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Abstract: Degenerate optimal control problems are defined as
those which have some latent passive differential or finite-difference
constraints. They are typical for applications, but irregular for gen-
eral methods. In this paper an analytical survey is presented of
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some important results including most recent ones are given. Illus-
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1. Introduction. Basic definitions

Degenerate optimal control problems are often met in applications and bring
serious difficulties for general methods. They were studied systematically be-
ginning from the 1960s (see Gurman, 1965, 1972, 1977, 1985) and defined (gen-
eralizing the classical notion of degeneracy) as those which have some latent
passive differential constraints. More precisely, consider the following abstract
problem.

There is a functional I : M → R, a mapping of some set M (called basic set)
onto numerical axis. A subset D ⊂ M is given, called the admissible set. It is
required to find a minimizing sequence {ms} of the functional I at the set D:

I (ms) → inf
D

I = I∗.

Let a certain class E of extensions E ⊃ D be given.

Definition 1 The problem (D, I) is called degenerate with respect to the class
E if there is an extension E∗ ∈ E, E∗ 6= D, such that inf

E∗

I = inf
D

I.
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For the optimal control problem

ẋ = f(t, x, u), t ∈ T = [tI , tF ], x ∈ R
n, u ∈ U(t, x) ⊂ R

p, (1)

x(tI) = xI is fixed,

x ∈ X(t), x(tF ) ∈ Γ ⊂ R
n, I = F (x(tF )) → inf

(with continuous f(t, x, u) and F (x), piecewise smooth x(t), and piecewise con-
tinuous u(t)) the basic set M is formed by all arbitrary pairs of functions
(x(t), u(t)), the set D is selected from M by the above constraints, and class E
is generated by transformations of differential constraint (1)

ẏ = ηxf (t, x, u) + ηt, u ∈ U(t, x), y = η (t, x) (2)

on subsets T′ ⊂ T (mesT′ > 0) via smooth irreversible mappings

η : Rn+1 → R
m, m < n.

In what follows we give a survey of special methods for the degenerate prob-
lems based, in essence, on detection and elimination of passive constraints.

2. Transformation of unbounded control system

The core of this theory is a certain transformation of system (1) with unbounded
velocity set V(t, x) = f(t, x,U(t, x)). Namely, we introduce an auxiliary system,
which describes asimptotically the behavior of the original system for large
velocities (called limit system):

dx

dτ
= lw, l ∈ K(t, x), w ∈ [0,∞), (3)

where t is a parameter and K is the union of all limits l = lim vq|vq|−1 as
|vq| → ∞, {vq} ⊂ V.

Let Q(t, y) = {x : y = η(t, x)}, y ∈ R
m, 0 < m < n, be the full controllabil-

ity manifold of (3). Then, (2) will be called the derived system. The set Ex of
piecewise continuous functions x̂(t) satisfying (2), is an extension of the set Dx

of piecewise smooth x(t) satisfying (1). The following statement is true (under
some natural assumptions).

Theorem 1 For any x̂(t) ∈ Ex there exists a sequence {xs(t)} ⊂ Dx converging
to x̂(t) in measure on a prescribed bounded interval T with xs(tα) → x̂(tα) for
any prescribed finite set of values {tα} ⊂ T.

This sequence is constructed as follows. Introduce an intermediate class of piece-
wise continuous functions D̃x, Dx ⊂ D̃x ⊂ Ex, with the following properties:
a function x(t) from D̃ satisfies system (1) in any interval of continuity, and its
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left and right limits lie in the same set Q(t′, η(t′, x(t− 0))) = Q(t′, y(t′)) at any
discontinuity point t′:

x(t′ + 0) ∈ Q(t′, y(t′)), x(t′ − 0) ∈ Q(t′, y(t′)).

A sequence {xq(t)} approximating x(t) is constructed of elements from D̃x. And
then each element xq(t) is approximated by a sequence from Dx (Fig. 1).

Figure 1.

So, let (y(t), x(t), u(t)) be a solution of the derived system (2). Divide the
interval T by a system of points {ti}, i = 0, 1, . . . , q, t0 = tI , tq = tF , which
includes all discontinuity points of the pair (x(t), u(t)) and points from the given
set {tα}. We construct a function xq(t) ∈ D̃ as follows. Set xq(t0) = x(t0). In
each interval (ti, ti+1) define xq(t) as the solution of system (1) for u = u(t)
starting at the point x∗

q(ti) ∈ Q(ti, yq(ti)) = Q(ti, η(ti, xq(ti − 0)). We choose
this point for each division {ti} so that for x = x(ti + 0)

ρ(x, x∗
q) − ρ(x,Q)

(∆ti)2
→ 0 as ∆ti = ti+1 − t → 0.

Taking into account the properties of system (3) we state that there is a
sequence {xqs(t)} ⊂ Dx converging to xq(t) in measure with xqs(tF ) → xq(tF ).
We construct it as follows. Let ξs(t, θ, a) ∈ Dx be a term of a sequence of
solutions from Dx that approximates the corresponding limit trajectory, which
is a solution of system (3) passing through a point a ∈ R

n for t = θ.

1) In the initial interval [t0, t1] set xqs(t0) = xq(t0) = x(t0),
xqs(t) = ξs(t, t0, xqs(t0)) for t ∈ [t0, t0s), where t0s is given by the condition

min
t0s∈[t0,t1]

ρ(ξs(t0s, t0, xqs(t0)), xq).

2) Then, define xqs(t) as the solution of system (1) for u = u(t) in the
interval [t0s, t1s), where t1s is chosen from the condition:

min
t1s∈[t0s,t1]

ρ(ξs(t1, t1s, xqs(t1s)), xq(t1 + 0))
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and in the interval [t1s, t1) set

xqs(t) = ξs(t, t1s, xqs(t1s)).

3) The second and all the next intervals [ti, ti+1] are divided by a moment
t(i+1)s into two intervals

[ti, t(i+1)s), (t(i+1)s, ti+1]

and theconstructions of item 2) are repeated starting from thepoints (ti, xqs(ti)).
Denote

δq = sup
T

|xq(t) − x(t)|, δqs = sup
T\Tqs

|xqs(t) − xq|, δs = sup
T\Tqs

|xqs − x|

∆qs = mes Tqs, Tqs

⋃

0≤i<q−1

[ti, ti+1], dαs = max
α

δxqs(tα + 0).

Define q(s) so that

max(δq, δqs, δs, ∆qs) → 0.

Thus, we obtain a sequence {xs(t)} = {xq(s)s(t)}, which converges to x(t) in
measure with xs(tα) → xs(tα + 0), including xs(tF ) → x(tF ).

The complete proof of the theorem is given in Gurman (1998).
Any solution of the derived system x(t) is viewed as a generalized solution

of the original system called the pulse sliding mode. In particular cases it may
be realized also as turnpike solution (see Section 6).

Originally, the pulse sliding modes have been revealed by Krotov (1961)
when investigating the basic problem of Variational Calculus systematically for
the case of linear and asimptotically linear integrant w.r.t. the derivative. For
the case of control system with scalar linear control, the transformation ap-
proach was proposed independently in Kelley (1964) and Gurman (1965). The
above general transformation was proposed in Gurman (1972). Later, when
developing constructive procedures (see Gurman, 1977; Baturin, Dykhta, Gur-
man, and others, 1987; Kolokolnikova, 1996; Gurman and Ukhin, 2005), com-
mutativity was assumed of basis vectors {hq(t, x)} of K(t, x) linear envelope:
[hp, hq] = 0, p, q = 1, . . . , k, which is also traditional for other works on pulse
control. However, it is not necessary. Recently, in Gurman and Sachkov (2008),
the following results of geometrical control theory were applied to describe full
controllability sets of the limit system without commutativity assumption.

Let Lie (h1, . . . , hk) be Lie algebra, generated by addition to h1, . . . , hk

of all commutators [hi, hj ], [[hi, hj ], hl], . . . , and their linear combinations, and
let L(t, x) be its linear envelope. If dim L(t, x) = l ≤ n for all t ∈ T and
x ∈ R

n, then system (3) is fully controllable on some l-dimensional manifold
Q(t, x0) ⊂ R

n, called the orbit of the (h1, . . . , hk) family, containing some initial
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point x0 ∈ R
n (Nagano-Sussman orbit theorem, see Agrachev and Sachkov,

2004), and (3) can be equivalently replaced by the following “virtual” limit
system:

dx

dτ
=

l
∑

1

hj(t, x)uj . (4)

Example 1

ẋ = g(t, x) + h1(x)u1 + h2(x)u2, x ∈ R
4,

h1 = (−x3,−x4, x1, x2)T, h2 = (x2,−x1,−x4, x3)T. (5)

The related limit system is

dx

dτ
= h1(x)u1 + h2(x)u2. (6)

The pair h1(x), h2(x) generates 3-dimensional Lie algebra: (h1, h2)=(h1, h2, h3),
h3 = 1

2 [h1, h2] = (−x4, x3,−x2, x1)T. Then, (6) is fully controllable on any

sphere S(y) = {x : |x|2 = y} (but not in R
4). Indeed, |x|2 = y is an integral of

this system:

dy

dτ
= 2xTh1(x)u1 + 2xTh2(x)u2 = 0.

This means that any trajectory of (6), beginning in the spere S(y) does not
leave it. It follows from det (h1(x), h2(x), h3(x), x) = −y2 6= 0 on S(y), that
L(x) = span (h1(x), h2(x), h3(x)) is the touching space to the sphere at the point
x. Thus, due to orbit theorem, S(y) is the orbit, the greatest fully controllable
set of (6). Consider the derived system ẏ = 2xTg(t, x), x ∈ S(y). It is a control
system of first order, where y is the phase variable, and x is control vector
belonging to S(y) as the control set.

Compare this transformation with analogous one for the case of “commutative”
limit system

ẋ = g(t, x) + h1u
1 + h2u

2, h1 = (−1,−1, 1, 1)T, h2 = (1,−1,−1, 1)T.

Here, hi are constants, so that commutativity condition is fulfilled a priori and
this is the only difference from (5). The limit system integral is

y = νx, ν = (ν1 ν2), (ν1 ν2)
T(h1, h2) = 0.

The derived system ẏ = νTg(t, x), y = νx, is of second order. Thus, one
can see that “noncommutative” limit system leads to the derived system that is
simpler (of lesser order) than the “commutative” one.
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Of course, the first representatives of degenerate problems are free-end op-
timal control problems (X(t) = Γ = R

n), stated for such systems with an
unbounded velocity set. We eliminate the passive constraints, replacing the
original differential constraint by the derived system and obtain an equivalent
derived problem of reduced order.

A series of important theoretical results have been obtained in this way, in-
cluding the generalized Pontryagin principle and other optimality conditions,
and nonlocal iterative algorithms for the search of singular and generalized so-
lutions (see Gurman, 1985; Kolokolnikova, 1996; Dykhta and Samsoniuk, 2000).

3. Optimality of singular and sliding modes

The standard transformation of (1) to the relaxed system (see Warga, 1962)

ẋ ∈ VC(t, x) = coV(t, x), (7)

allowes one to describe in terms of piecewise smooth solutions all regular, singu-
lar and sliding modes of (1). Recall that a smooth x(t) is called an F-singular
mode of (1) on T = [tI , tF ] if ẋ ∈ intF(t, x(t)) (Fig. 2), where F is a face of
VC (see Webster, 1994). In a series of works (see Kelley, 1964b, Kelley, Kopp,
and Moyer, 1967, Gabasov and Kirillova, 1973) some necessary optimality con-
ditions for such modes have been derived as additional to degenerate classical
Euler-Lagrange equations. The above results can be applied to obtain global
sufficient conditions for such types of solutions. This is attained by preliminary
extension of the original velocity set V(t, x) = f(t, x,U(t, x)) to an unbounded
one. Then, the corresponding derived problem is solved, and one checks whether
the solution belongs to the original admissible set D.

Figure 2.

Let F ⊂ VC be a face of dimension k > 0 and P(k) be its carrying plane
with a basis h = (h1, h2, . . . , hk). Consider the following auxiliary unbounded
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system:

ẋ ∈ VE(t, x) = VC(t, x) ∪ P(k)(t, x). (8)

Let the system dx/dτj = h(t, x)w, w ∈ R
k, be a limit system having the integral

y = η(t, x) = (η1(t, x) . . . , ηn−k(t, x)) as a continuous and smooth function
of t and x, so that ηxh(t, x) = 0. Then, according to Section 2, (8) can be
equivalently transformed to the derived system

ẏ = ηxv + ηt, v ∈ VE(t, x), x ∈ Q(t, y) (9)

where Q(t, y) = {x : y = η(t, x)}. We call (9) the F-derived system. It has the
following important property (A):

ẋ(t) ∈ P(k)(t, x(t))

for any smooth solution x(t) of (9). Indeed, any v ∈ P(k) can be represented as
v = v0 +hw, w ∈ R

k, where v0 is some arbitrary constant point of P(k). Hence,
from the equality ηxh(t, x) = 0 it follows that

ẏ = ηxv + ηt = ηx(v0 + hw) + ηt = ηxv0 + ηt. (10)

This is constant for any constant t and x(t). This means that (11) can be con-
sidered (in statics) as the equation of P(k). On the other hand, x(t) satisfies the
equation y(t) = η(t, x(t)), so that ẏ = ηt + ηxẋ, that is, ẋ satisfies the equation
of P(k).

It follows from the property A that the set of pairs (y(t), x(t)) of all solutions
of (10) with smooth x(t) is invariant for replacing VE by VC in (9). In these
terms, global sufficient optimality conditions for singular and sliding modes of
(1) are proposed.

Let F(t, x) be a k-dimensional face of VC(t, x) that generates the corre-
sponding F-derived system. Define an extension of the admissible set for the
problem, taking the derived system (10) instead of (1), and call the result the
F-derived problem. Any solution of this problem should satisfy the Pontrya-
gin maximum principle, and in particular, the condition of maximum of the
linear form pT v on VC where pT = qT ηx, and q is an ajoint (n − k)-vector
for the derived problem. The equality ηxh(t, x) = 0 implies that if for some
q the maximum is reached at some point v0 ∈ F, then all the face F is the
maximum set because it is a priori orthogonal to p. In this case a solution to
the F-derived problem is a triple (y∗(t), x∗(t),F(t, x∗(t))). Thus, the following
statement holds.

Theorem 2 Let (y∗(t), x∗(t),F(t, x∗(t))) be a solution of the corresponding F-
derived problem, x∗(t) be smooth, and let ẋ∗ ∈ F(t, x∗(t)). Then x∗(t) is a
solution of the original problem, an optimal F-singular or F-sliding mode.

Note that ẋ∗ ∈ P(k)(t, x∗(t)) a priori due to the property A, so (ẋ∗ ∈
F(t, x∗(t))) is the condition for some point of a plane to be in the domain
of this plane which is a “nonzero probability event” when checking a posteriori.
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4. Connection with Krotov sufficient conditions.

The method of multiple maxima

Recall the most popular version of Krotov theorem on global sufficient opti-
mality conditions for the problem stated in Section 1 (see Krotov, 1996). We
introduce a functional parameter ϕ (t, x), which is a scalar function everywhere
continuous and smooth, and the following functions are constructed:

R (t, x, u) = ϕT
x f (t, x, u) + ϕt, µ (t) = sup{R (t, x, u) : u ∈ U(t, x), x ∈ X(t)},

G (x) = F (x) + ϕ (tF , x) − ϕ (tI , xI) , l = inf{G (x) : x ∈ Γ ∩ X (tF ) ,

where (ϕx, ϕt) is the vector of partial derivatives,

Theorem 3 Let there be a sequence {ms} = {xs (t) , us (t)} ⊂ D and a function
ϕ such that

1) µ (t) is piecewise continuous;
2)
∫

T

(µ (t)) − R (t, xs (t) , us (t)) dt → 0;

3) G (xs (tF )) → l.
Then this sequence is minimizing, and any minimizing sequence satisfies

conditions 2) and 3).

Any function ϕ, satisfying these conditions is called resolving (Krotov) func-
tion.

The following assertions are direct corollaries of Theorem 1.

Theorem 4 Let ϕI(t, y) be a resolving (Krotov) function for the derived problem
obtained via the mapping y = η(t, x) applied to the free-end problem. Then
the superposition ϕ(t, x) = ϕI(t, η(t, x)) is a Krotov function for the original
problem.

In particular, if ϕI(t, y) is Krotov-Bellman function for the derived problem,
satisfying the relations

sup
u∈U(t,x)
x∈Q(t,y)

(

ϕI
y (ηxf(t, x, u) + ηt)

)

+ ϕI
t = 0, ϕI (t, y) = −F I (y) , (11)

then the original Krotov-Bellman function satisfies the relations

sup
u∈U(t,x)
x∈Q(t,y)

(

ϕT
x f (t, x, u) − ϕt

)

= 0, sup
x∈Q(tF ,y)

(ϕ (tF , x)) − F (x)) = 0 (12)

and is first integral of the limit system. One can consider these relations as
generalized Bellman conditions whereas the ordinary ones are not valid in this
case. They can be used effectively to construct the feedback optimal control
laws (see Gurman and Ukhin, 2005), which is illustrated in Section 5.
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There is a way to specify Krotov function for the degenerate problems
(method of multiple maxima), which is tightly connected with the above consid-
ered transformations. It is based on a special system of partial equations and
inequalities as follows.

Let for every (t, x) a family of faces {F (t, x)} of VC(t, x) = coV(t, x) be
given. Consider the following condition

pTF = sup
v∈VC(t,x)

pT v, F ∈ {Fα (t, x)}, (13)

which defines the conjugate cone L (t, x) for this family. Require that function
ϕ (t, x) satisfy the condition ϕx ∈ L (t, x). Then, (13) will be called the multiple
maxima system (MMS) w.r.t function ϕ (t, x) and the family {Fα}.

Select k + 1 base points {v0, . . . , vk} out of the face F of the base set V(k).
Then, (13) reduces to the following system

pT (vl (t, x, p) − v0 (t, x, p)) = 0,

pT (v0 (t, x, p) − v) > 0, v ∈ VC (t, x, p) \F (t, x, p) . (14)

By denoting Hl (t, x, p) = pT vl (t, x, p) = pT f (t, x, ul (t, x, p)) , the system
(14) can be rewritten in the form (which explaines its name):

Fl (t, x, p) = Hl (t, x, p) − H0 (t, x, p) = pT hl (t, x, p) = 0, l = 1, . . . , k. (15)

H0 (t, x, p) = max
u∈U(t,x)

H (t, x, p, u) = H (t, x, p) ,

hl = vl − v0, h = (h1, . . . , hk) (a matrix) is an internal basis of F. These
conditions mean that the face F (t, x, p) gives the strict maximum pT v w.r.t. all
points of VC (t, x) not belonging to F.

Let function ϕ(t, x) in sufficient conditions of Section 3 be specified by the
linear involute MMS

hT (t, x)ϕx = 0,
(

ϕT
x hl (t, x) = 0, l = 1, 2, . . . , k

)

, (16)

for which (14) reduces to when {Fα} consists of one face. Then, ϕ(t, x) =
ϕI(t, η(t, x) where ϕI (t, y) is an arbitrary smooth function, η (t, x) is an integral
of the system

∂x

∂z
= h (t, x)

(

∂x

∂zl
= hl (t, x)

)

,

and R and G are transformed automatically to corresponding constructions for
the derived problem:

RI(t, x, y, u) =
(

ϕIT
y

)T
(ηxf(t, x, u) + ηt) − f0 + ϕI

t, y = η(t, x),

GI(y) = F I(y) + ϕI (tF , y) − ϕI (tI , yI) ,

F I = inf {F (x) : x ∈ Γ ∩ X(tF ) ∩ Q (tF , y)},
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(with ϕI playing the same part as ϕ in the original problem).
The MMS is not always compatible. The general compatibility condition is

that it admits a completion. In Antipina and Dykhta (2004) it is shown that
the completion procedure leads to an optimal problem for the derived system
in the above considered "noncommutative" case of the limit system.

In general case the following implicit scheme is proposed. Consider the
equality conditions in (14) as involute partial differential equations. The corre-
sponding characteristic system is

∂x

∂z
= Fp (t, x, p) ,

∂p

∂z
= −FT

x (t, x, p) , (17)

∂q

∂z
= −FT

t (t, x, p) , z = z1, . . . , zk.

Consider Cauchy problem for system (17). Specify an (n−k)-parametric initial
manifold S (t):

x = κ (t, y) , y = y1, . . . , yn−k

and an initial function ϕI (t, y) = ϕ (t, κ (t, y)), so that

ϕI
y = pI = κT

y ϕx = κT
y p, ϕI

t = qI = ϕt + κT
t ϕx = q + κT

t p. (18)

At the points of S (t) the variables x, p, q are expressed directly from (16),
(18). Consider the resulting solution of (17)

x = x
(

t, xS

(

t, y, pI
)

, z
)

= x
(

t, y, pI, z
)

,

p = p
(

t, xS

(

t, y, pI
)

, pS

(

t, y, pI
)

, z
)

= p
(

t, y, pI, z
)

,

q = q
(

t, xS

(

t, y, pI
)

, pS

(

t, y, pI
)

, z
)

= qI −
z
∫

0

htdξ,

where initial value z = 0 corresponds to S (t). Substitution of these functions
into original sufficient conditions by taking p = ϕx, q = ϕt, leads to the con-
structions quite similar to original ones. Subsequent investigation with their
help can be carried out by general methods. For example, for the free-end prob-
lem it is possible to apply Bellman scheme to determine ϕI (t, y), and hence
ϕ (t, x). In Gurman (1977) this implicit scheme was used to obtain concrete
strong local optimality conditions for the degenerate problems.

5. Applications to periodical systems

There exist problems especially characteristic for the space applications where
the time of control is not strictly limited, the limited resource being represented
by the stock of the jet working fluid. In this connection we consider the design
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of the optimal control of a sufficiently general periodic system over an unlimited
time interval using the criterion of the norm-minimal control in L

1, considered
as the control resource. Consideration is given to the control system obeying
the following sufficiently general model:

ẋ = h(x) +
∑

j

Bjuj, x ∈ R
n, uj ∈ Uj ⊂ R

pj , (19)

ż =
∑

j

|uj |, (20)

where uj are the vector controls, whose available sets Uj have zero values. The
value z is called the control resource. Equation (1) for uj = 0, that is, ẋ = h(x),
describes the periodic motions.

This model embraces various special cases and applications, such as con-
trol of elastic oscillations, Gurman and Znamenskaya (2001), spacecraft or-
bital and orientation maneuvering, and control of the "predator-prey" sys-
tem, Krotov and Gurman (1973), Gurman (1977), Gurman and Ukhin (2006).
The following problem of optimal control is formulated on the basis of model
(19), (20): it is required to establish feedback control law (positional con-
trol) u(x, z) = {uj(x, z)} driving the system from any initial state (x(0), z(0))
to the final state (x(tF ), z(tF )) with the least value of the functional I =
|(x(tF ) − x̄(tF )|2, z(0) = 0, z(tF ), and x̄(tF ) being given values. The finite
time tF is not fixed. If, in particular, inf I = 0, then the problem of driving the
system from (x(0), z(0)) to (x̄(tF ), z(tF )) with the least z(tF ) is solved.

The approach consists of the following stages:

(I) The argument in the form of time variable is replaced by a new argument,
the control resource (nondecreasing time function by virtue of (20)). As the re-

sult, time is eliminated, and a system with unbounded-control v =

(

∑

j

|uj|
)−1

is obtained:

x′ = vh(x) +
∑

j

Bj lj , l = {lj} ∈ Λ

where lj =

(

∑

j

|uj |
)−1

uj, vmin ≤ v < ∞, and the bounded set Λ is obtained

by direct recalculation of the collection {Uj}, vmin = min v/uj ∈ Uj .

(II) The set of n − 1 independent first integrals y = η(x),
(

yk = ηk(x)
)

of
the periodic passive motion is determined according to the above theory, and
the transition is made to the derived system

y′ = ηx

∑

j

Bj lj , η(x) = y, l ∈ Λ, ηx = [ηk
xj ]
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and, correspondingly, to the derived problem of the minimum of the same func-
tional I.

(III) The derived problem is solved in the form of (exact or approximate)
optimal control design.

(IY) The procedure is applied of constructing the minimizing sequence of
the positional controls in the original problem, Gurman and Ukhin (2005), on
the basis of information from item (III) with the upper estimate of the accuracy
of its elements (because there exist no optimal solution in the traditional sense
of the word).

Having carried out the obvious preliminary operation of partial minimization
in the original expression of the functional, we get a new minimized functional
of the derived problem

J = F I (y(zF )) = min
t

|(ξ(y, t) − x̄F |2, (21)

where ξ(y, t) is the trajectory of passive periodic motion. It is possible to solve
it by means of generalized Bellman conditions

max
l,t

ϕIT
y ηx

∑

j

Bj lj + ϕI
yz = 0, ϕI

y(zF , y) = F I(y), (22)

where ϕI
y(z, y) is the Krotov-Bellman function.

Let us assume that Eq. (22) was solved precisely or approximately and
provided, along with (21), the functions l∗ (z, x) and x∗ (z, y). Let manifold
S∗ = {(z, x) : x = x∗ (y) , y ∈ R

n−1} be the graph of the latter function.
We assume for simplicity that it is continuous. The function v∗ (z, y) remains
indefinite and may be defined arbitrarily within its constraints vmin ≤ v < ∞.
In that way we get a solution of the derived problem, defining the minimizing
sequence of the original problem (with the argument z) constructed according
to the general rule, described above. In this case, it can be interpreted in model
(19)–(20) with original argument t, which simplifies the rule.

Let us define the (1/s)-neighborhood S∗ ((1/s)-layer) (where s is the number
of the term in the sequence):

G (S∗, 1/s) = {(z, x) : |x − x∗ (z, y) | < 1/s}.

For (z, x) ∈ G (S∗, 1/s), we assume for definiteness that ls (z, x) = l∗ (t, x),
v = vmin. Otherwise, a point (z, x∗) on S∗, is determined such that for a given z
the points x∗ and x are connected by a passive-motion trajectory. As the result,
we obtain for a given s the following control law us(z, x) = {ujs}(z, x):

ujs(z, x) =

{

0, |x − x∗ (z, y) | > 1/s,

lj∗ (z, x) /vmin, |x − x∗ (z, y) | ≤ 1/s.
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The time tF grows unlimitedly with s, and for a given s the greater vmin, the
smaller tF .

Despite some unhandiness of the above construction of us(z, x), it reflects
sufficiently simple and obvious rule: from any point (z, x) lying beyond the
manifold S∗ one should move to the manifold along the trajectory of passive
motion and use the control l∗ (t, x) v = vmin in its (1/s)-neighborhood.

Example 2 Optimal damping of satellite oscillations.

Consider the equations of angular motion of a gravitationally stabilized satel-
lite on a circular orbit under the gravity and control torques (see Beletskii, 1966)

θ̇ = q, q̇ = −3(Ω)2β sin θ cos θ + la, ż = a, (23)

where θ is the angle between satellite axis and the local vertical, Ω is the constant
orbit angular speed of the satellite w.r.t. the planet center, β is the gravity
constant, l and a are direction and value of the angular acceleration developed
by the engine (l = ±1, a ≤ a ≤ amax). The problem is to damp the angular
oscillations with the minimum fuel consumption, proportional to z.

Transform the system (23) to the new argument z:

dθ

dz
=

1

a
q,

dq

dz
= −1

a
3(Ω)2β sin θ cos θ + l.

The corresponding limit system trajectories are the same as of (23) when a = 0,

y =
1

2
(q)2 +

3

2
(Ω)2β(sin θ)2 (24)

(closed curves for constant y). When y = 0, then there are no oscillations
(ϑ = q = 0). The corresponding derived problem is

dy

dz
= ql, y(zI) = yI(qI , θI), I = zF ,

under condition (24). The solution is found evidently by minimizing the right
hand side of above differential equation. After integration one obtains

y = (
√

yI − z/
√

2)2,

and zF =
√

2yI when y = 0. This solution does not satisfy directly the original
system and could be realized as an impulse sliding mode by a sequence of D, as
shown in Fig. 3. In this case it is active braking (for example at a = amax) in
the vicinity of equilibrium point. When decreasing this vicinity, the functional
goes to

√
2yI , and the number of active modes grows infinitely.
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Figure 3.

6. Turnpike solutions and approximate schemes

For the class of systems with unbounded linear control, typical generalized so-
lutions have piecewise continuous trajectories x(t) that contain a finite number
of impulses on any bounded time interval.

Consider as a special case of system (1) the following control system

ẋ = g (t, x, u1) + h (t, x) u2, u1 ∈ U1(t, x), u2 ∈ R
k,

where k ≤ n and h, is an n × k matrix of rank k. Its limit system

dx

dτ
= h (t, x)u2, u2 ∈ R

k,

is assumed to have (n − k)-vector integral y = η(t, x), leading to the derived
system

ẏ = ηxg (t, x, u1) + ηx, u ∈ U(t, x), x ∈ Q(t, y) = {x : y = η (t, x)}.

Reduction of the order means that in the general case solution of the derived
problem cannot satisfy regularly all the boundary conditions of the original
problem. The trajectory turns out to be invariant to a certain set of these
conditions so that they are satisfied by discontinuously jumping in time, which
in practice is realized by great control actions. We borrow a term from the
theory of economic growth and call such a solution of the original problem the
turnpike solution. Each continuous section of x(t) satisfying the original systems
is called a turnpike. Stated differently, this solution can be treated as a motion
along turnpikes with fast (instantaneous in the limit terms) transitions from one
turnpike to another (Fig. 4).



Degeneracy and generalized solutions 1355

Figure 4.

The connection between original and derived systems can be expressed ex-
plicitly by passing to new variables y = η (t, x), z = ζ (t, x) (it is known from
Gaishun, 1983, that there exists a one-to-one transformation of this kind). In
doing so, the original system (1) comes to ẏ = gy (t, y, z, u1) , u ∈ U1(t, y, z)
and

ż = gz (t, y, z, u) + hz (t, y, z)u2, (25)

and in the new variables the derived system is obtained by eliminating Eq. (25).
Under sufficiently great u2, the minimizing sequence is constructed as a

standard approximation of the piecewise continuous function z(t) by a sequence
of piecewise smooth trajectories of the original system in the neighborhood of
each discontinuity point. Outside these neighborhoods, u2 is established from
the condition for strict satisfaction of the original differential relation, that is,

u2(t) = (hz)−1 (t, x(t)) (ż(t) − gz(t, x(t), u(t))) .

Let now u2 be bounded: u2 ∈ U2(t, x), but at the same time U2(t, x) be a
domain in R

k admitting passages between the boundary values and their closest
turnpikes and between the turnpikes (Fig. 4) in a time that is small enough as
compared with the given time tF − tI . Then, one can consider an approximate
turnpike solution m ∈ D with the upper bound

I(m) − d ≤ ∆ = I(m) − e,

which is the more precise, the smaller the total number of transitions. Such a
solution can be further refined, if necessary, by one or another iterative proce-
dure. Such an approximate approach proved to be very useful in applications
(see Krotov, Bukreev and Gurman, 1971; Gurman, 1985).

On the whole, order reduction is bigger for higher numbers of linear controls
(k). Moreover, if it turns out that the derived system has the specific structure
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of the original system, that is, is linear relative to one or another set of new
controls, then it can be transformed to a new derived system by the same
scheme. This multistage procedure may result in a dramatic reduction of the
problem order right down to one or zero. In this connection, the class of control
problems associated with contemporary sustainable development paradigm (see
Gurman, 1981, 2006, Gurman and Ryumina, 2001) are representative because
of presence great amount of linear controls comparable with state dimensions.

Analogues for discrete-time systems have been also developed. In particular,
for systems with the unbounded linear control

x(t + 1) = f(t, x(t), u) + h(t)v, t ∈ T = {tI , tI + 1, . . . , tF } u ∈ U(t, x),

transition to the derived problem is done by the linear transformation y = Λ(t)x,
where Λ(t) is defined so that Λ(t+1)h(t) = 0. The derived system is as follows:

y(t + 1) = Λ(t + 1)g(t, x, u), u ∈ U(t, x), x ∈ {x : y = Λ(t)x}.

7. Conclusions

As follows from the aforementioned, degeneracy of the optimal control problems
and the turnpike type of solutions related with it can be used successfully to
construct control optimization procedures, especially at the stage of seeking
good initial approximations, to be refined later by regular iterative algorithms
that work effectively near the desired solution. The proposed approach lies in
seeking and eliminating passive differential relations or discrete chains, existing
in the formulations of degenerate problems, which — as attested by rich practical
experience — leads to their regularization and simplification owing to the lower,
sometimes radically lower, order of the problem. This refers first to the relatively
new application areas such as socio-ecologico-economic applications. Thus, the
“evil” of degeneracy for the general methods turns into a “blessing” for special
methods based on the possibility to lower the order of the problem with its
simultaneous regularization.

This work is financially supported by the Russian Fund of Fundamental
Research, project 09-01-00170.
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