisen’s mono-
graph, 1979), and several seminal papers on cancer chemotherapy in the eighties
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and early nineties (e.g., Swierniak, 1988 and 1995, Swan, 1988 and 1990, Mar-
tin, 1992). A number of models have been, and still are being formulated that
describe the dynamics of cancer and normal cells under the action of various
chemotherapeutic agents, most importantly cytotoxic drugs. Since these drugs
equally destroy healthy cells, the side effects of treatment need to be balanced
with its therapeutic effects. It is natural to formulate questions like: how to
apply chemotherapy in the most effective way, as optimal control problems with
the drug dosage playing the role of the control. Efforts to model and ana-
lyze various aspects of this problem (e.g., drug resistance, drug delivery, etc.)
have continued until now (e.g., Swierniak, Polanski and Kimmel, 1996; Fister
and Panetta, 2000; Ledzewicz and Schättler, 2002a,b; Swierniak et al., 2003;
Ledzewicz and Schättler, 2007b), including some of our own work. For many of
these models optimal controls turn out to be bang-bang if a Mayer-type objec-
tive (i.e., only a penalty term at the endpoint) or a Lagrangian function that
is linear in control is being used. Bang-bang controls represent sessions of full
dose treatments with rest periods in between and thus correspond to standard
medical practice. On the other hand, singular controls, which typically would
define treatment schedules with feedback type time-varying partial doses, are
not optimal in most of these models.

More recently, methods of optimal control also have intensively been applied
to the analysis of models that represent new directions of medical research. Top-
ics include HIV-infection (e.g., Kirschner, Lenhart and Serbin, 1997) as well as
novel treatment approaches to cancer such as immunotherapy (e.g., de Pillis and
Radunskaya, 2001; Castiglione and Piccoli, 2006) and tumor anti-angiogenesis
(e.g., Swierniak, d’Onofrio and Gandolfi, 2006; Ledzewicz and Schättler, 2007
and 2009; Swierniak, 2008). In the latter problem, the therapeutic components
are mostly biological agents that need to be grown in a laboratory and are very
expensive and limited. Once more, it thus becomes important to optimize the
scheduling of agents over time in order to achieve best possible usage. For these
newer approaches, the fact that anti-angiogenic agents are still only in medical
trials and thus no guidelines for their scheduling have been established, adds fur-
ther incentive to undertake a mathematical analysis of optimal solutions. Even
for only one agent, it is prohibitively expensive to test all reasonable protocols
in a laboratory setting. Thus, the issue how to design an optimal protocol is
particularly important for these novel therapies.

Tumor anti-angiogenesis, already proposed byFolkman in the seventies (Folk-
man, 1972), but only enabled by medical research in the nineties, is a treatment
approach for cancer that aims at depriving a tumor of its network of blood ves-
sels and capillaries that it needs for its supply of nutrients and oxygen. In an
initial stage of avascular growth, a tumor gets sufficient supply of oxygen and
nutrients from the surrounding host blood vessels to allow for cell duplication
and tumor growth. However, at the size of about 1 − 2 mm in diameter, this
no longer is true and most tumor cells enter the dormant stage in the cell cycle.
These cells then produce vascular endothelial growth factor (VEGF) (Klagsburn



Singular controls and chattering arcs 1503

and Soker, 1993) initiating the process of tumor angiogenesis. During this stage
of tumor development, surrounding mature host blood vessels are recruited to
develop the capillaries the tumor needs for its supply of nutrients. The lin-
ing of these newly developing blood vessels consist of endothelial cells that are
stimulated by VEGF. Surprisingly, the tumor also produces inhibitors that at
times are used to suppress this process (Folkman, 1995, Davis and Yancopou-
los, 1999). Anti-angiogenic treatments rely on these mechanisms by bringing in
external anti-angiogenic agents (e.g., endostatin) that disrupt the growth and
migration of endothelial cells and thus indirectly halt the growth of the tumor.
This treatment targets genetically stable healthy cells, not fast duplicating and
continuously mutating cancer cells. As a consequence, and contrary to tra-
ditional chemotherapy, no drug resistance has been observed in experimental
cancer (Boehm et al., 1997). For this reason the therapy has been called a new
hope for the treatment of tumors (Kerbel, 1997).

Mathematical models for tumor anti-angiogenesis that have been formulated
can broadly be divided into two groups: those that try to accurately reflect the
biological processes, (e.g., Anderson and Chaplain, 1998; Arakelyan, Vainstain
and Agur, 2002), and those that aggregate variables into low-dimensional dy-
namical systems, (e.g., Hahnfeldt, Panigrahy, Folkman and Hlatky, 1999; Ergun,
Camphausen and Wein, 2003; d’Onofrio and Gandolfi, 2004). While the former
allow for realistic, large-scale simulations, the latter enable a theoretical mathe-
matical analysis. The biological motivation for this paper is the well-recognized
model by Hahnfeldt et al. (1999), a group of researchers then at Harvard Med-
ical School. In this 2-dimensional model the growth of the primary tumor and
endothelial cells supporting the vasculature is described under the action of
anti-angiogenic agents, whose dosage represents the control in the problem. In
previous research, we have addressed the question of how to schedule a given
amount of inhibitors to achieve the maximum tumor reduction. Mathematically,
this becomes an optimal control problem of Mayer-type with control-affine non-
linear dynamics. In Ledzewicz and Schättler (2007), we obtained a full synthesis
of optimal controlled trajectories. Contrary to the cancer chemotherapy prob-
lems mentioned above, now optimal controls consist of concatenations of bang
and singular portions. Not only do optimal singular arcs exist, but, in fact,
the singular arc becomes the centerpiece for the optimal synthesis in the sense
that for a large region of realistic initial conditions every optimal controlled
trajectory contains an interval along which the control is singular.

This problem formulation, however, did not include a mathematical model
for drug delivery. Rather, the control identified the dosage with the concentra-
tion of the anti-angiogenic agents and their effect. In reality, these are different
concepts that are linked through pharmacokinetics (PK) and pharmacodynam-
ics (PD). In its simplest and most often used form, PK is described by a time-
invariant linear ordinary differential equation. An extension of the model for
anti-angiogenesis that incorporates such a PK-model is accomplished, from a
control theoretic point of view, through the addition of a linear system to the
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original dynamics which generates this concentration as state with the dosage
as input while the control of the original system is replaced with this state in
the extended model. In this paper, we shall analyze such an extension in a
general framework and shall discuss how such an extension effects the structure
of solutions, especially, the properties of optimal singular arcs. For the model
of tumor anti-angiogenesis, the result of this analysis will answer the question
of how the structure of optimal protocols is effected if the model is made more
realistic by incorporating the pharmacokinetics of the drug. This is of impor-
tance from the modeling perspective where clearly some biological accuracy has
to be compromised to enable mathematical analysis of the model.

2. Optimal control with linear dynamics for the control

While the theory below will be developed for a general 2-dimensional dynamics
of the form

Σ : ẋ = f(x) + ug(x), 0 ≤ u ≤ a, x ∈ X ⊂ R
2, (1)

it has been motivated by a model for tumor anti-angiogenesis that was devel-
oped and biologically validated by Hahnfeldt et al. (1999). We briefly describe
this model that we also shall use to illustrate our results. It is a two-dimensional
system of ordinary differential equations for the interactions between the pri-
mary tumor volume, p, and the carrying capacity of the vasculature, q. The
latter is the maximum tumor volume sustainable by the vascular network that
supports the tumor with nutrients and it largely depends on the volume of en-
dothelial cells. The control u is the dosage of an exogenously administered vessel
disruptive agent. Tumor growth is described by a Gompertzian growth function
of the form

ṗ = −ξp ln

(

p

q

)

(2)

with ξ a growth parameter and variable carrying capacity q. The dynamics for
q consists of a balance between stimulatory and inhibitory effects given by

q̇ = bp−
(

µ+ dp
2

3 + γu
)

q. (3)

The term bp represents stimulation of the vasculature by the tumor and is
taken proportional to the tumor volume. The three terms with negative signs
represent different types of inhibition. Loss of vascular support through natural
causes is modeled as µq. Generally, µ is small and often this term is negligible
compared to the other factors. The second term, dp

2

3 q, represents endogenous
inhibition due to the fact that the tumor also produces inhibitors that impact
on its vascular support. These inhibitors are released through the tumor surface
(hence the scaling of the tumor volume p to its surface area p

2

3 ) and interact



Singular controls and chattering arcs 1505

with the endothelial cells. The last term γuq models loss of vascular support
due to outside inhibition. It corresponds to the angiogenic dose rate with γ a
constant that represents the anti-angiogenic killing parameter. It can be shown
that, given positive initial conditions p0 and q0 and any Lebesgue measurable
function u : [0, T ] → [0, a], solutions to (2) and (3) exist and remain positive
for all times t ≥ 0 (d’Onofrio and Gandolfi, 2004). Thus, the state space
X =((p, q) : p > 0, q > 0} is positive invariant. Given an a priori specified
amount of inhibitors,

∫ T

0

u(t)dt ≤ A, (4)

following Ergun et al. (2003), we then consider the optimal control problem how
to schedule the inhibitors in order to maximize the tumor reduction achievable,
or, equivalently, for a free terminal time T , we minimize the tumor volume p(T )
achievable at time T .

Mathematically, the dynamics is thus given by a 2-dimensional system of
the form Σ with x = (p, q),

f(x) =





−ξp ln
(

p

q

)

bp−
(

µ+ dp
2

3

)

q



 and g(x) =

(

0
−γq

)

.

If the isoperimetric constraint (4) is added as a third variable to the dynamics,
the optimal control problem then becomes a Mayer-type problem of the following
form:

[OC] for a free terminal time T , minimize the objective

J(u) = ϕ(x(T )) (5)

over all Lebesgue measurable functions u : [0, T ] → [0, a] subject to the
dynamics

ẋ = f(x) + ug(x) x(0) = x0, (6)

ẏ = u, y(0) = 0, (7)

and terminal constraint y(T ) ≤ A.

In this formulation, the dosage of the anti-angiogenic agent and its concen-
tration in the plasma are identified, i.e., pharmacokinetics of the inhibitors is
neglected. Given the background of the model, the obvious question arises to
what extent the structure of optimal controls and trajectories is preserved if
the dynamics is refined to include these relations. For the most commonly used
model of exponential growth and decay, this leads to the following extension of
the optimal control problem [OC]:
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[OCwLDC] for a free terminal time T , minimize the objective J(u) = ϕ(x(T ))
over all Lebesgue measurable functions u : [0, T ] → [0, a] subject to the
dynamics

ẋ = f(x) + cg(x) x(0) = x0,

ċ = −kc+ u c(0) = 0, (8)

ẏ = u, y(0) = 0,

and the terminal constraint y(T ) ≤ A.

Thus, here the control u of formulation [OC] has been replaced by the state
of a first-order linear system. In equation (8), k is a positive constant, the so-
called clearance rate of the agent. The control limit a still denotes the maximal
allowable dosage. Mathematically, it would be redundant to include another
coefficient at the control u in equation (8) and therefore this term has been nor-
malized. These coefficients determine the limits for the achievable concentration,
0 ≤ c(t) ≤ cmax = a

k
. The coefficient γ in the original equation (3) represents a

simple model for the pharmacodynamics of the agent and is retained.
Both formulations are single-input, control affine systems and it is well-

known (see also section 3 below) that the main candidates for optimality are
the constant controls u = 0 and u = a, the so-called bang controls, and sin-
gular controls. The latter typically correspond to time-varying controls that
take values in the interior of the control set. For a class of models for cancer
chemotherapy that also have this general structure Σ and were analyzed earlier
(e.g., Swierniak, 1988, 1995; Swierniak, Polanski and Kimmel, 1996; Ledzewicz
and Schättler, 2002a,b), optimal controls are bang-bang and in Ledzewicz and
Schättler (2005), we have shown that this property of optimal controls is pre-
served under the addition of a linear PK-model of the form (8). In Ledzewicz
and Schättler (2007), we constructed the optimal synthesis for problem [OC]
for the model for tumor anti-angiogenesis by Hahnfeldt et al. (1999), and in this
case optimal controls generally contain a segment where the control is singular
of order 1. The same holds for the modification of this model by Ergun et al.
(2003), that was analyzed in Ledzewicz, Munden and Schättler (2009). Since
singular controls are inherently defined through nonlinear relationships, it is a
priori not evident whether their optimality will be preserved under such a mod-
eling extension. In this paper we show that in a certain sense this actually is
true for a planar system. All equations that define an order 1 singular control
and its optimality status carry over verbatim from the optimal control problem
[OC] to the model [OCwLDC]. At the same time, however, the order of the
singular arc increases from 1 to 2 and this does have significant implications for
the concatenation structures of optimal trajectories. Direct concatenations of
the optimal singular control with the bang controls u = 0 and u = a are no
longer optimal and now this transition can only be accomplished by means of
chattering controls (see, e.g., Zelikin and Borisov, 1994) or possibly even more
complicated control schemes. Thus, while essential features are preserved under
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the modeling extension considered here, the structure of the optimal synthesis
does change.

3. Order 1 singular controls for model [OC]

We briefly describe the Lie-bracket based formulas for an optimal singular arc
and its corresponding singular control in dimension 2. These computations
are well-known in the framework of differential geometric methods for optimal
control (see, e.g., Sussmann et al., 1983, H. Sussmann’s work on time-optimal
control for planar systems in Sussmann, 1982, 1987, or the research monographs
by Bonnard and Chyba, 2003, or Boscain and Piccoli, 2004). These relations
are essential for the construction of a synthesis of optimal controls for problem
[OC] and will then be connected to the singular arc for the extended model
[OCwLDC] in the next section.

If u∗ : [0, T ] → [0, a] is an optimal control for problem [OC] with corre-
sponding trajectory x∗, then, by the Pontryagin maximum principle, there exist
a constant λ0 ≥ 0, an absolutely continuous co-vector, λ : [0, T ] → (R2)∗ (which
we write as row-vector), and a constant ν such that (i) (λ0, λ(t), ν) 6= (0, 0, 0)
for all t ∈ [0, T ], (ii) λ satisfies the adjoint equations

λ̇(t) = −λ(t) (Df(x∗(t) + u∗(t)Dg(x∗(t))) , λ(T ) = λ0ϕx(x(T )), (9)

and (iii) the optimal control u∗(t) minimizes the Hamiltonian H ,

H = λ (f(x) + ug(x)) + νu (10)

along (λ(t), ν, x∗(t)) over the interval [0, a], and the minimum value is given
by 0. The trivial y dynamics only enters the Hamiltonian H and gives rise to
the extra multiplier ν, but otherwise can mostly be taken out from the explicit
formulation of the conditions of the Maximum principle.

We call a pair ((x, y), u) consisting of an admissible control u and corre-
sponding trajectory (x, y) an extremal (pair) if there exist multipliers (λ0, λ, ν)
such that the conditions of the Maximum Principle are satisfied; the triple
((x, y), u, (λ0, λ, ν)) including the multipliers is an extremal lift (to the cotan-
gent bundle). Extremals with λ0 = 0 are called abnormal, while those with a
positive multiplier λ0 are called normal. For problem [OC], except for degener-
ate solutions when u ≡ 0 would be optimal (and these are not realistic for the
underlying biological problem we are interested in), all extremals are normal,
and we henceforth assume λ0 = 1.

The minimum condition (iii) is equivalent to minimizing the so-called switch-
ing function Φ,

Φ(t) = ν + λ(t)g(x∗(t)), (11)

over the interval [0, a] and optimal controls thus satisfy

u∗(t) =

{

0 if Φ(t) > 0
a if Φ(t) < 0

. (12)
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A priori, the control is not determined by the minimum condition at times when
Φ(t) = 0. Clearly, if the derivative of Φ does not vanish at a zero τ , then the
value of the control switches between u = 0 and u = a at τ and we refer to
the constant controls u = 0 and u = a as bang controls. On the other hand,
if Φ vanishes on an open interval I, then also all derivatives of Φ must vanish
and this may determine the control. Controls of this kind are called singular.
These two classes of controls are the natural candidates for optimal controls and
there exists a wealth of literature, both classical and modern, analyzing their
optimality status. (For some recent references, see Stefani, 2003; Felgenhauer,
2003; Bonnard and Chyba, 2004; or Maurer et al., 2005.) Derivatives of the
switching function are a key tool in analyzing optimal controls and the following
well-known lemma shows how to calculate these derivatives efficiently in terms
of Lie brackets.

Proposition 3.1 Let h be a continuously differentiable vector field and define

Ψ(t) = 〈λ(t), h(x(t))〉 . (13)

The derivative of Ψ along a solution x to the system equation (6) for control u
and a solution λ to the corresponding adjoint equation (9) is given by

Ψ̇(t) = 〈λ(t), [f + ug, h](x(t))〉 , (14)

where [k, h] denotes the Lie bracket of the vector fields k and h. In local coordi-
nates the Lie bracket is given by

[k, h](x) = Dh(x)k(x) −Dk(x)h(x)

with Dh and Dk denoting the matrices of the partial derivatives. �

Suppose an optimal control is singular on an open interval I. Since ν =
const, it follows that

Φ̇(t) = 〈λ(t), [f, g](x(t))〉 ≡ 0, (15)

Φ̈(t) = 〈λ(t), [f + ug, [f, g]](x(t))〉 ≡ 0. (16)

It is a necessary condition for optimality of the singular control, the so-called
Legendre-Clebsch condition (e.g., Bryson and Ho, 1975; Bonnard and Chyba,
2003), that

〈λ(t), [g, [f, g]](x(t))〉 ≤ 0. (17)

The singular control is said to be of order 1 on I if everywhere on the interval
this quantity does not vanish. Singular controls of higher order arise if the term
〈λ(t), [g, [f, g]](x(t))〉 does vanish on some subintervals. If the singular control
is of order 1 on I, then we necessarily have that

〈λ(t), [g, [f, g]](x(t))〉 < 0, (18)
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i.e., the so-called strengthened Legendre-Clebsch condition is satisfied. This in-
equality indeed implies some local optimality properties of the singular control.
For example, we refer the reader to the classical paper by Gardner-Moyer (1973),
where a local embedding of the corresponding singular arc, respectively surface,
into a family of extremals is constructed in R

3, or to the more recent paper by
Stefani (2003), in which strong minimality of a singular extremal is proven if I is
the full interval (0, T ). But generally, for any particular problem, it will become
necessary to combine the singular arc(s) with other extremal trajectories to
construct a so-called regular synthesis to actually prove optimality (Boltyansky,
1966; Piccoli and Sussmann, 2000). For an order 1 singular control, equation
(16) can formally be solved for u as

usin(t) = −
〈λ(t), [f, [f, g]](x(t))〉

〈λ(t), [g, [f, g]](x(t))〉
(19)

and this formula determines the singular control as a function of the state x(t)
and the multiplier λ(t). Thus the computation of singular controls and the
analysis of their local optimality requires the computations of the Lie brackets
[f, [f, g]] and [g, [f, g]] and their inner products with the multiplier λ.

Special situations arise in dimension 2 (and also 3) if the vector field [f, [f, g]]
can be written as a linear combination of lower order Lie brackets. In these
cases, it is often possible to simplify the expression (19) further and obtain the
singular control as a feedback control usin(x). In the models for tumor anti-
angiogenesis that are of interest to us, the vector fields [f, g] and [g, [f, g]] are
linearly independent and thus [f, [f, g]] can be written as a linear combination
of this basis with coefficients that are smooth functions of the state x,

[f, [f, g]](x) = ϕ(x)[f, g](x) − ψ(x)[g, [f, g]](x).

For a singular extremal 〈λ(t), [f, g](x(t))〉 vanishes and thus

〈λ(t), [f, [f, g]](x(t))〉 = −ψ(x(t)) · 〈λ(t), [g, [f, g]](x(t))〉 .

Hence, if the the strengthened Legendre-Clebsch condition is satisfied, the term
〈λ(t), [g, [f, g]](x(t))〉 cancels and the singular control is given as a feedback
function by usin(t) = ψ(x(t)). Clearly, whether this feedback is admissible, that
is, whether it takes values in the control set [0, a], needs to be determined for
each problem under consideration and cannot be asserted in general. Even when
admissible, this feedback does not define a singular control everywhere, but only
on a thin subset. The conditions of the Maximum principle need to be satisfied
and the extra condition that H ≡ 0 requires that also

〈λ(t), f(x(t))〉 = 0 for all t ∈ I. (20)

Since λ(t) 6= 0 (otherwise we once more have the trivial case of u ≡ 0), it follows
that the vector fields f and [f, g] must be linearly dependent along the singular
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arc and thus the singular control is only defined on the curve

S = {x ∈ R
2 : ∆(x) = det (f(x), [f, g](x)) = 0}.

Summarizing, we have the following well-known statement (Sussmann, 1982 and
1987; Bonnard and Chyba, 2003; Boscain and Piccoli, 2004):

Proposition 3.2 Suppose the vector fields [f, g] and [g, [f, g]] are linearly in-
dependent and

[f, [f, g]](x) = ϕ(x)[f, g](x) − ψ(x)[g, [f, g]](x). (21)

Then the singular control is given in feedback form as

usin(t) = ψ(x(t)) (22)

and the singular arc is defined by

∆(x) = det (f(x), [f, g](x)) = 0. (23)

Furthermore, if the strengthened Legendre-Clebsch condition is satisfied
along these arcs, and if the singular control takes values in the interior of the
control set, then it is a classical result that the singular control can be concate-
nated at every time with the bang controls u = a or u = 0 without violating
the conditions of the Maximum principle. That is, if (τ − ε, τ + ε) is a small
interval with the property that the optimal control is singular on (τ − ε, τ) or
(τ, τ + ε) and constant on the complementary interval, u = 0 or u = a, then the
conditions of the Maximum Principle are satisfied. To see this, recall that by
Proposition 3.1, for any control u that is continuous from the left (−) or right
(+), the second derivative of the switching function is given by

Φ̈(t±) = 〈λ(t), [f, [f, g]](x(t))〉 + u(t±) 〈λ(t), [g, [f, g]](x(t))〉 (24)

and it vanishes identically on I along the singular control. Since the strength-
ened Legendre-Clebsch condition is satisfied, we have 〈λ(t), [g, [f, g]](x(t))〉 < 0.
If the singular control takes values in the interior of the control set [0, a], then
〈λ(t), [f, [f, g]](x(t))〉 > 0. Hence, for u = 0 we get Φ̈(t) > 0 and for u = a we
have Φ̈(t) < 0. These signs are consistent with entry and exit from the singular
arc for each control, i.e., for example, if u = 0 on an interval (τ − ε, τ), then
Φ is positive over this interval, consistent with the choice u = 0 as minimizing
control. This allows to construct a local synthesis of extremals around S by
integrating the constant controls u = 0 or u = a forward and backward from
the singular arc. These trajectories indeed are locally optimal over a neighbor-
hood covered by the trajectories in this construction (see, for instance, Gardner-
Moyer, 1973, or Sussmann, 1982). For the models for tumor anti-angiogenesis
which we considered in Ledzewicz and Schättler (2007 and 2009), in fact the
global optimality of these singular controls can be established in this way.
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4. Singular controls for model [OCwLDC]

We now show that all the formulas defining the singular arc and its control carry
over (albeit with a different interpretation) if a linear dynamics is added to the
model for the control, i.e., if we replace u with c where

ċ = −kc+ u, c(0) = 0.

We write z = (x, c) and, as before, keep the variable y that keeps track of the
isoperimetric constraint separate since it does not participate in the computa-
tions of the Lie brackets. The dynamical equations now form a single input,
control-affine system of the form

ż = F (z) + uG (25)

with 3-dimensional state vector z, drift F , and a constant control vector field G
given by

F (z) =

(

f(x) + cg(x)
−kc

)

, G(z) =

(

0
1

)

. (26)

We denote the corresponding adjoint variable by Λ = (λ̂, µ̂) and the adjoint
equations and transversality conditions are

˙̂
λ = −λ̂ (Df(x) + cDg(x)) , λ̂(T ) = ϕx(x(T )) (27)

˙̂µ = −λ̂g(x) + kµ̂, µ̂(T ) = 0. (28)

The Hamiltonian for the problem [OCwLDC] is

Ĥ = λ̂ (f(x) + cg(x)) + µ̂(−kc+ u) + ν̂u (29)

with ν̂ again a constant, the multiplier associated with the isoperimetric con-
straint. The switching function now is given by

Ψ(t) = µ̂(t) + ν̂ = 〈Λ(t), G(z(t))〉 + ν̂. (30)

As before, we need to calculate the derivatives of the switching function.
The control vector field G is a coordinate vector field and we simply have that

[F,G](z) = −
∂F

∂c
(z) = −

(

g(x)
−k

)

(31)

and the higher order Lie brackets with G all vanish identically: if we write
adn

G(F ) = adG ◦ adn−1
G (F ) with adG(F ) defined by adG(F ) = [G,F ], then for

n ≥ 2

adn
G(F )(z) =

∂nF

∂cn
(z) ≡ 0. (32)
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In particular, [G, [F,G]](z(t)) ≡ 0. The derivatives of the switching function
therefore are now given by

Ψ̇(t) = 〈Λ(t), [F,G](z(t))〉 ≡ 0, (33)

Ψ̈(t) =
〈

Λ(t), ad2
F (G)(z(t))

〉

≡ 0, (34)
...
Ψ(t) =

〈

Λ(t), ad3
F (G)(z(t))

〉

≡ 0, (35)

and the control only enters the fourth derivative,

Ψ(4)(t) =
〈

Λ(t), [F + uG, ad3
F (G)](z(t))

〉

≡ 0. (36)

A singular control of this type is said to be of intrinsic order 2 (Zelikin
and Borisov, 1994). Note that, for a general problem, it need not follow that
the third derivative of the switching function vanishes on an interval I if only
the inner product 〈Λ(t), [G, [F,G]](z(t))〉 vanishes on I, (see, e.g., Bonnard and
Chyba, 2003). But this is true if [G, [F,G]] ≡ 0 as it is the case here. The
adjective ‘intrinsic’ is used to distinguish these cases. Thus, in this case, if the
control u is singular on an open interval I, then Λ must vanish against the
vector fields F (since Ĥ ≡ 0), G, and their Lie brackets [F,G], ad2

F (G) and
ad3

F (G). Generically, in low dimensions, these are too many conditions to be
met simultaneously. But in our case there exist relations between these vector
fields that guarantee that all these conditions can be satisfied. Note that

F (z) =

(

f(x)
0

)

− c[F,G](z) (37)

and direct computations verify that

ad2
FG(z) = −

(

[f, g](x)
0

)

+ k[F,G](z), (38)

ad3
FG(z) = −

(

[f + cg, [f, g]](x)
0

)

+ kad2
FG(z) (39)

and

[G, ad3
F (G)](z) = −

(

[g, [f, g]](x)
0

)

. (40)

The multiplier Λ is nonzero (otherwise we again have the trivial solution
u ≡ 0) and thus the condition that Λ vanishes against the vector fields F , [F,G]
and ad2

F (G) is equivalent to the statement that these vector fields are linearly
dependent:

0 = det
[

F (z), [F,G](z), ad2
F (G)(z)

]

= det

[ (

f(x) + cg(x)
−kc

)

,

(

−g(x)
k

)

,

(

−[f, g](x) − kg(x)
k2

) ]

= − det

[(

f(x)
0

)

,

(

−g(x)
k

)

,

(

[f, g](x)
0

)]

= k∆(x). (41)
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Hence this equation reduces to relation (23) that defines the singular arc for
the model [OC]. Now, however, this relation, which does not depend on the
new variable c, only defines a vertical surface in (x, c)-space on which singular
arcs need to lie. But Λ(t) also vanishes against the vector field ad3

F (G) and the
linear dependence of the vector fields adF (G), ad2

F (G) and ad3
F (G) determines

c:

0 = det
[

[F,G](z), ad2
F (G)(z), ad3

F (G)(z)
]

= det
[

[F,G](z), ad2
F (G)(z),

−

(

[f + cg, [f, g]](x)
0

)

+ kad2
F (G)(z)

]

= − det

[

[F,G](z), −

(

[f, g](x)
0

)

+ k[F,G](z),

(

[f + cg, [f, g]](x)
0

)]

= det

[

−

(

g(x)
−k

)

,

(

[f, g](x)
0

)

,

(

[f + cg, [f, g]](x)
0

) ]

= k det
[

[f, g](x), [f + cg, [f, g]](x)
]

. (42)

Using the relation (21) to express [f, [f, g]] as a linear combination of [f, g] and
[g, [f, g]], we thus get that

0 = det
[

[f, g](x), [f + cg, [f, g]](x)
]

= det
[

[f, g](x), ϕ(x)[f, g](x) + (−ψ(x) + c)[g, [f, g]](x)
]

= (c− ψ(x)) det
[

[f, g](x), [g, [f, g]](x)
]

.

The linear independence of [f, g] and [g, [f, g]] implies that c is given by

c = ψ(x), (43)

the same function that defines the optimal control in the model [OC].
Overall, the singular arc of the model [OC] in x-space is preserved as a

vertical surface in (x, c)-space and the equation, which for problem [OC] defines
the singular control, now defines the new state variable c. The graph of this
function intersects the singular surface in a unique curve, the new singular arc.
The control that keeps this arc invariant is calculated by implicit differentiation
of this relation, i.e.,

u = ċ+ kc = Dψ(x)ẋ + kc

= kc+Dψ(x) (f(x) + cg(x)) .

If u is singular of intrinsic order 2, then the necessary condition for mini-
mality is that

∂

∂u

(

d4

dt4
Ψ(t)

)

=
〈

Λ(t), [G, ad3
F (G)](z(t))

〉

≥ 0.
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This is known as the Kelley condition (Kelley, 1964; Kelley et al., 1967; Zelikin
and Borisov, 1994), but is also called the generalized Legendre-Clebsch condition
in Bryson and Ho (1975), or in Knobloch (1981). For a singular control that is
of intrinsic order k, this necessary condition for minimality can compactly be
expressed as

(−1)k ∂

∂u

dk

dtk
∂H

∂u
≥ 0. (44)

For problem [OCwLDC], by (40) we have that

〈

Λ(t), [G, ad3
F (G)](z(t))

〉

= −
〈

λ̂(t), [g, [f, g]](x(t))
〉

. (45)

Therefore, if we can identify λ̂ with λ over an interval I when the control is sin-
gular, then the strengthened Legendre-Clebsch condition for the singular control
of problem [OC] implies that the strengthened version of the Kelley condition is
satisfied for problem [OCwLDC]. This indeed can be done: since (i) the singu-
lar arc S is preserved and (ii) the extra variable c is defined by the same feedback

function of x, it follows that λ and λ̂ satisfy the same differential equation on

I. Furthermore, by (34) and (38) we also have that
〈

λ̂(t), [f, g](x(t))
〉

= 0. The

fact that the switching function Φ for problem [OC] vanishes on I implies that

〈λ(t), g(x(t))〉 = −ν (46)

while the fact that the switching function Ψ and its derivative vanish for problem

[OCwLDC] imply that µ̂(t) ≡ −ν̂ and
〈

λ̂(t), g(x(t))
〉

= kµ̂(t). Hence

〈

λ̂(t), g(x(t))
〉

= −kν̂. (47)

Thus, if we take λ(t) = λ̂(t) and ν = kν̂, then these multipliers satisfy the
conditions of the Maximum Principle for a singular control on I. Hence the
status of the necessary condition for optimality of a singular control carries over
from problem [OC] to [OCwLC].

However, the fact that the Kelley condition is now satisfied with a positive
sign, has significant implications on possible concatenations between the singular
control and bang controls. If the singular control takes a value in the interior of
the control set, 0 < usin(z(t)) < a, then it is no longer optimal to concatenate
the singular control at time t with any of the two bang controls u = 0 or u = a.
For example, suppose that for some ε > 0 the control is singular over the interval
(τ − ε, τ) and is given by u = 0 over the interval (τ, τ + ε). We now have that

Φ(4)(τ+) =
〈

λ(τ), ad4
F (G)(z(t))

〉

< 0 (48)

and thus the switching function has a local maximum for t = τ , i.e., is negative
over the interval (τ, τ+ε). But then, the minimization property of the Hamilto-
nian implies that the control must be u = a. The analogous contradiction arises
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for other types of concatenations. Thus an optimal singular control of order 2
that takes values in the interior of the control set cannot be concatenated with
a bang control. However, transitions onto the singular arc are still possible by
means of chattering arcs, i.e., through controls that switch infinitely often be-
tween the controls u = 0 and u = a on any interval (τ, τ + ε). For a single-input
control-affine system, Zelikin and Borisov (1994), Zelikin and Zelikina (1998)
give conditions, under which a canonical family of chattering extremals does
exist in the cotangent bundle, but for these controls to be optimal (like it is the
case in the Fuller problem), a bijective projection into the state space must exist
(also, see Chyba and Haberkorn, 2003). Nevertheless, in all these cases, chat-
tering controls appear to provide the only realistic control scheme that would
allow to connect with the singular arc.

5. Example: optimal control for tumor

anti-angiogenesis

For the mathematical model for tumor anti-angiogenesis from Hahnfeldt et al.
(1999), the optimal control problem [OC] under consideration is to minimize the
tumor volume p(T ) over all Lebesgue measurable functions u : [0, T ] → [0, a]
subject to the dynamics (2) and (3) and terminal condition y(T ) ≤ A. In this
case there exists an optimal singular arc which determines the optimal synthesis
and we briefly describe both, but refer to Ledzewicz and Schättler (2007a), for
the mathematical analysis.

Proposition 5.1 (Ledzewicz and Schättler, 2006, 2007a) For problem [OC]
there exists a locally minimizing singular arc S in (p, q)-space which, using a
blow-up of the form r = p

q
, can be parameterized in the form

S : dp
2

3 = br(1 − ln r) − µ (49)

with r ∈ (r∗1 , r
∗
2), where r∗1 and r∗2 are the unique zeroes of the equation

br(1 − ln r) − µ = 0

and satisfy 0 < r∗1 < 1 < r∗2 < e. The singular control keeps S invariant and is
given as a feedback function of p and q as

usin(t) = ψ(p(t), q(t))

=
1

γ

(

ξ ln

(

p(t)

q(t)

)

+ b
p(t)

q(t)
+

2

3
ξ
d

b

q(t)

p
1

3 (t)
−

(

µ+ dp
2

3 (t)
)

)

. (50)

Using the relation (49), the singular control can equivalently be expressed as a
function of r alone in the form

usin(t) =
1

γ

[(

1

3
ξ + br(t)

)

ln r(t) +
2

3
ξ

(

1 −
µ

br(t)

)]

. (51)
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Figure 1. Singular arc and its admissible part

There exists exactly one connected arc on the singular curve S, along which the
singular control is admissible, i.e., satisfies the bounds 0 ≤ usin(r) ≤ a. This arc
is defined over an interval [r∗ℓ , r

∗
u] where r∗ℓ and r∗u, respectively, are the unique

solutions to the equations usin(r
∗

ℓ ) = 0 and usin(r∗u) = a and these values satisfy
r∗1 < r∗ℓ < 1 < r∗u < r∗2 .

This structure is fully robust and only requires that we have γa > b−µ > 0,
natural conditions for the problem. Fig. 1 gives the graph of the singular curve
defined by (49) with the admissible portion marked as solid curve. For the
parameter values for this illustration we used the following data from Hahnfeldt
et al. (1999): ξ = 0.192

ln 10 = 0.084 per day (this value is adjusted to the natural
logarithm), b = 5.85 mm per day, d = 0.00873 per mm per day, γ = 0.15 kg
per mg of dose. For the upper limit a on the dosage we selected a = 75 and for
illustrative purposes we also set µ = 0.02.

The admissible singular arc becomes the centerpiece for the synthesis of opti-
mal solutions shown in Fig. 2. The important curves are the admissible portions
of the singular arc S (solid curve), portions of trajectories corresponding to the
constant controls u = 0 and u = a (dash-dotted and solid almost horizontal line-
like curves), and the line p = q (dotted line) where the trajectories achieve the
maximum tumor reduction. This diagram represents the optimal trajectories
as a whole and each of the different curves gives a different optimal trajectory
depending on the actual initial condition. The thick curves in the graph mark
one specific such trajectory. In this case the initial value p0 for the tumor vol-
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Figure 2. Synthesis of optimal trajectories for problem [OC] for a model for
tumor anti-angiogenesis (Hahnfeldt et al., 1999)

ume and q0 for the carrying capacity are high and require an immediate start
of the treatment. The optimal trajectory, therefore, initially follows the curve
corresponding to the control u = a. Note that, although inhibitors are given
at full dose along this curve, this shows very little effect on the number of the
cancer cells in a sense of decrease. During this period the inhibitors drive down
the carrying capacity q and in this way prevent the further growth of the tu-
mor that otherwise, enabled by ample vascular support, would have occurred.
Once the trajectory corresponding to the full dose hits the singular arc S, it is
no longer optimal to give full dose and the optimal controls here switch to the
singular control. The optimal trajectory then follows the singular arc until all
inhibitors are exhausted. At this time therapy is over, but there still are the
after effects of treatment. Since the singular curve S lies in the region p > q

where we always have ṗ < 0, even along u = 0, the tumor volume is still de-
creasing and the maximum tumor reduction is only realized as the trajectory
for the control u = 0 crosses the diagonal p = q. The corresponding time then
is the optimal free end-time T considered in the problem formulation [OC]. We
only remark that the scenario described here assumes that no saturation occurs
along the singular arc. If that were the case, then optimal controls no longer
follow the singular regimen until saturation, but, in fact, optimal trajectories
leave the singular arc with the control u = a prior to the saturation point (see
also Schättler and Jankovic, 1993, or Bonnard and de Morant, 1995). Simply
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continuing the control with u = a is not optimal (Ledzewicz and Schättler,
2007).

When a linearmodel forpharmacokinetics is added, themodel being [OCwLDC],
the singular curve is preserved as a vertical surface in (p, q, c)-space, Fig. 3, and
now the singular arc is defined as the intersection with the graph of the function
c = ψ(p, q), see Fig. 4.
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Figure 3. Vertical singular surface in (p, q, c)-space for problem [OCwLDC]
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Chattering arcs now become the prime candidates for the optimal transitions
to and from the singular arc. The precise structure of these optimal controls,
however, has not yet been worked out. From a practical point of view, for the
underlying application chattering controls are not realistic. The real signifi-
cance of knowing the optimal solution lies rather in establishing a benchmark
value with which other, simple and realizable strategies can be compared. In
fact, even for problem [OC], the optimal singular controls are defined by time-
varying feedback controls and thus are not medically realizable. In Ledzewicz,
Marriott, Maurer and Schättler (2009), we have shown for this problem (for
both the original model by Hahnfeldt et al., 1999, and its modification by Er-
gun, Camphansen and Wein, 2003) that simple piecewise constant controls with
two dosages - easily practically realizable protocols - provide excellent subopti-
mal approximations to the optimal controls that consistently give values that
come within 1% of the theoretically optimal values. These dosages are not of
the bang type, but rather give lower dosages over specified time intervals that
mimick the time-varying optimal singular control in its behavior. It is hoped
that similar results can be established for the problem [OCwLDC] when a linear
pharmacokinetic model is added and that simple, non-optimal concatenations
with bang controls will provide satisfactory suboptimal approximations. Thus,
it would not only be of theoretical interest to establish an optimal synthesis of
controlled trajectories for this problem.

6. Conclusion

We considered a Mayer optimal control problem for a single-input, control affine
system in dimension 2 when control is replaced by the state of a first order time-
invariant linear system. We showed that the fundamental formulas that define
and characterize the optimality of singular controls and their corresponding tra-
jectories are preserved verbatim under such an extension. However, the intrinsic
order of the singular arc increases from 1 to 2. If the Kelley condition is sat-
isfied and the singular control takes values in the interior of the control set,
then this precludes concatenations between the singular and bang controls from
being optimal and now chattering arcs become the prime candidates to effect
the transitions to and from the singular arc.

For an application of these results to the problem of minimizing the tumor
size for a model of tumor anti-angiogenesis, establishing the structure of an
optimal synthesis would provide valuable information about the extent, to which
the pharmacokinetics of anti-angiogenic agents would need to be included in the
modeling of the problem. In this regard, the important question is how close to
optimal protocols simple realizable ones can come and how the optimal values
for the two problem formulations [OC] and [OCwLDC] compare. Thus, if there
is little difference in the tumor volumes achievable with realizable protocols, this
gives credence to a modeling approach that neglects the pharmacokinetic model.
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