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Abstract: It is well known that for a Bolza optimal control
problem under state constraints every local minimizer satisfies a
constrained maximum principle which may be degenerate. In the
recent years several researchers proposed sufficient conditions for its
nondegeneracy, e.g. Arutyanov and Assev (1997), Rampazzo and
Vinter (1999, 2000), Galbraith and Vinter (2003). In all these pa-
pers the most important assumption links dynamics of a control
system with tangent cones to constraints. It is the so called inward
pointing condition of control theory that is in the same spirit with
the well known Slater and Managasarian-Fromowitz conditions of
mathematical programming.

We propose here two sufficient conditions for normality when the
boundary of constraints is C1 and the end point is free. The first
one applies to every nondegenerate maximum principle without any
assumptions on the initial state. The second one applies to every
maximum principle, but involves an additional assumption on the
initial conditions.

Keywords: optimal control, maximum principle under state
constraints, normal necessary conditions.

1. Introduction

Let ϕ : R
n ×R

n → R, Z be a complete separable metric space, f : [0, 1]×R
n ×

Z → R
n, ℓ : [0, 1] × R

n ×Z → R, C ⊂ R
n be closed and Ω ⊂ R

n be open with
the C1 boundary ∂Ω. Below, we denote by NC(x) the Clarke normal cone to C
at x ∈ C and we set K = Ω.
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Consider a measurable set-valued map U : [0, 1] ; Z with nonempty closed
values and the Bolza optimal control problem

minimize ϕ(x(0), x(1)) +

∫ 1

0

ℓ(s, x(s), u(s))ds (1.1)

over all admissible trajectory/control pairs (x, u) of the following control system
under state constraints







x′(s) = f(s, x(s), u(s)), u(s) ∈ U(s) a.e. in [0, 1]
x(s) ∈ K for all s ∈ [0, 1]
x(0) ∈ C.

(1.2)

When we write a.e. without making precise with respect to what measure, we
always mean the Lebesgue measure.

Recall that a trajectory/control pair (x, u) (with x(·) absolutely continuous
and u(·) measurable) is called admissible if it satisfies system (1.2).

If (z, ū) is a strong local minimizer of the above Bolza problem, then under
some regularity assumptions, there exist λ ∈ {0, 1}, a normalized function with
bounded total variation ψ : [0, 1] → R

n and an absolutely continuous function
p(·) : [0, 1] → R

n, not vanishing simultaneously, such that p(·) is a solution to
the adjoint system

−p′(s) =
∂f

∂x
(s, z(s), ū(s))∗(p(s) + ψ(s)) − λ

∂ℓ

∂x
(s, z(s), ū(s)),

satisfying the transversality condition

(p(0),−p(1) − ψ(1)) ∈ λ∇ϕ(z(0), z(1)) +NC(z(0)) × {0},

the maximum principle

〈p(s) + ψ(s), f(s, z(s), ū(s))〉 − λℓ(s, z(s), ū(s)) =

maxu∈U(s)(〈p(s) + ψ(s), f(s, z(s), u)〉 − λℓ(s, z(s), u))
(1.3)

a.e. in [0, 1] and

ψ(t) =

∫

[0,t]

ν(s)dµ(s) ∀ t ∈ (0, 1] (1.4)

for a positive (scalar) Radon measure µ on [0, 1] and a Borel measurable ν(·) :
[0, 1] → R

n satisfying ν(s) ∈ NK(z(s)) ∩B µ -almost everywhere.
When f and ℓ are merely locally Lipschitz with respect to x and ϕ is locally

Lipschitz, then in the above the derivatives are replaced by some elements in the
corresponding generalized gradients and generalized jacobians and the maximum
principle can be written in a similar way.
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More precisely, let M(n × n) denote the set of all n × n matrices. If (z, ū)
is a strong local minimizer of the above Bolza problem, then under some reg-
ularity assumptions, there exist π0, π1 ∈ R

n, A(·) ∈ L1(0, 1;M(n× n)), π(·) ∈
L1(0, 1; Rn) and λ, p, ψ as above such that (λ, p, ψ) 6= 0 and p(·) is a solution to
the linear system

−p′(s) = A(s)∗(p(s) + ψ(s)) − λπ(s),

satisfying the transversality condition

(p(0),−p(1) − ψ(1)) ∈ λ(π0, π1) +NC(z(0)) × {0},

the maximum principle (1.3) and (1.4) with µ and ν as above.
Elements π, π0, π1 are in the generalized gradients of the corresponding func-

tions of cost and A(s) are matrices in the generalized jacobian of f(s, ·, ū(s)).
We refer to the monograph of Vinter (2000) for various forms of the non-

smooth constrained maximum principle. In this paper we do not need to be
precise about π, π0, π1 and A(·) since we do not derive any maximum principle.
Our aim is to provide sufficient conditions under which a maximum is normal.
The elements π, π0, π1 and A(·) do not play any role in these conditions. For
instance, matrices A(s) can be related to the Hamiltonian form of the maximum
principle (see Remark 1 below) and π, π0, π1 may belong to some sets different
from the Clarke generalized gradients.

Rampazzo and Vinter (1999) considered time independent U and assumed
the existence of a continuous v : [0, 1] × R

n → U , such that for all x ∈ ∂K,
f(s, x, v(s, x)) points strictly inside of the state constraints. Then they proved
that every optimal trajectory-control pair satisfies a normal maximum principle,
see also Galbraith and Vinter (2003). In Frankowska and Bettiol (2007) a more
general situation was considered and it was shown that under some weaker
assumptions every nondegenerate maximum principle is normal. However, a
weak point of this last result is that it was proved only for Lipschitz optimal
trajectories. For this reason, applications to the problem of Lipschitz regularity
of optimal trajectories, as in Frankowska and Marchini (2006), are not possible.

We propose here a new inward pointing condition to handle the unbounded
case when the boundary of constraints is C1. Further developments for more
general set of constraints is postponed to a future work. A discussion on this
condition is provided at the end of the paper.

Under this inward pointing condition we get two results about normality
of the maximum principle when sets of admissible velocities are unbounded.
The first one (Theorem 1) deals with nondegenerate maximum principles for
arbitrary closed set of initial states. The second one (Theorem 2) can be applied
also to degenerate maximum principles, but requires an additional assumption
on the initial conditions.

Normality is useful, in particular, for investigation of regularity of optimal
trajectories and optimal controls, see Galbraith and Vinter (2003), Frankowska
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and Marchini (2006), Bettiol and Frankowska (2008), Cannarsa, Frankowska
and Marchini (2009).

The author wishes to express her gratitude to R. Vinter for his stimulating
paper Galbraith and Vinter (2003) that brought her interest to the topic of
normality.

2. Preliminaries

Let B denote the closed unit ball in R
n. For a subset Y ⊂ R

n, co Y denotes the
closed convex hull of Y and ∂Y the boundary of Y .

Let K ⊂ R
n. The distance function from a point x ∈ R

n to K is defined by
dist(x;K) := infy∈K |x− y|, while the oriented distance d(·) is defined by

d(x) = dist(x;K) − dist(x; Rn\K)

for x ∈ R
n.

In this paper we always assume that d is continuously differentiable on a
neighborhood of the boundary of K. By TK(x) (respectively NK(x)) we de-
note the tangent (respectively normal) cone to K at x ∈ K. In this case
the normal cone coincides with Clarke’s normal cone and so our notations are
consistent. If x ∈ Int(K), then TK(x) = R

n and for all x ∈ ∂K we have
TK(x) = {v | 〈∇d(x), v〉 ≤ 0}.

For any A ∈M(n× n), A∗ denotes its adjoint and ||A|| its norm.
The space of absolutely continuous functions from [0, 1] to R

n is denoted by
W 1,1 := W 1,1([0, 1]; Rn), while NBV := NBV ([0, 1]; Rn) denotes the space of
normalized functions of bounded variation on [0, 1] with values in R

n, i.e. the
space of functions with bounded total variation, vanishing at zero and right-
continuous on (0, 1). For any ψ ∈ NBV , the right (left) limit of ψ at t ∈ [0, 1)
(respectively t ∈ (0, 1]) is denoted by ψ(t+) (respectively ψ(t−)). For properties
of the space NBV ([0, 1],Rn) see, for instance, Luenberger (1969).

Define the Hamiltonian H : [0, 1]×R
n×R

n×{0, 1} → R∪{+∞} associated
to the above Bolza problem as follows:

H(s, x, p, λ) = sup
u∈U(s)

(〈p, f(s, x, u)〉 − λℓ(s, x, u)). (2.1)

Definition 1 An admissible trajectory/control pair (z, ū) of system (1.2) is
called extremal for a triple (λ, p, ψ) if λ ∈ {0, 1}, ψ ∈ NBV and p ∈ W 1,1 are
such that (λ, p, ψ) 6= 0 and for some integrable mappings A : [0, 1] →M(n× n),
π : [0, 1] → R

n, and some π0, π1 ∈ R
n the following relations hold true :

−p′(s) = A∗(s)(p(s) + ψ(s)) − λπ(s) a.e. in [0, 1], (2.2)

(p(0),−p(1) − ψ(1)) ∈ λ(π0, π1) +NC(z(0)) × {0}, (2.3)

〈p(s) + ψ(s), z′(s)〉 − λℓ(s, z(s), ū(s)) = H(s, z(s), p(s) + ψ(s), λ) a.e., (2.4)

ψ(t) =

∫

[0,t]

ν(s)dµ(s) ∀ t ∈ (0, 1] (2.5)
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for a positive (scalar) Radon measure µ on [0, 1] and a Borel measurable ν(·) :
[0, 1] → R

n satisfying

ν(s) ∈ NK(z(s)) ∩B µ − a.e. (2.6)

A triple (λ, p, ψ) as above is called nondegenerate if λ+supt∈(0,1) |p(t)+ψ(t)| 6= 0.
If λ = 1, then (λ, p, ψ) is called normal.

In this paper we shall always assume that d ∈ C1 on a neighborhood of
∂K. Then it follows from Cernea and Frankowska (2006) that (2.6) implies the
following jump conditions

ψ(0+) ∈ NK(z(0)), ψ(t) − ψ(t−) ∈ NK(z(t)) ∀ t ∈ (0, 1]. (2.7)

Remark 1 Assume that for some ε > 0, k ∈ L1(0, 1; R+), for almost all s ∈
[0, 1] and all u ∈ U(s), the mappings f(s, ·, u) and ℓ(s, ·, u) are k(s)−Lipschitz
on B(z(s), ε) (closed ball of center z(s) and radius ε).

Then, under some additional technical assumptions, every strong local min-
imizer (z, ū) of the above Bolza problem satisfies a constrained maximum prin-
ciple in jacobian form, e.g. Vinter (2000). Relations (2.2), (2.3), (2.4), (2.5),
(2.6) correspond to such maximum principle and conditions for nondegeneracy
can be found in Vinter (2000).

However, some other maximum principles can be reduced to this form with
the matrix A(s) not necessarily related to the Jacobian of f(s, ·, ū(s)). This hap-
pens, for instance, if the adjoint variable p(·) satisfies the Hamiltonian inclusion

−p′(s) ∈ ∂xH(s, z(s), p(s) + ψ(s), λ) a.e. in [0, 1],

where ∂xH(s, z(s), p(s) + ψ(s), λ) is the Clarke’s generalized gradient of

H(s, ·, p(s) + ψ(s), λ)

at z(s). Then such matrix can be defined, if in addition, it is assumed that for
all s ∈ [0, 1] and x ∈ B(z(s), ε) there exists u ∈ U(s) satisfying

H(s, x, p(s) + ψ(s), λ) = 〈p(s) + ψ(s), f(s, x, u)〉 − λL(s, x, u).

Indeed, then it is not difficult to check that for any q ∈ ∂xH(s, z(s), p(s)+ψ(s), λ)

|q| ≤ k(s)|p(s) + ψ(s)| + λk(s) ≤ k(s)n max
1≤j≤n

|pj(s) + ψj(s)| + λk(s).

Hence, for some measurable ξ : [0, 1] → B we have

−p′(s) + λk(s)ξ(s) ∈ k(s)n max
1≤j≤n

|pj(s) + ψj(s)|B a.e. in [0, 1].

Set π(s) := k(s)ξ(s). For every s ∈ [0, 1] define the matrix A(s) = (aj,i(s)) as
follows:
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If p(s) + ψ(s) = 0, then A(s) = 0. Otherwise consider the smallest j0 with

|pj0(s) + ψj0 (s)| = max
1≤j≤n

|pj(s) + ψj(s)|

and for all i set aj,i(s) = 0 for every j 6= j0,

aj0,i(s) =
−p′i(s) + λπi(s)

pj0(s) + ψj0(s)
.

Notice that A(·) is integrable and (2.2) holds true.

More generally, if the adjoint variable p(·) is so that for some k∈L1(0, 1; R+),
|p′(s)| ≤ k(s)|p(s)+ψ(s)|+λk(s) a.e., then the corresponding integrable matrix
valued mapping A(·) can be defined as above.

3. Normality of the Maximum Principle

From now on we always assume that U : [0, 1] ; Z is measurable with nonempty
closed values, that C ⊂ R

n is closed, f, ℓ are measurable with respect to s and
continuous with respect to (x, u). Denote by ̟ the Lebesgue measure.

We also assume that the oriented distance d(·) is C1 on a neighborhood of
∂K. We impose next some qualification assumptions on the constrained control
system:














∀ R > 0, ∃ ηR > 0, MR > 0, ρR > 0, d(·) ∈ C1 on ∂K ∩RB + ηRB,
∀ y ∈ K satisfying y ∈ ∂K ∩RB + ηRB and ∀ s ∈ [0, 1],
∀ u ∈ U(s) with 〈∇d(y), f(s, y, u)〉 ≥ 0, ∃ vy ∈ co f(s, y, U(s))
such that |vy − f(s, y, u)| ≤MR, 〈∇d(y), vy − f(s, y, u)〉 ≤ −ρR.

(3.1)

Remark 2 Assume that f and U are time independent and for every r > 0
there exist Tr > 0, ηr > 0, kr > 0 such that for all x ∈ ∂K ∩ rB, f(x, U) ⊂ TrB
and for all u ∈ U , f(·, u) is kr−Lipschitz on B(x, ηr). Then (3.1) is equivalent
to the usual inward pointing condition: for every x ∈ ∂K there exists ux ∈ U
such that

〈∇d(x), f(x, ux)〉 < 0. (3.2)

The main interest in introducing (3.1) is to handle the case of unbounded sets
f(x, U) and also measurable with respect to time f and U .

Our main results concern arbitrary extremals. If one is interested by a
particular extremal (z, ū), then, by the proofs given below, (3.1) may be localized
around z([0, 1]).

Theorem 1 Assume (3.1). If (z, ū) is extremal for a nondegenerate triple
(λ, p, ψ), then λ = 1. In other words, every nondegenerate triple (λ, p, ψ) is
normal.
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Theorem 2 Assume (3.1). If (z, ū) is extremal for a triple (λ, p, ψ) and

CC(z(0)) ∩ Int (TK(z(0))) 6= ∅, (3.3)

where CC(z(0)) denotes Clarke’s tangent cone to C at z(0), then λ = 1. In
other words, every extremal starting at z(0) and satisfying (3.3) has only normal
triples.

Corollary 1 Consider a trajectory/control pair (z, ū) that is extremal for a
triple (λ, p, ψ) and such that z(0) ∈ Int(K). Then λ = 1.

Lemma 1 Assume (3.1). Let (z, ū) be extremal for a triple (λ, p, ψ).
i) If (z, ū) is nondegenarate and there exists a solution w̄ ∈ W 1,1 to the

viability problem






w′(s) ∈ A(s)w(s) + Tco f(s,z(s),U(s))(z
′(s)) a.e. in [0, 1]

w(0) = 0
w(s) ∈ Int(TK(z(s))) for all s ∈ (0, 1],

then λ = 1.

ii) If Γ := CC(z(0)) ∩ Int (TK(z(0))) 6= ∅ and there exists a solution w̄ ∈
W 1,1 to the viability problem







w′(s) ∈ A(s)w(s) + Tco f(s,z(s),U(s))(z
′(s)) a.e. in [0, 1]

w(0) ∈ Γ
w(s) ∈ Int(TK(z(s))) for all s ∈ [0, 1],

then λ = 1.

Proof. i) Set C = {w ∈ C([0, 1]) | w(s) ∈ Int(TK(z(s))) ∀ s ∈ (0, 1], w(0) = 0},

S = {w ∈W 1,1 | w′(s) ∈ A(s)w(s) + Tco f(s,z(s),U(s))(z
′(s)) a.e. in [0, 1]}.

Assume for a moment that λ = 0. Then, by (2.3), p(1) + ψ(1) = 0. By

(2.5) for all w ∈ C([0, 1]),
∫ 1

0 w(s)dψ(s) =
∫

[0,1]w(s)ν(s)dµ(s). From (2.6) it

follows that
∫ 1

0 w(s)dψ(s) ≤ 0 for every w ∈ C. On the other hand, by (2.2),
for every w ∈ S and integrable selection v(s) ∈ Tco f(s,z(s),U(s))(z

′(s)), satisfying
w′(s) = A(s)w(s) + v(s) a.e. in [0, 1], we have

∫ 1

0 (p′w+pw′+ψw′)(s)ds =
∫ 1

0 (−A∗(p+ ψ)w+p(Aw + v)+ψ(Aw + v))(s)ds

=
∫ 1

0
〈p(s) + ψ(s), v(s)〉ds.

By (2.4), 〈p(s) + ψ(s), v(s)〉 ≤ 0 a.e. Thus
∫ 1

0
(p′w + pw′ + ψw′)(s)ds ≤ 0 and

therefore

〈p(1), w(1)〉 − 〈p(0), w(0)〉 +

∫ 1

0

ψ(s)w′(s)ds ≤ 0. (3.4)
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Integrating by parts we get
∫ 1

0
w(s)dψ(s) ≥ −〈p(0), w(0)〉. Consequently, for

every w ∈ S ∩ C,
∫ 1

0 w(s)dψ(s) = 0.
Let w̄ be as in assumption i). Then, for all s ∈ (0, 1] such that ν(s) 6= 0 we

have 〈ν(s), w̄(s)〉 < 0. Therefore, µ({s ∈ (0, 1] | ν(s) 6= 0}) = 0 and ψ ≡ −p(1)
on (0, 1]. Thus, φ := p+ ψ is absolutely continuous on (0, 1], vanishes for t = 1
and satisfies the adjoint system −φ′(s) = A(s)∗φ a.e. in (0, 1]. Hence p+ψ = 0
on (0, 1]. This contradicts the nondegeneracy and ends the proof of i).

ii) Define C = {w ∈ C([0, 1]) | w(s) ∈ Int(TK(z(s))) ∀ s ∈ [0, 1]},

S = {w ∈W 1,1 | w′(s) ∈ A(s)w(s) + Tco f(s,z(s),U(s))(z
′(s)) a.e., w(0) ∈ Γ}.

Assume for a moment that λ = 0. Then, by (2.3), p(1)+ψ(1) = 0. Exactly as
in the proof of i) we deduce that for every w ∈ S, (3.4) holds true. Integrating by

parts we obtain 〈p(0), w(0)〉+
∫ 1

0
w(s)dψ(s) ≥ 0. By (2.3), p(0) ∈ NC(z(0)) and

therefore 〈p(0), w(0)〉 ≤ 0. Then
∫ 1

0 w(s)dψ(s) ≥ 0. On the other hand, for every

w ∈ C,
∫ 1

0
w(s)dψ(s) ≤ 0. Thus, for every w ∈ S ∩ C,

∫ 1

0
w(s)dψ(s) = 0. In the

same way as before, using the assumption ii), we deduce that p+ψ = 0 on (0, 1].
So p(0) + ψ(0+) = 0. Let w̄ be as in the assumption ii). Since p(0) ∈ NC(z(0)
we obtain 〈p(0), w̄(0)〉 ≤ 0. From (2.7) we know that ψ(0+) ∈ NK(z(0)) and
therefore 〈ψ(0+), w̄(0)〉 < 0. Then, 〈p(0) + ψ(0+), w̄(0)〉 < 0, contradicting
p(0) + ψ(0+) = 0. Therefore λ = 1.

Hence, to prove our main theorems we have to find solutions to the two
systems appearing in Lemma 1. Set R = ‖z‖∞ and let η = ηR, M = MR, ρ =
ρR be as in (3.1). For any t ∈ [0, 1], we denote by Y (·; t) the matrix solution to

{

X ′(s) = A(s)X(s)
X(t) = I.

(3.5)

Since A(·) is integrable and d ∈ C1 on ∂K ∩RB + ηB, there exists ε1 > 0 such
that whenever 0 ≤ s < t ≤ 1 and t− s ≤ ε1, ||Y (t; t0)Y

−1(s; t0)− I|| ≤ ρ
4M

and

(z(t), z(s) ∈ ∂K ∩RB + ηB) =⇒ |∇d(z(t)) −∇d(z(s))| ≤
ρ

4M
.

Define D := {s ∈ [0, 1] | z(s) ∈ ∂K+ηB, 〈∇d(z(s)), z′(s)〉 ≥ 0}. By assumption
(3.1) and the measurable selection theorem there exists a measurable selection
v(s) ∈ co f(s, z(s), U(s)) on D such that for a.e. s ∈ D

〈∇d(z(s)), v(s) − z′(s)〉 ≤ −ρ & |v(s) − z′(s)| ≤M. (3.6)

Set v(s) := z′(s) for all s ∈ [0, 1] \ D and L := max0≤s≤t≤1 ||Y (t; s)||.

Lemma 2 If z((0, 1]) ∩ ∂K 6= ∅, then there exists θ > 0 with z(θ) ∈ ∂K and a
solution to the system







w′(s) = A(s)w(s) + v(s) − z′(s) for a.e. s ∈ [0, θ],
w(0) = 0,
w(s) ∈ Int(TK(z(s))) ∀ s ∈ (0, θ].

(3.7)
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Proof. Define t1 := inf{s ∈ [0, 1] | z(s) ∈ ∂K)}.
If t1 > 0, then z([0, t1)) ⊂ Int(K). Let 0 < t0 < t1 be such that t1 − t0 ≤ ε1,

z([t0, t1]) ⊂ ∂K + ηB. Since d(z(t1)) = d(z(t0)) +
∫ t1

t0
〈∇d(z(s)), z′(s)〉ds and

d(z(t1)) = 0, d(z(t0)) < 0, the set A := [t0, t1] ∩ D has a positive Lebesgue
measure. Consider the system

{

w′(s) = A(s)w(s) + v(s) − z′(s)
w(t0) = 0.

(3.8)

Then w ≡ 0 solves w′ = A(s)w and w(t) ∈ Int (TK(z(t))) = R
n on (0, t0].

Furthermore, for Z(·) = Y (·; t0) the solution to (3.8) on [t0, t1] is given by

w(t) =

∫ t

t0

Z(t)Z−1(s)(v(s) − z′(s)) ds.

Then

〈∇d(z(t1)), w(t1)〉 =
∫ t1

t0

〈

∇d(z(t1)), Z(t1)Z
−1(s)(v(s) − z′(s))

〉

ds

≤
∫ t1

t0
〈∇d(z(t1)), v(s) − z′(s)〉 ds +

+
∫ t1

t0
||Z(t1)Z

−1(s) − I|||v(s) − z′(s)|ds

≤
∫

A
〈∇d(z(s)), v(s) − z′(s)〉 ds+M

∫

A
|∇d(z(t1)) −∇d(z(s))|ds +

+M
∫

A
||Z(t1)Z

−1(s) − I||ds ≤ −ρ̟(A) + ρ
2 ̟(A) < 0.

(3.9)

Setting θ = t1 we end the proof for t1 > 0.

If t1 = 0 and for some ε > 0, z((0, ε]) ⊂ Int(K), then it is enough to apply the
same arguments as before with t1 replaced by t2 := inf{s ∈ [ε, 1] | z(s) ∈ ∂K)}
and put θ = t2.

It remains to consider the case z(0) ∈ ∂K and for every ε > 0, z((0, ε]) ∩
∂K 6= ∅. Let 0 < θ < ε1 be such that z(θ) ∈ ∂K. Fix any t ∈ [0, θ] with
z(t) ∈ ∂K and notice that the set A := [0, t] ∩ D has a positive Lebesgue
measure. Consider again the system (3.8) with t0 = 0. Similarly as for estimate
(3.9) we get 〈∇d(z(t)), w(t)〉 < 0.

Lemma 3 Let t0 ∈ [0, 1) be such that z(t0) ∈ ∂K and w0 ∈ Int(TK(z(t0))).
Define t1 = max{s ∈ [t0, t0 + ε1] | z(s) ∈ ∂K + ηB}. Then, there exists a
solution to the differential inclusion







w′(s) ∈ A(s)w(s) + R+(v(s) − z′(s)) a.e. in [t0, t1]
w(t0) = w0

w(s) ∈ Int(TK(z(s))) for all s ∈ [t0, t1].
(3.10)

Proof. Define Z(·) := Y (·; t0). Let t0 < t̄ ≤ t1 be such that t̄ − t0 < ε1 and
〈∇d(z(s)), Z(s)w0〉 ≤ 0 for all t0 ≤ s ≤ t̄.
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Case 1. If z(t̄) ∈ ∂K, then the set A1 := [t0, t̄] ∩ D has a positive Lebesgue
measure. Consider the solution w to

{

w′(s) = A(s)w(s) + 4L|w0|
ρ̟(A1) (v(s) − z′(s)) a.e. in [t0, t1]

w(t0) = w0.
(3.11)

We claim that w(s) ∈ Int(TK(z(s))) for all s ∈ [t0, t1]. Indeed, for any t ∈ [t0, t̄]
such that z(t) ∈ ∂K,

〈∇d(z(t)), w(t)〉 =

〈∇d(z(t)), Z(t)w0〉 + 4L|w0|
ρ̟(A1)

∫ t

t0

〈

∇d(z(t)), Z(t)Z−1(s)(v(s) − z′(s))
〉

ds

≤ 4L|w0|
ρ̟(A1)

∫ t

t0

〈

∇d(z(t)), Z(t)Z−1(s)(v(s) − z′(s))
〉

ds.

As in the proof of Lemma 2 we show that

∫ t

t0

〈

∇d(z(t)), Z(t)Z−1(s)(v(s) − z′(s))
〉

ds < 0.

Thus, w(t) ∈ Int(TK(z(t))).

Consider next t ∈ (t̄, t1] such that z(t) ∈ ∂K. Define A := [t0, t] ∩ D. Then
̟(A) ≥ ̟(A1) > 0. Similarly to the proof of Lemma 2 we get

〈∇d(z(t)), w(t)〉 =

〈∇d(z(t)), Z(t)w0〉 + 4L|w0|
ρ̟(A1)

∫ t

t0

〈

∇d(z(t)), Z(t)Z−1(s)(v(s) − z′(s))
〉

ds

≤ L|w0| +
4L|w0|
ρ̟(A1)

∫ t

t0
〈∇d(z(s)), v(s) − z′(s)〉 ds+ 4L|w0|

ρ̟(A1)
ρ
2 ̟(A)

≤ L|w0| −
4L|w0|
̟(A1) ̟(A) + 2L|w0|

̟(A1)̟(A) = L|w0| −
2L|w0|̟(A)

̟(A1) ≤ −L|w0|.

Thus, w(t) ∈ Int(TK(z(t))).

Case 2. Assume next that z(t̄) ∈ Int(K). If z([t̄, t1]) ⊂ Int(K), then the
proof ends. Otherwise define t2 := min{s ∈ [t̄, t1] | z(s) ∈ ∂K}. Then the set
A1 := [t̄, t2] ∩ D has a positive Lebesgue measure. Consider the solution w to
(3.11). In the same way as in Case 1 it follows that for all t ∈ [t0, t1] with
z(t) ∈ ∂K, we have w(t) ∈ Int(TK(z(t))).

Lemma 4 Let t0 ∈ [0, 1) be such that z(t0) ∈ Int(K), z([t0, 1]) ∩ ∂K 6= ∅ and
w0 ∈ R

n. Define t1 = min{s ∈ [t0, 1] | z(s) ∈ ∂K}. Then, there exists a solution
to the differential inclusion (3.10).

Proof. Let t0 < t̄ < t1 be such that z([t̄, t1]) ∈ ∂K + ηB. It is enough to apply
the same arguments as in the proof of Lemma 3, Case 2.
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Proof of Theorem 1. By Lemma 1 we have to show that there exists a solution
w̄ : [0, 1] → R

n to







w′(s) ∈ A(s)w(s) + R+(v(s) − z′(s)) a.e. in [0, 1]
w(0) = 0
w(s) ∈ Int (TK(z(s))) for all s ∈ (0, 1].

(3.12)

If z((0, 1]) ⊂ Int(K), then it is enough to consider the solution w to (3.8) with
t0 = 0. Assume next that z((0, 1]) ∩ K 6= ∅. Since z is absolutely continuous,
there exists 0 < ε < ε1 such that for any t ∈ [0, 1) with z(t) ∈ ∂K, z([t, (t+ ε)∧
1]) ⊂ ∂K + ηB, where (t+ ε) ∧ 1 := max{t+ ε, 1}.

Claim. For all t0 ∈ [0, 1) and w0 ∈ Int (TK(z(t0))) there exists t0 < δ(t0) ≤ 1
such that either δ(t0) = 1 or δ(t0) − t0 ≥ ε and differential inclusion (3.10) has
a solution for t1 = δ(t0).

Indeed, fix t0 ∈ [0, 1) and w0 ∈ Int (TK(z(t0))). If z((t0, 1]) ⊂ Int(K), then
it is enough to consider the solution w to

{

w′(s) = A(s)w(s) + v(s) − z′(s) a.e. in [t0, 1]
w(t0) = w0.

If z(t0) ∈ ∂K, then, by Lemma 3 and the absolute continuity of z, such δ(t0)
does exist. If z(t0) ∈ Int(K), then consider t1 and w(·) as in Lemma 4 and set
w1 = w(t1). Applying Lemma 3 with t0 replaced by t1 and w0 by w1, we prove
that there exists a solution w to (3.10) on some time interval [t0, δ(t0)] with
δ(t0) either equal to 1 or satisfying δ(t0) − t0 ≥ ε. This proves our claim.

From Lemma 2 we deduce that there exist θ > 0 and a solution w̄ to system
(3.12) on [0, θ] such that z(θ) ∈ ∂K. Consider any finite sequence τ0 = θ < τ1 <
... < τk = 1 such that τi+1 − τi ≤ ε. We define w̄ using an induction argument.
Set w0 := w̄(θ), t0 = θ. By our claim there exists a solution to (3.12) on [τ0, τ1].

Assume that we already constructed w̄ on [0, τj ] and j < k. Setting t0 = τj
and w0 = w̄(τj) and using again the above claim we extend w̄ on [τj , τj+1].

To prove Theorem 2 it is enough to apply the same reasoning as for the proof
of Theorem 1 with θ = 0 and w̄(θ) replaced by w0.

Remark 3 We discuss next the role of the convex hull in condition (3.1). In
general (3.1) is not equivalent to the same condition without the convex hull:























∀R > 0, ∃ ηR > 0,MR > 0, ρR > 0, d(·) ∈ C1 on ∂K ∩RB + ηRB,
∀ y ∈ K satisfying y ∈ ∂K ∩RB + ηRB and ∀ s ∈ [0, 1],
∀ u ∈ U(s) with 〈∇d(y), f(s, y, u)〉 ≥ 0, ∃ us,y ∈ U(s) such that
|f(s, y, us,y) − f(s, y, u)| ≤MR and
〈∇d(y), f(s, y, us,y) − f(s, y, u)〉 ≤ −ρR.

(3.13)

Clearly, (3.13) yields (3.1), but the converse implication is in general false.
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Consider the following simple example: K = R×R− and f : [0, 1]×R
2×R

2 →
R

2 defined by f(s, y, u) = u and for all s ∈ [0, 1],

U(s) = U := {(α, 1/α) |α > 0} ∪ {0} × [0,−∞).

Let ε > 0. Fix any M > 0. Then there exists α0 > M + 1/ε such that for
all α ≥ α0 and every (u1, u2) ∈ U the inequality |(α, 1/α) − (u1, u2)| ≤ M
yields u1 ≥ α0 − M ≥ 1/ε. Consequently 〈(0, 1), (u1, u2) − (α, 1/α)〉 ≥ −ε.
This implies that condition (3.13) does not hold. On the other hand, since
coU = R+ × R, (3.1) is satisfied.

Remark 4 In the present paper we have considered only the case when the
boundary of K is smooth. However, the construction made in Theorem 1 may
be adapted to state constraints K that are intersection of a finite number of sets
with smooth boundaries, see Frankowska (2006), where normality of extremals
was proved under some stronger assumptions on the initial states. Then K
has a nonsmooth boundary and ∇d(y) have to be replaced by unit vectors from
Clarke’s normal cone. For instance, for time independent f, U , (3.2) becomes:
for every x ∈ ∂K, there exists ux ∈ U such that

sup
n∈NK(x), |n|=1

〈n, f(x, ux)〉 < 0. (3.14)

It may happen then that (3.14) does not hold and still a nonsmooth analogue
of (3.1) is satisfied. Indeed, consider f, U as in Remark 3 and K = R+ × R−.
Then, (3.14) is not true at 0 and at the same time

{

∀ x ∈ ∂K, ∀ u ∈ U, ux := u+ (1,−1) ∈ coU satisfies
|ux − u| ≤ 2 and supn∈NK(x), |n|=1 〈n, ux − u〉 ≤ −1.

(3.15)

Notice that for this example construction of w̄ as in Lemma 1 is elementary,
similarly as verification of normality. Investigation of nonsmooth constraints in
the general nonlinear case is postponed to a future work.

Remark 5 It is not difficult to realize that for smooth ∂K, (3.1) implies that
for every x ∈ ∂K and every s ∈ [0, 1], there exists us,x ∈ U(s) such that

〈∇d(x), f(s, x, us,x)〉 < 0. (3.16)

When the boundary of K is nonsmooth, this is not always the case (see Remark 4
above).

Notice that if K and f are as in Remark 3 and U(·) is given by: for all
s ∈ [0, 1), U(s) = [0, 1]× {1− s, s− 1} and U(1) = {(0,−1)}, then (3.16) holds
true, sups∈[0,1] infu∈U(s)〈(0, 1), u〉 = 0 and (3.1) is not satisfied. For this reason,
in the measurable case it is usual to replace (3.16) by a stronger assumption
〈∇d(x), f(s, x, us,x)〉 < −ρ for some ρ > 0 independent of s, x.
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Sufficiency of (3.16) for normality when z is Lipschitz, f, U are regular
enough and U is bounded is known even for nonsmooth state constraints, see for
instance Frankowska (2006).

The proofs of this paper do not apply when only (3.16) is imposed and z′

is unbounded, for the following reason. Even though for all u ∈ U(s) such
that 〈∇d(x), f(s, x, u)〉 ≥ 0 we have 〈∇d(x), f(s, x, us,x) − f(s, x, u)〉 < 0, the
existence of MR > 0 such that in addition |f(s, x, us,x) − f(s, x, u)| ≤ MR for
all s ∈ [0, 1] and x ∈ ∂K ∩ RB in the unbounded case is in general false. This
last inequality is important in our proofs.

To get such bounds it is more appropriate to allow the choice of us,y to be
dependent on u ∈ U(s) and even more, to look for v(s, y, u) ∈ co f(s, y, U(s))
such that 〈∇d(y), v(s, y, u) − f(s, y, u)〉 ≤ −ρR and |v(s, y, u)−f(s, y, u)| ≤MR.
By Remark 3, invoking the convex hull leads to a more general result.
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