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Abstract: We study the problem of small-time local attainabil-
ity (STLA) of a closed set. For doing this, we introduce a new
concept of variations of the reachable set, well adapted to a given
closed set and prove a new attainability result.
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1. Introduction and preliminaries

Small time local controllability is a central property for obtaining optimality
conditions, for stabilizing control systems, for studying the regularity of time
minimal problems for control systems (in general, it is well known that the min-
imal time function is only lower semicontinuous, see for example, Cardaliaguet,
Quincampoix and Saint Pierre, 1997), etc. There are many possible approaches
to study the small-time local controllability, leading to different results and re-
quiring different assumptions. Here we follow the geometrical approach. The
underlying philosophy is that the local properties of the reachable set of smooth
control systems are determined by the Lie algebra generated by the “admissi-
ble” vector fields. So, it is very natural to look for conditions for small-time
local controllability which can be expressed in terms of elements of this Lie al-
gebra. Unfortunately, there is a gap between the necessary and the sufficient
controllability conditions. Nevertheless, some very general sufficient conditions
for small-time local controllability at a point are known (see Agrachev and
Gamkrelidze, 1993; Bianchini and Stefani, 1990; Frankowska, 1989; Hermes,
1982; Liverovskij and Petrov, 1988; Sussmann, 1987), as well as some necessary
conditions (see Kawski, 1987; Krastanov, 1998; Stefani, 1986; Sussmann, 1983).
To our knowledge, necessary and sufficient conditions for small-time local con-
trollability at a point are proved only in some special cases (see for example,
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Aubin, Frankowska, and Olech, 1986; Brunovsky, 1974; Jurdjevic and Kupka,
1985; Krastanov, 2008; Krastanov and Veliov, 2005; Veliov, 1988; Veliov and
Krastanov, 1986).

The problem of local attainability of a closed set with respect to the trajec-
tories of a differential inclusion can not be reduced to the problem of small-time
local attainability at every point of the set. The reason is that the small-time
local attainability depends not only on the dynamics of the control system, but
also on the geometry of the considered closed set. So, it needs a specific study.
To state this problem, let us consider the following differential inclusion:

ẋ(t) ∈ F (x(t)), (1)

where F : IRn ⇒ IRn is a multivalued map.

Remark 1.1 We do not impose any continuity assumptions on the multivalued
map F because the important tool of our approach is a concept for high-order
control variations. Different examples of control systems whose dynamics is
governed by differential inclusions or ODE systems are considered in Krastanov
and Quincampoix (2001).

An absolutely continuous function x(·), satisfying (1) for almost every t from
[0, T ], is called a trajectory of (1) defined on [0, T ]. For a fixed point x and for
T > 0, the attainable set A(x, T ) of (1) at the moment T > 0 starting from the
point x for t = 0 is defined as the set of all points that can be reached in time
T from x by means of trajectories of (1).

Definition 1.1 Let S be a closed subset of IRn. It is said that S is small-time
locally attainable (STLA) with respect to the differential inclusion (1) if for any
T > 0 there exists a neighborhood Ω of S such that for every point x ∈ Ω there
exists an admissible trajectory of (1) starting from the point x and reaching the
set S in time not greater than T , i.e. A(x, t) ∩ S 6= ∅ for some t ∈ [0, T ].

One of the most common conditions to ensure local attainability of a closed
set is the so called Petrov condition (see, for example, Petrov, 1976). Roughly
speaking, this condition states that at every point of a neighborhood of the
target there exists an admissible velocity that “points” toward the target. To
formulate this condition in a rigorous way, we follow the notations from Clarke
and Wolenski (1996): Let S be a compact subset of IRn. We set

Sr := {y ∈ IRn : dS(y, S) ≤ r}, where dS(y) := inf {‖y − s‖ : s ∈ S}.

If x is an arbitrary point from Sr \ S, we denote by

Π(x) := {y ∈ S : ‖y − x‖ = dS(x)}

the set of all metric projections of the point x on the set S.
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Let y belong to the boundary ∂S of the set S. A vector ξ ∈ IRn is called
a proximal normal to S at y, provided that there exists r > 0 so that the
point y + rξ has y as the closest point. The set of all proximal normals at a
point y is a cone. This cone is denoted by Np

S(y) (for a detailed treatment of
proximal analysis and some of its applications, consult, for example, the books
of Clarke, 1983, and Clarke, Ledyaev, Stern and Wolenski, 1998). Using these
notations, the results of Clarke and Wolenski (1996), Veliov (1994 and 1997)
can be formulated as follows:

Theorem 1.1 Suppose that S is a nonempty and compact subset of IRn, and
F : IRn ⇒ IRn is a continuous multivalued map1 of modulus ω near S with
compact and convex values. Suppose that there exists δ > 0 so that, whenever
y ∈ S and ξ ∈ Np

S(y), there exists v ∈ F (y) for which

〈ξ, v〉 ≤ −δ‖ξ‖. (2)

Then S is small-time locally attainable with respect to the differential inclusion
(1).

Remark 1.2 We would like to point out that the condition (2) implies that

〈χ, v〉 ≤ −δ (3)

for each χ ∈ Np
S(y) with ‖χ‖ = 1, i.e. this scalar product is uniformly bounded

away from zero. Recently, a sufficient condition for attainability of a closed set
with respect to the trajectories of a smooth nonlinear system has been proved in
Marigonda (2006) (see also Colombo, Marigonda and Wolenski, 2006). Under
a suitable assumption for regularity of the closed set S, the positive number δ in
the Petrov condition (2) is replaced by a continuous nondecreasing function µ(·)
such that µ(ρ) > 0 for ρ > 0 and lim

ρ→0
µ(ρ) = 0. The idea of the corresponding

proof is new and uses control variations of zero and first order.

The condition (2) is very strong. As it is proved in Veliov (1997), this
condition is equivalent to Lipschitz continuity of the minimal time function up
to the boundary of the set S. Unfortunately, if the inequality (2) is violated
at some boundary point y of S (for example, when all admissible velocities are
“tangent” to the closed set S at y), we can not apply Theorem 1.1 (see the
illustrative examples in Krastanov, 2002).

The traditional approach towards proving sufficient local controllability con-
ditions has been to construct “high-order control variation”. Heuristically, if one
can construct variations in all possible directions, then the reachable set contains
a neighborhood of the starting point. The so called “high-order conditions” for
attainability of a closed set are also known. Usually the “high-order” term is
used for conditions involving Lie brackets of the original vector fields (see, for

1See Clarke and Wolenski (1996) for the definition for continuity of modulus ω.
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example, Bianchini and Stefani, 1990, and Coron, 1994, for the case of attain-
ability of a point, and Bacciotti and Stefani, 1980; Bardi and Capuzzo-Dolcetta,
1997; Krastanov and Quincampoix, 2001; Krastanov, 2002; and Soravia, 1978,
in the general case). To present the main idea, let us consider the following
nonlinear control system:

ẋ(t) =

m
∑

j=1

uj(t)fj(x(t)),

where fj, j = 1, . . . , m, are smooth vector fields defined on IRn and each control
function uj(·), j = 1, . . . , m, takes its values from the interval [−1, 1]. If at a
point ȳ ∈ S the Petrov condition does not hold for some element ξ ∈ Np

S(ȳ),
then the existence of a Lie bracket Λ of the vector fields fj, j = 1, . . . , m, is
required such that

〈ξ, Λ(ȳ)〉 ≤ −δ‖ξ‖.

This condition can be viewed as a Petrov type condition of higher order. Usually,
high-order conditions ensure local attainability of a closed set and imply Hölder
continuity of the minimal-time function, where the modulus of continuity is
determined by the “length” of the Lie brackets, which are involved.

In the present paper, we remind some concepts of high-order control varia-
tions defined in Krastanov and Quincampoix (2001), and present some of their
properties. Next we propose a larger class of high-order variations well adapted
to the considered problem of local attainability of a closed set. This allows us
to obtain a unified treatment of the STLA problem. Moreover, we extend the
main result of Marigonda (2006) in two directions. First, we do not impose
any regularity assumptions for the set S, and second, we prove a Petrov type
condition of higher order. The paper is organized as follows. The main result
is formulated in Section 3. The corresponding proof is given in Section 4. An
illustrative example is also presented.

2. High-order control variations

Following the approach proposed in Krastanov and Quincampoix (2001), we
present some concepts of high-order control variations: Let us fix a positive real
number T > 0, an open subset Ω of IRn and assume that the right-hand side
F of the differential inclusion (1) is defined on Ω. We also assume that the
attainable set A(x, t) of (1) is non empty for each 0 < t ≤ T and for each point
x ∈ Ω.

By V we denote the linear space of all smooth vector fields on IRn, considered
as a Lie algebra with the Lie product

[X, Y ] :=
∂Y

∂x
X −

∂X

∂x
Y. (4)
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Given a family of smooth vector fields Zµ parameterized by µ ≥ 0 and
a positive real s, we denote by exp (Zs) (x) the value of the solution of the
following ODE system

ẋ(t) = Zs(x(t)), x(0) = x, t ∈ [0, 1], (5)

at time t = 1.
Let r be a positive number, S be a closed subset of the set Ω and x̄ be an

arbitrary point of the set Sr \ S. Next we define a smooth high-order variation
A to the attainable set A(x̄, ·) of the differential inclusion (1).

Definition 2.1 Let Ωx̄ be a neighborhood of the point x̄, A : Ωx̄ \ S → Rn

be a smooth function, and α > 0, θ > 0 and β > α be positive numbers. It is
said that A belongs to the set E x̄

α,β,θ of high-order variations to the attainable set
A(x̄, ·) of the differential inclusion (1) if for each t ∈ [0, T ] and for each point
x ∈ Ωx̄ the following inclusion holds true

exp (tαA + a(t) + b(t)) (x) ∈ A(x, p(t)), (6)

where p : [0, T ] → IR is an increasing continuous function with p(0) = 0 and the
smooth maps a(·, ·) : [0, T ] × Ωx̄ → Rn and b(·, ·) : [0, T ]× Ωx̄ → Rn satisfy the
inequalities

‖a(t, x)‖ ≤ M tθ dS(x) and ‖b(t, x)‖ ≤ N tβ, t ∈ [0, T ], x ∈ Ωx̄,

for some positive constants M and N .

We also introduce a set T x̄ of the “tangent” vector fields to the attainable set
A(x̄, ·) of the differential inclusion (1) which can be used for constructing new
elements of the set E x̄

α,β,θ, provided that some elements of this set are already
known:

Definition 2.2 It is said that the smooth vector field Z belongs to the set T x̄

if there exist a neighborhood Ωx̄ of x̄ and positive real numbers C and T , such
that for every point x ∈ Ωx̄ and for each t ∈ [0, T ] the following inclusion holds
true

exp(tZ)(x) ∈ A(x, Ct). (7)

This definition implies the inclusion T x̄ ⊂ E x̄
α,β,θ for each real α > 0, θ > 0

and β > α.
The origin of the above definitions can be found in the papers by Hermes

(1978), Sussmann (1978), Hirshorn (1989) and Kunita (1979), where some of
the following propositions were proved. Next, these concepts were used in Kras-
tanov (2008), Krastanov and Veliov (2005), Veliov (1988), and Veliov and Kras-
tanov (1986) for studying controllability of systems with linear dynamics, and in
Krastanov (2002) and Krastanov and Quincampoix (2001) – for studying local
attainability of a closed set.
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Proposition 2.1 Let A1, A2, ..., Ak, belong to T x0 and A1(x0)+A2(x0)+ ...+
Ak(x0) = 0. Then [Ai, Aj ], i, j = 1, ..., k, belong to Ex0

2,3,1.

Proposition 2.2 Let A1 and A2 belong to T x0 and A1(x0)+A2(x0) = 0. Then
[A1, [A1, A2]] + [A2, [A2, A1]] belongs to Ex0

3,4,1.

Proposition 2.3 The set Ex0

α,β,θ is a convex cone for each β > α > 0 and
θ > 0.

Proposition 2.4 Let A1 and A2 belong to Ex0

α,β,θ, A1(x0) + A2(x0) = 0 and B

belong to T x0 with B(x0) = 0. Then there exist positive real numbers ᾱ, θ̄ and
β̄ with β̄ > ᾱ such that [B, A1] and [B, A2] belong to Ex0

ᾱ,β̄,θ̄
.

The proofs of these propositions, as well as some other useful assertions, can
be found in Krastanov and Quincampoix (2001).

The main result of this paper is a sufficient condition for local attainability
of a closed set with respect to the trajectories of the differential inclusion (1).
It is based on a suitable class of high-order variations:

Definition 2.3 Let r0 > 0, α > 0, θ > 0 and β > α, and let Eα,β,θ be the
family of continuous functions Aγ : Ωγ → IRn, γ ∈ Γ, where each Ωγ is an open
subset of Sr0

\ S. It is said that Eα,β,θ is a regular set of high-order variations
to the attainable set of the differential inclusion (1) provided that there exist
positive constants T0, M , N , C and P such that ‖Aγ(x)‖ ≤ C and the following
inclusion holds true

x + tαAγ(x) + aγ(t, x) + Oγ(tβ , x) ∈ A(x, pγ(t)) (8)

for each t ∈ [0, T0], for each point x ∈ Ωγ and for each γ ∈ Γ, where pγ : [0, T ] →
IR is an increasing continuous function with pγ(0) = 0 and the continuous maps
aγ(·, ·) : [0, T ]×Ωγ → Rn and Oγ(·, ·) : [0, T ]×Ωγ → Rn satisfy the inequalities

‖aγ(t, x)‖ ≤ MtθdS(x) and Oγ(tβ , x) ≤ Ntβ, t ∈ [0, T ], x ∈ Ωγ , γ ∈ Γ.

Remark 2.1 We would like to point out that the sets of variations Eα,β,θ are
closely related to the high-order variations introduced in Krastanov and Quin-
campoix (2001). Let us fix an index γ ∈ Γ. Then the term Oγ(tβ , x) is of higher
order with respect to tα uniformly for x ∈ Ωγ . From here and since ‖aγ(t, x)‖
tends to zero as r > 0 tends to zero, we can conclude that the “leading term” in
(8) is tαAγ(x) for small values of t > 0 and for all points x sufficiently close to
the set S. So, it is natural to check the Petrov condition for the variation Aγ .

3. The main result

First, we introduce the following notations

σ1(α, θ, β) :=











β, if α = θ;

α

α − θ
, if α > θ;

, σ3(α, β) :=











β, if β ≥ 2α;

α

2α − β
, if β < 2α;

,
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σ2(α, β, θ) :=











β, if β + θ ≥ 2α;

α

2α − β − θ
, if β + θ < 2α;

.

then the main result of this paper can be formulated as follows:

Theorem 3.1 Suppose that S is a nonempty closed subset of IRn, r0 > 0, α ≥ 1,
α ≥ θ > 0 and β > α, and let Eα,β,θ be a regular set of high-order variations to
the attainable set of the differential inclusion (1). Assume that for each point
x ∈ Sr0

\ S there exist a point π(x) ∈ Π(x) and an element A ∈ Eα,β,θ defined
on an open neighborhood of x such that

〈x − π(x), A(x)〉 ≤ −δ dS(x)λ, (9)

where δ and λ are positive real numbers satisfying

1 ≤ λ < min

(

σ1(α, θ), σ2(α, β, θ), σ3(α, β),
2α

2α − θ
,

2α

2α − 1

)

. (10)

Then S is locally attainable with respect to the differential inclusion (1).

Remark 3.1 The condition (9) can be written as follows:

〈χ, A(x)〉 ≤ −δ dS(x)λ̂, (11)

where χ :=
x − π(x)

‖x − π(x)‖
and λ̂ := λ − 1 ≥ 0. Clearly, ‖χ‖ = 1 and for λ̂ > 0 the

scalar product in (11) tends to zero as the point x tends to the set S in contrast
to the usual condition (3). The illustrative example, presented below, shows that

the case λ̂ > 0 is possible. Also, we would like to point out that the condition
(10) is technical and gives a relation between the geometry of the set S and the
properties of the high-order variations we need in the proof of Theorem 3.1.

Let Θ(x) be the minimal time of steering to the set S from the point x
by means of a trajectory of the differential inclusion (1), i.e. Θ(x) := inf{t ≥
0, such that z(0) = x, z(t) ∈ S for some trajectory z(·) of the differential
inclusion (1)}. The map Θ(·) is called time optimal map of reaching the set S.
The proof of Theorem 3.1 implies directly the following corollary:

Corollary 3.1 Suppose that the assumptions of Theorem 3.1 hold true. Then
there exist γ > 0 and η > 0 such that

Θ(x) ≤ γ dη
S(x) (12)

for every x in some neighborhood U of S.
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Proposition 3.1 Suppose that there exist some positive constants r, γ, η, K
and σ for which the following conditions hold true:

i) Θ(x) ≤ γ dη
S(x) for every x in Sr.

ii) if z(.) is a trajectory of the control system (1) defined on [0, T ] such that
z(T ) ∈ S, and if y is a point in Sr \S such that ‖y−z(0)‖ ≤ σ, then there
exists a trajectory zy(.) of (1) with

zy(0) = y and ‖zy(t) − z(t)‖ ≤ eKt‖zy(0) − z(0)‖

for every t ∈ [0, T ].

Then Θ is η-Hölder continuous in Sr.

Remark 3.2 Under the assumptions of Theorem 3.1, the condition i) holds al-
ways. The condition ii) is satisfied for control systems with Lipschitz continuous
right-hand side.

Example 3.1 Let us consider the following example: Let S := S1 ∪ S2 (see
Fig. 1), where

S1 := {(x, y, z) : y ≥ x5/4, |x| ≤
1

2
, z = 0}

and

S2 := {(x, y, z) : x = 0, y ≤ 0, z = 0},

and let us consider the following control system Σ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ẋ(t) = z(t),

ẏ(t) = −x2(t), u(t) ∈ [−1, 1],

ż(t) = u(t).

This example is interesting because the Petrov condition does not hold true
for all admissible velocities at all points of the form (x, 0, 0). But, there exists
a high-order variation satisfying the Petrov condition. We would like to point
out that the scalar product of this variation and the corresponding normal to
the set S tends to zero as the point tends to the set S.

It can be directly checked that the main result of Marigonda (2006) can not
be applied. On the other hand, Theorem 3.1 is applicable. By applying the
approach proposed in Krastanov and Quincampoix (2001), we can construct a
high-order variation of the attainable set (satisfying conditions (9) and (10)) at
every point belonging to some neighborhood of S. By applying these variations,
we can move towards the set S according to Theorem 3.1.
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Figure 1. The intersection of the set S and the hyperplane {(x, y, z) : z = 0}.

To make this in a rigorous way, we choose the positive number r so small
that the inclusion η := (x, 0, 0) ∈ Sr implies that x ≤ 1. We have to check
conditions (9) and (10) for each starting point η0 ∈ Sr. To avoid technicalities,
we consider only the most complicate case. Namely, we assume that the starting

point is of the form η0 := (x0+5/4x
3/2
0 , 0, 0) with x0 > 0. For every real number

T ∈ [0, 1] we choose a real t ∈ (0, T ] and set

ut(s) =

{

−1, if s ∈ [0, t/2];
1, if s ∈ [t/2, t].

(13)

It can be directly checked that the trajectory ηt(·) = (xt(·), yt(·), zt(·)) start-
ing from the point η0 and corresponding to the control ut(·) is well defined on
[0, t] and

xt(t)=x0 +
5

4
x

3/2
0 − t2/4, yt(t)=−t

(

x0 +
5

4
x

3/2
0

)2

+ O(t3, η0), zt(t)=0. (14)

We set A(η0) := (−1, 0, 0) and denote by π(η0) the metric projection of the
point η0 on the set S. It can be directly verified (see, also Fig. 1) that π(η0) =

(x0, x
5/4
0 , 0). Because the point η0 ∈ Sr, we have x0 ≤ 1, and hence x

5/4
0 <

dS(η0) < 2x
5/4
0 . Also,

〈A(η0), η0 − π(η0)〉 = −
5

4
x

3/2
0 < −

5

4

(

dS(η0)
4/5

24/5

)3/2

= −
5

4

1

26/5
dS(η0)

6/5.
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This inequality shows that the condition (9) holds true. Taking into ac-
count (14), we can represent the end point ηt(t) of the trajectory ηt(·) as follows

ηt(t) = η0 +
t2

4
A(η0) + a(t, η0) + O(t3, η0),

where ‖a(t, η0)‖ ≤ c1 t dS(η0)
8/5 and ‖O(t3, η0)‖ ≤ c2 t3 for some positive con-

stants c1 and c2. Thus, A ∈ Vη0

2,3,1. Clearly, the condition (10) also holds true

for λ = 6
5 .

Similarly, we can construct a high order variation of the attainable set at
every other point belonging to Sr. Moreover, it can be shown that the set of
these variations is regular. Applying Theorem 3.1, Corollary 3.1 and Proposition
3.1, we obtain that the set S is small-time locally attainable and the time-
optimal map is Hölder continuous.

4. Proofs

Proof of Theorem 3.1. The regularity of Eα,β,θ implies the existence of
positive constants T0, M , N , C and P , for which the conditions of Definition
2.3 are satisfied.

Let us fix an arbitrary T from the interval (0, T0]. First, we determine the
positive number r so that the neighborhood Sr of the set S be sufficiently small.
To do this, we note that the condition (10) implies that

2 − 2λ +
λ

α
> 0, 2 + λ

(

θ

α
− 2

)

> 0

1 + λ

(

β + θ

α
− 2

)

and 1 + λ

(

β

α
− 2

)

> 0.

This and the inequality β > α ≥ 1 imply that we can find a positive real r for
which the following inequalities hold true:

[

M2

(

δ

C2

)2θ/α

r2+2λ(θ/α−1) + N2

(

δ

C2

)2β/α

r2λ(β/α−1)

+2MN

(

δ

C2

)(β+θ)/α

r1+λ((β+θ)/α−2) + 2MC

(

δ

C2

)1+θ/α

r1+λ(θ/α−1)

+2NC

(

δ

C2

)1+β/α

rλ(β/α−1) + 2M

(

δ

C2

)θ/α

r2+λ(θ/α−2)

+2N

(

δ

C2

)β/α

r1+λ(β/α−2)

]

<
δ2

2C2

and
4P

C2

(

δ

C2

)1/α−2
r2−2λ+λ/α

2 − 2λ + λ/α
< T.

(15)
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This choice of r provides for all estimates we need in the proof. Next, we fix
an arbitrary point x from Sr \ S. Let π(x) be an arbitrary point from the set
Π(x). Then ‖x− π(x)‖ = dS(x), 0 6= x− π(x) ∈ Np

S(π(x)), and according to
(9), there exists an element A from Eα,β,θ for which

C ≥ ‖A(x)‖ ≥

〈

−
x − π(x)

‖x− π(x)‖
, A(x)

〉

≥ δ dλ−1
S (x).

It follows from here that

d2
S(x) −

δ2

2C2
d2λ

S (x) = d2
S(x) −

1

2

δ2 d2λ−2
S (x)

C2
d2

S(x) ≥
1

2
d2

S(x). (16)

According to Definition 2.3, the relation A ∈ Eα,β,θ implies the existence of
px,π(x)(·), a(·, ·) and O(·, ·) such that for all t ∈ [0, T ]

zx,π(x)(x, t) := x + a(t, x) + tαA(x) + O(tβ , x) ∈ A(x, px,π(x)(t)). (17)

Moreover, the regularity of Eα,β,θ implies that for all t ∈ [0, T ]

‖a(t, x)‖ ≤ M tθ dS(x), ‖O(tβ , x)‖ ≤ N tβ and |px,y(t)| ≤ P t. (18)

Then for every t ∈ [0, T ] we have that

d2
S(zx,π(x)(x, t))

≤ ‖zx,π(x)(x, t) − π(x)‖2 = ‖(zx,π(x)(x, t) − x) + (x − π(x))‖2

≤
(

‖a(t, x)‖ + tα‖A(x)‖ + ‖O(tβ , x)‖
)2

+2
〈

a(t, x) + tαA(x) + O(tβ , x), x − π(x)
〉

+ ‖x − π(x)‖2

≤
(

MtθdS(x) + tαC + tβN
)2

+ 2tα < A(x), x − π(x) >

+2
〈

a(t, x) + O(tβ , x), x − π(x)
〉

+ dS(x)2

≤ M2t2θd2
S(x) + t2αC2 + N2t2β + 2MCtθ+αdS(x) + 2MNtθ+βdS(x)

+2NCtα+β − 2tαδ dλ
S(x) + 2Mtθd2

S(x) + 2tβNdS(x) + d2
S(x).

Now we fix the positive number t to be sufficiently small. To do this, let us
consider the terms −2tαδ dλ

S(x) and t2αC2. By setting

t(x) :=

(

δ dλ
S(x)

C2

)1/α

,

these terms will be of one and the same degree 2λ with respect to dS(x). More-
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over, by applying the inequalities (15), we obtain that

dS(zx,π(x)(x, t(x)))2

≤ d2
S(x) −

δ2

C2
d2λ

S (x) + dS(x)2λ

[

M2

(

δ

C2

)2θ/α

d
2+2λ(θ/α−1)
S (x)

+N2

(

δ

C2

)2β/α

d
2λ(β/α−1)
S (x) + 2MN

(

δ

C2

)(β+θ)/α

d
1+λ((β+θ)/α−2)
S (x)

+2MC

(

δ

C2

)1+θ/α

d
1+λ(θ/α−1)
S (x) + 2NC

(

δ

C2

)1+β/α

d
λ(β/α−1)
S (x)

2M

(

δ

C2

)θ/α

d
2+λ(θ/α−2)
S (x) + 2N

(

δ

C2

)β/α

d
1+λ(β/α−2)
S (x)

]

< d2
S(x) −

δ2

2C2
dS(x)2λ.

(19)

Hence, taking into account (16), we obtain that for every point x from Sr \S
the following estimation holds true:

dS(zx,π(x)(x, t(x))2 < d2
S(x) −

δ2

2C2
d2λ

S (x)

with zx,π(x)(x, t(x)) ∈ Sr. Using this estimate, we can define the sequence
{xk}∞k=0 of points of Sr tending to the set S. We set

xk :=











x, if k = 0;

zxk−1,π(xk−1)(xk−1, t(xk−1)), if k ≥ 1 and xk−1 ∈ Sr \ S;

xk−1, if k ≥ 1 and xk−1 ∈ S.

Then for each positive integer k ≥ 0, for which the point xk belongs to the
set Sr \ S the following estimate holds true:

d2
S(xk+1) = d2

S(zxk,π(xk)(xk, t(xk)) < d2
S(xk) −

δ2

2C2
d2λ

S (xk). (20)

The sequence {dS(xk)}∞k=0 is decreasing and bounded from below. Hence,
it is convergent. Let d := lim

k→∞
dS(xk). If we assume that d > 0, then for each

positive ǫ > 0 there exists a positive integer kǫ such that d < dS(xk) < d+ ǫ for
each positive integer k ≥ kǫ. By applying the estimate (20), we obtain that

d2
S(xkǫ+1) = d2

S(zxkǫ ,π(xkǫ)(xkǫ
, t(xkǫ

)) < d2
S(xkǫ

) −
δ2

2C2
d2λ

S (xkǫ
)

< (d + ǫ)2 −
δ2

2C2
d2λ < d2

whenever ǫ > 0 is sufficiently small. The contradiction obtained shows that
d = 0.
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We claim that
∑

xk∈Sr\S

pxk,π(xk) (t(xk)) < T , i.e. the set S is attainable from

the point x via a trajectory of the differential inclusion (1) in finite time which
is less than T . Let us assume that all points xk, k = 0, 1, 2, . . . belong to the
set Sr \ S (the case when only a finite number of points xk belong to the set
Sr \ S is simpler and can be considered in the same way). Application of the
estimate (20) and the equalities

δ2

2C2
dS(xk)2λ =

C2

2

(

δ dλ
S(xk)

C2

)1/α
(

δ

C2

)2−1/α

d
2λ−λ/α
S (xk)

=
C2

2
t(xk)

(

δ

C2

)2−1/α

d
2λ−λ/α
S (xk),

yields

d2
S(xk+1) < d2

S(xk) −
C2

2
t(xk)

(

δ

C2

)2−1/α

d
2λ−λ/α
S (xk),

and hence

t(xk) <
2

C2

(

δ

C2

)1/α−2
d2

S(xk) − d2
S(xk+1)

d
2λ−λ/α
S (xk)

=
2

C2

(

δ

C2

)1/α−2
(dS(xk) − dS(xk+1))(dS(xk) + dS(xk+1))

d
2λ−λ/α
S (xk)

≤
4dS(xk)

C2

(

δ

C2

)1/α−2
dS(xk) − dS(xk+1)

d
2λ−λ/α
S (xk)

=
4

C2

(

δ

C2

)1/α−2
dS(xk) − dS(xk+1)

d
2λ−1−λ/α
S (xk)

.

From here it follows that

∞
∑

k=0

pxk,π(xk) (t(xk))

≤
∞
∑

k=0

P t(xk) ≤
4P

C2

(

δ

C2

)1/α−2 ∞
∑

k=0

dS(xk) − dS(xk+1)

d
2λ−1−λ/α
S (xk)

≤
4P

C2

(

δ

C2

)1/α−2 ∫ dS(x)

0

1

µ2λ−1−λ/α
dµ =

4P

C2

(

δ

C2

)1/α−2

d
2−2λ+λ/α
S (x)

≤
4P

C2

(

δ

C2

)1/α−2

r2−2λ+λ/α < T.

The last inequality is implied by (15). This completes the proof.
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Proof of Proposition 3.1. Our proof follows the original proof from Bianchini
and Stefani (1990), where the case is studied when S is a point and the control
system is determined by a differential equation. We present it for completeness.
First, we set

D := eKγrη

. (21)

Let x belong to the interior of the set Sr and let U be a neighborhood of x, such
that

U ⊂ Sr ∩
{

y ∈ IRn : ‖y − x‖ ≤
r

2D

}

∩
{

y ∈ IRn : ‖y − x‖ ≤
σ

2

}

.

Let y1 and y2 be arbitrary points from U . Suppose Θ(y1) < Θ(y2). Fix an
arbitrary ε from the interval (0, Θ(y2) − Θ(y1)). Since 0 ≤ Θ(y1) < Θ(y1) + ε,
there exists a trajectory z1(·) of (1) starting from y1 that reach S in some time
τ with

Θ(y1) ≤ τ < Θ(y1) + ε < Θ(y2).

According to the assumption ii) there exists a trajectory z2(·) of (1) starting
from y2, defined on [0, τ ] and such that for every t ∈ [0, τ ]

‖z2(t) − z1(t)‖ ≤ eKt‖y2 − y1‖.

Because y2 ∈ Sr, we obtain that

τ < Θ(y2) ≤ γ rη.

Our choice of U , the equality (21) and the inclusion z1(τ) ∈ S imply that

‖dS(z2(τ))‖ ≤ ‖z2(τ)− z1(τ)‖ ≤ eKτ‖y2− y1‖ ≤ D‖y2− y1‖ ≤ r. (22)

So, z2(τ) ∈ Sr and by the assumption i)

Θ(z2(τ)) ≤ γ dη
S(z2(τ)).

Then, according to (22),

Θ(y2) ≤ τ + Θ(z2(τ)) ≤ Θ(y1) + ǫ + γ dη
S(z2(τ)) ≤

≤ Θ(y1) + γ Dη‖y2 − y1‖
η + ǫ.

Since Θ(y1) and Θ(y2) do not depend on ǫ, we obtain that

‖Θ(y2) − Θ(y1)‖ ≤ γ̂‖y2 − y1‖
η with γ̂ := γ Dη.

This completes the proof.
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