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Abstract: The paper considers parametric optimal control pro-
blems with bang–bang control vector function. For this problem we
give regularity and second–order optimality conditions at the nomi-
nal solution which are sufficient to: (i) existence and local uniqueness
of extremals, (ii) local structure stability, (iii) strong local optimal-
ity, under parameter perturbations. Here “local” means in a L∞–
neighbourhood of the nominal trajectory, regardless of the control
values.

Stability results were obtained by the first author using the shoot-
ing approach, while optimality results were obtained by the other
authors, using the Hamiltonian approach. The paper, combining
both approaches, allows to unify the assumptions and to close some
gaps between optimality and stability results.

Keywords: bang–bang control, parametric control problems,
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1. Introduction

From optimal control theory in case of continuous control functions we know
that, in analogy to the mathematical programming situation, a successful sen-
sitivity analysis of the solutions requires certain strong second–order optimality
conditions and possibly additional constraint qualifications. In recent years, es-
sential progress has been made in deriving sufficient optimality conditions for
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the so–called bang–bang controls in control–affine systems. Important contri-
butions on second–order sufficient optimality conditions in case of bang–bang
controls are given in Osmolovskii (1995, 2004), Milyutin and Osmolovskii (1998),
Sarychev (1997), Agrachev et al. (2002), Poggiolini and Stefani (2004), Maurer
and Osmolovskii (2004), Noble and Schättler (2002).

A standard assumption in the above mentioned papers, except for Sarychev
(1997), consists in the fact that all control switches are simple (i.e. control
components do not switch simultaneously). In the case of simultaneous (or
multiple) switches, strong local optimality results have been given in Poggiolini
and Stefani (2006), Poggiolini and Spadini (2008 and 2009). Prior to this, up to
the authors’ knowledge, only Sarychev (1997) faced the multiple switches case,
considering L1–local optimality, under stronger regularity assumptions. An ex-
ample where a simultaneous switch of two control components was detected
numerically was given in Oberle (1987) and personal communication.

For stability and sensitivity investigations on bang–bang extremals, results
are given in Kim and Maurer (2003) and in Felgenhauer (2003, 2004 and 2008b).
In the first paper the authors exploit the finite–dimensional sub–problem of
minimising over switching times. In the other papers the author starts from the
state–adjoint system given in the form of Pontryagin’s Maximum Principle: this
method requires to analyse parameter dependencies of the canonical system.

For linear or semi–linear dynamics, differentiability of the switching times
with respect to parameters was shown in Felgenhauer (2005) without the sim-
ple switches restriction. For a general control–affine system this property holds
true only under the simple switches assumption, see Kim and Maurer (2003),
while only Lipschitz continuity holds if multiple switches occur, see Felgen-
hauer (2008a) for a proof and Felgenhauer (2008b) for an example where the
multiple switching time is not differentiable.

In the present paper, the authors have brought together and compared dif-
ferent methods:

1. the so–called shooting approach in analysing bang–bang extremals with
simultaneous control switches, already exploited by the first author to
obtain stability and sensitivity results,

2. the Hamiltonian formalism and analysis of maximised Hamiltonians, pre-
viously used by the other authors to obtain strong local optimality results.

The common feature of the two approaches is to consider the second–order con-
ditions associated to the optimisation problem over switching times positions.
As a result, the assumptions of the two approaches are proven to be equivalent.
Moreover, the shooting procedure can be seen as an embedded part of the con-
struction of the Hamiltonian flow. This observation made it possible to find a
new proof for the local stability of the switching structure and to obtain a unique
optimiser in an L∞ neighbourhood of the reference trajectory, independently of
the related control values. In the result, the structural stability properties as
obtained in Felgenhauer (2008a), that is in a L∞ × L1 neighbourhood of the
reference trajectory–control pair, could be strengthened.
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The plan of the paper is the following: in Section 2 we define the nota-
tion; in Section 3 we state the problem and the regularity assumptions on the
bang–bang structure of a reference extremal; in Section 4 we discuss the finite
dimensional sub–problem, provide second order conditions and state the main
theorem of the paper. In Section 5 we explain the Hamiltonian approach and
derive an equivalent Hamiltonian formulation of the main assumptions. Finally,
in Section 6 we prove the result stated in Section 4.

Hopefully, the result of this paper will be extended to general Mayer prob-
lems.

2. Notation

Let R
n be the Euclidean space of column vectors with norm | · |. We shall denote

the space of row vectors as (Rn)∗. If p ∈ (Rn)∗ and q ∈ R
n, then 〈p, q〉 will

denote their duality product, that is 〈p, q〉 = pq.
The Lebesgue space of order r of vector–valued functions on [0, 1] is denoted

by Lr([0, 1]; Rn). W k
r ([0, 1]; Rn) is the corresponding Sobolev space, and norms

are given as ‖ · ‖r and ‖ · ‖k,r, (1 ≤ r ≤ ∞, k ≥ 1), respectively. For the space
of k–times continuously differentiable functions we will write Ck. The subspace
of functions with Lipschitz continuous derivatives of order k is denoted Ck,1.

Let Ω be an open interval of R containing the origin. For any smooth
parameter dependent function α : (q, h) ∈ R

n × Ω 7→ αh(q) ∈ R, the symbol
Dq α

h(q) denotes the gradient row vector, with respect to the q variable. The
symbol ∂q is used for (partial) generalised derivative in the sense of Clarke.

For any smooth parameter dependent vector field in R
n, f : (q, h) ∈ R

n×Ω 7→
fh(q) ∈ R

n we denote by fh : q ∈ R
n 7→ fh(q) ∈ R

n the vector field obtained
by fixing h. Therefore, the Jacobian matrix of f with respect to the q variable,
evaluated at (q, h) is denoted as Dq f

h(q). By “smooth parameter dependent
vector field” we mean that f is at least C2.

The Lie bracket between two vector fields, f1 and f2, is denoted as [f1, f2]:

[f1, f2] := (Dq f2) f1 − (Dq f1) f2.

The symbol exp tf(q) denotes the solution of the Cauchy problem

ẋ(t) = f(x(t)), x(0) = q.

The directional derivative of a smooth function α with respect to a vector field
f in a point q is denoted as f · α(q), i.e.

f · α(q) :=
d

d t
α(exp tf(q))

∣∣∣∣
t=0

.

Further, by convM we denote the convex hull of a set M . For characterising
discontinuities, jump terms are denoted as [v]

s
= v(ts+) − v(ts−) where the

index s will become clear from the context.
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We shall identify the tangent space to R
n in a point x with R

n itself, the
cotangent space with (Rn)∗. The tangent bundle and the cotangent bundle will
be identified with R

n × R
n and (Rn)∗ × R

n, respectively. The elements of the
cotangent bundle will be denoted as ℓ = (p, q), with p ∈ (Rn)∗, q ∈ R

n.

The projection of the cotangent bundle onto the state space is denoted as π:

π : (p, q) ∈ (Rn)∗ × R
n 7→ q ∈ R

n.

The symbols Fh and
−→
F h will denote the Hamiltonian function and the corre-

sponding Hamiltonian field associated to fh, respectively, namely:

F : (p, q, h) ∈ (Rn)∗ × R
n × Ω 7→ Fh(p, q) := 〈p, fh(q)〉 ∈ R,

−→
F : (Rn)∗ × R

n × Ω → (Rn)∗ × R
n

−→
F : (p, q, h) 7→

−→
F h(p, q) :=

(
−Dq F

h(p, q),Dp F
h(p, q)

)
.

With the symbol Fh we denote the flow of the parameter–dependent Hamilto-

nian field
−→
F , emanating at time t = 1, i.e. Fh

t (ℓ) = exp(t − 1)
−→
F h(ℓ) denotes

the solution λh(t) = (ph(t), qh(t)) ∈ (Rn)∗ × R
n, evaluated at time t, of the

Hamiltonian system

d

d t
λh(t) =

−→
F h(λ(t)) , λh(1) = ℓ.

Finally, we denote as Sign : R ⊸ R the set–valued sign function, i.e Sign(x) =
sign(x) for x 6= 0, and Sign(0) = [−1, 1].

3. The problem and the regularity assumptions

We consider a family of optimal control problems. To be more precise, we
consider the following one–parameter family of Mayer problems on the fixed
time interval [0, 1] and with vector–valued bounded control u : [0, 1] → [−1, 1]m

entering the system dynamics linearly:

(Ph) minimise βh(x(1)) subject to

ẋ(t) = fh(x(t)) +

m∑

i=1

ui(t)g
h
i (x(t)) a.e. in [0, 1], (1)

x(0) = a(h), (2)

|ui(t)| ≤ 1, i = 1, . . . ,m, a.e. in [0, 1] . (3)

We suppose that the initial state value, the dynamics and the cost depend on a
real parameter h ∈ Ω, where Ω is an open interval containing the nominal value
of the parameter h0 = 0. The unknowns of the problem are the state of the
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system x : [0, 1] 7→ R
n and the control u : [0, 1] 7→ R

m. The control set will
be given by

U := {v ∈ L∞([0, 1]; Rm) : ‖v‖∞ ≤ 1}.

Further, we denote by gh(x) the n ×m matrix whose columns are the param-
eter dependent controlled vector fields gh

i and assume that all the data of the
problem are at least C2.

We assume that, at h = 0, a bang–bang admissible state–control pair (x0, u0)
in W 1

∞
([0, 1]; Rn)×L∞([0, 1]; Rm), which contains at most one double switch, is

given. We want to pursue optimality and stability analysis for problems (Ph)
near h0 = 0.

In this paper we are concerned with strong local optimality where by (xh, uh)
being a strong local optimiser of (Ph) we mean that (xh, uh) minimises the cost
functional βh(x(1)) among all the admissible couples (x, u) such that ‖x−xh‖∞
is small enough, regardless of any distance between u and uh.

We recall that a necessary condition for an admissible couple (xh, uh) to be
an optimiser of (Ph) is Pontryagin’s Maximum Principle (PMP), which ensures
the existence of an adjoint covector function µh : [0, 1] 7→ (Rn)∗. In particular,
(µh, xh, uh) can be characterised as a solution of the following shooting problem
for the canonical system:

Find z such that

ẋ(t) = fh(x(t)) + gh(x(t))u(t),

µ̇(t) = −〈µ(t),Dq(f
h + ghu(t))(x(t))〉,

uj(t) ∈ Sign〈µ(t), gh
j (x(t))〉, j = 1, . . . ,m

(4)

x(1) = z (5)

µ(1) = −Dq β
h(z), (6)

with target (see (2))

T (z, h) = x(0, z, h) = a(h). (7)

We call a couple λ := (µ, x) solving (4) a Pontryagin extremal of control system
(1). The solutions λ of (4)–(7) are called Pontryagin extremals of problem (Ph)

For any fixed h, system (4)–(6) describes a backward parametrised family of
Pontryagin extremals for the problem obtained from (Ph) by removing the ini-
tial constraint. Thus, problem (7) can be interpreted as the backward shooting
system for determining Pontryagin extremals of (Ph)

In what follows we state the regularity assumptions made on the control
structure of the reference extremal (µ0, x0, u0). We define

σ0
j (t) := 〈µ0(t), g0

j (x0(t))〉,

Σ0
j := {t ∈ [0, 1] : σ0

j (t) = 0}.
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We point out that such conditions are the strengthening of the necessary con-
ditions coming from Pontryagin’s maximum principle.

Assumption 1 (bang–bang regularity) The triple (µ0, x0, u0) is a Pon-
tryagin extremal of (P0) such that u0 is piecewise constant, u0

j(t) ∈ {−1, 1}
for almost any t ∈ [0, 1] and for any j = 1, . . . ,m. For each j = 1, . . . ,m,
the set Σ0

j := { t ∈ [0, 1] : σ0
j (t) = 0 } is finite and coincides with the set of

discontinuity points of u0
j . Moreover, 0, 1 /∈ Σ0

j .

Assumption 2 (strict bang–bang property) For every j = 1, . . . ,m and
for any ts ∈ Σ0

j , σ̇
0
j (ts+) · σ̇0

j (ts−) > 0.

For the purpose of this paper, we add

Assumption 3 (double switch restriction) Any switching time of u0,
ts ∈

⋃m
j=1 Σ0

j , is the switching time of at most two control components.

4. The finite–dimensional sub–problem and the main

result

In order to formulate second–order optimality conditions for the control prob-
lem, consider the induced finite–dimensional problem obtained from (Ph) when
the control structure is fixed but switching times positions are allowed to vary,
see Agrachev et al. (2002). For each control component, the switching times in
general can move independently. In particular, the double switching time may
bifurcate to two simple switching times for the related u–components. Accord-
ing to the order of the switches, the control will take a different intermediate
value on the new continuity interval.

Denote the double switching time of u0 by τ0 and assume that the control
components switching there are the first two, i.e. {τ0} = Σ0

1 ∩ Σ0
2. Without

loss of generality, the sign of u1, u2 may be adjusted in such a way that

(
u0

i (τ
0+) − u0

i (τ
0−)

)
= 2, i = 1, 2. (8)

The jump of u0 at τ0 is then accomplished by u0(τ0+)− u0(τ0−) = 2(e1 + e2),
where ei stands for the i–th unit vector in R

m.

Let Σ0 := (Σ0
1, . . . ,Σ

0
m) be the vector of all switching times of u0. We will

enumerate them in decreasing order and assume that there are R − 1 simple
switching points between τ0 and 1, and other R′ − 1 simple switches between 0
and τ0. If we set θ00 := 1, θ0R = θ0R+1 := τ0 and θ0R+R′+1 = 0, we have

1 = θ00 > θ01 > . . . > θ0R−1 > θ0R = τ0 = θ0R+1 >

> θ0R+2 > . . . > θ0R+R′ > θ0R+R′+1 = 0. (9)
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The length of Σ0 is L = R+R′.
Further,

I0
r =

(
θ0r+1, θ

0
r

)
, r = 0, . . . , R+R′, r 6= R, (10)

defines pairwise disjoint intervals where the control takes constant value v0
r :=

u0(θ0r−).
Any given vector (δ, ε) ∈ R

R+R′
−2 × R

2 of sufficiently small norm defines
perturbed switching times

θr = θ0r + δr, r 6= R,R+ 1, (11)

τi = τ0 + εi, i = 1, 2, (12)

where τ1 and τ2 stand for the new switching times of u1, u2 respectively.
If (δ, ε) is sufficiently close to zero then the new switching vector remains par-
tially ordered in the following sense:

1 > θ0r > θ0s > 0 ⇒ 1 > θr > θs > 0. (13)

The times

θR := max{τ1, τ2} , θR+1 := min{τ1, τ2} , (14)

define an interval IR = (θR+1, θR) where the control will take one of the values

uν = u(τ0+) − 2 eν = v0
R−1 − 2 eν, ν = 1, 2,

depending of the order of control switches: ν = 1 if ε1 ≥ ε2, and ν = 2 other-
wise. On Ir, r 6= R, use u = v0

r = u0(θ0r−).
Now, the auxiliary parametric optimisation problem w.r.t. switching times po-
sitions is given by

(OPh) minimise Jh(δ, ε) = βh(x(1)) subject to

ẋ(t) =




fh(x(t)) + gh(x(t)) v0

r

t ∈ Ir,

r = 0, . . . , R+R′, r 6= R

fh(x(t)) + gh(x(t))uν , t ∈ IR

(15)

x(0) = a(h) (16)

δR := max{ε1, ε2} , δR+1 := min{ε1, ε2} (17)

ν := 1 if ε1 ≥ ε2 , ν := 2 if ε1 < ε2 ,

θr := θ0r + δr, r = 0, . . . R+R′ + 1,

δ0 = 0, δR+R′+1 = 0,
(18)

Ir := (θr+1, θr), r = 0, . . . , R+R′.

The feasible set for (OPh) (say: M) will be further restricted to those (δ, ε)
that ensure the monotonicity property (13).
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Proposition 4.1 For each sufficiently small h, the functional Jh is a C1,1

function of (δ, ε) near zero. Define Mν , ν = 1, 2 as

M1 = {(δ, ε) : ε1 ≥ ε2}, M2 = {(δ, ε) : ε1 ≤ ε2}.

Then the restriction Jh
ν of Jh to Mν is C2 for either ν = 1 or ν = 2. On

M1 ∩M2, the generalised Hessian in the sense of Clarke is defined by

∂(δ,ε)

(
∇(δ,ε)J

h
)

= conv {∇2
(δ,ε)J

h
1 ,∇

2
(δ,ε)J

h
2 }.

At h = 0, the first variation ∇(δ,ε)J
0(0) equals zero.

The proof was given in Felgenhauer (2008a), where (OPh) was formulated as a
minimisation problem over the vector Σ = (Σ1, . . . ,Σm) ∈ RL which assembles
component–wise the switching times of u. The data correspond one–to–one to
(δ, ε) since, for each θ0r ∈ Σ0

j , the perturbed θr = θ0r + δr belongs to Σj if

r 6= R,R + 1, and τi = θ0R + εi ∈ Σi. In Felgenhauer (2008a), section 4, the
piecewise C2 behaviour of the objective functional has been proven under the
Assumptions 1–3. Moreover, explicit formulas for ∇Jh and for the matrices
spanning Clarke’s generalised Hessian had been provided (Felgenhauer, 2008a,
(23) respectively (24)–(25)). For problem (OPh), now the following generalised
strong second–order optimality condition is assumed to hold at h = 0:

Assumption 4 Each matrix Q ∈ ∂(δ,ε)

(
∇(δ,ε)J

0
)
(0) = conv {Q1, Q2} with

Qν = ∇2
(δ,ε)J

0
ν (0), ν = 1, 2, is positive definite on RL.

The assumption is obviously equivalent to requiring that both Q1 and Q2 be
positive definite.

Remark 1 Assumption 4 is a strong second–order optimality condition for
the non-smooth problem (OP0) since, together with the first–order condition
∇(δ,ε)J

0(0) = 0, it ensures strict local optimality of the solution (δ, ε) = 0, see
Corollary 6.21 from Klatte and Kummer (2002), or Theorem 13.24, Rockafellar
and Wets (1998).

Remark 2 The coercivity Assumption 4, together with Assumptions 1-3, yields,
moreover, the existence, local uniqueness and Lipschitz regularity with respect to
h of the solution (δ, ε) = (δ(h), ε(h)) of (OPh) (see Felgenhauer, 2008a, The-
orem 2). In Felgenhauer (2008b), Theorem 3, it was proven that the switching
times can equally be found from the shooting system (4)–(7) where the latter
was restricted to an appropriate neighbourhood of (x0, u0, 0) in C0([0, 1]; Rn) ×
L1([0, 1]; Rm) × Ω. As it will be shown in the following (see Remark 4 in Sec-
tion 6.2), one can get rid of the L1 constraint for u by revising the proof of the
structural stability result from Felgenhauer (2008a), Theorem 1.

For the parametric problem (Ph) the following main result is obtained:
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Theorem 1 Suppose Assumptions 1–4 are fulfilled for the reference solution
(x0, u0) of (P0) at h = 0. Then there exist a constant c > 0 and a neighbourhood
V of x0 in C0([0, 1]; Rn) such that, for each h with |h| ≤ c, there exists a strong
local minimiser (xh, uh) of (Ph) with xh ∈ V. Furthermore, such minimiser
is unique in V × U . The corresponding control uh is bang–bang with the same
number and type of switches of each component of u0, and the associated vector
of switching times positions Σh is Lipschitz continuous with respect to h.

5. Hamiltonian formulation of the Assumptions

In this Section we reformulate the assumptions in Hamiltonian formalism so that
we can compare them with the assumptions in Poggiolini and Spadini (2009)
(see also Poggiolini and Spadini, 2008, and Poggiolini and Stefani, 2006) where
strong local optimality sufficient conditions were proven.

In Subsection 5.1 we reformulate the regularity Assumptions 1–3, while in
Subsection 5.2 we reformulate the coercivity Assumption 4 on the second vari-
ation of the finite dimensional sub–problem (OP0).

Since all the assumptions can be given by means of strict inequalities involv-
ing Hamiltonians, they are preserved under parameter perturbations.

5.1. Regularity assumptions

We denote the couple (µ0, x0) as

λ0 : t ∈ [0, 1] 7→ λ0(t) ∈ (Rn)∗ × R
n.

According to (9), we also define

ℓ0r = (p0
r, q

0
r ) := λ0(θ0r) r = 0, . . . , R+R′ + 1.

Notice that ℓ0R = ℓ0R+1 = λ0(τ0).

On each interval I0
r from (10), we define kh

r (q) := fh(q) + gh(q)v0
r , so that

k0
r(q) is the restriction of the time–dependent vector field defined by the refer-

ence control u0(t) to the time–interval I0
r :

k0
r(q) = f0(q) + g0(q)v0

r , r 6= R.

Also, we denote as Kh
r (p, q) the parameter dependent Hamiltonian function

obtained by lifting kh
r (q), i.e.

Kh
r (p, q) := 〈p, kh

r (q)〉, r 6= R.

At time τ0, where two components of the reference control u0, u0
1 and u0

2

switch simultaneously, we have

k0
R−1 = k0

R+1(q) + 2g0
1(q) + 2 g0

2(q)

K0
R−1(p, q) = K0

R+1(p, q) + 2 〈p, g0
1(q) + g0

2(q)〉.

according to the switching terms given by (8).
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In the newly appearing interval IR, according to which control component
switches first, one of the two following vector fields (and Hamiltonian function)
drives the control system:

kh
Rν(q) := kh

R−1(q) − 2 gh
ν (q)

Kh
Rν(p, q) := Kh

R−1(p, q) − 2 〈p, gh
ν (q)〉

ν = 1, 2. (19)

With such formalism, Assumptions 1 and 2 can be easily restated in the following
way

1. Bang–bang regularity.
For any t ∈ I0

r , r 6= R and for any u ∈ [−1, 1]m \ {v0
r} we have

〈µ0(t), f0(x0(t)) + g0(x0(t))u〉 < K0
r (λ0(t)). (20)

2. Strict bang–bang property at switching times.
For each choice K0

R ∈ {K0
R1,K

0
R2},

d

d t

(
K0

r −K0
r−1

)
(λ0(t))

∣∣∣∣
t=θ0

r

< 0, r = 1, . . . , R+R′, (21)

equivalently: for each choice k0
R ∈ {k0

R1, k
0
R2},

〈p0
r, [k

0
r−1, k

0
r ](q0r )〉 < 0, r = 1, . . . , R+R′. (22)

Remark 1 The strict inequalities ”<” in equations (20)–(22) can be replaced
by ” 6=” since mild inequalities ”≤” hold true by PMP.

As a direct consequence of the above reformulation and by continuity with
respect to h ∈ Ω we get

Lemma 5.1 There exists c > 0 such that for any (p, q, h) with
∥∥(p, q) − ℓ0r

∥∥ +
|h| < c and any choice kh

R ∈ {kh
R1, k

h
R2},

〈p, [kh
r−1, k

h
r ](q)〉 < 0, r = 1, . . . , R+R′. (23)

5.2. The second order conditions

In Poggiolini and Spadini (2009) the second variation for the finite dimensional
sub–problem (OP0) has been determined in terms of the vector fields defined
by the nominal parameter h = 0, see also Poggiolini and Stefani (2006) for the
case when only one (double) switch occurs. In those papers it is also proven
that (OP0) is C1.

Here we give the ideas of the construction to demonstrate the approach. To
start with, we denote by St(q, δ, ε) the solution of (15), for the nominal value of
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the parameter h = 0, in case of x(1) = q:

S0(q, δ, ε) = exp(−θR+R′)k0
R+R′ ◦ exp(θR+R′ − θR+R′−1)k

0
R+R′

−1 ◦ . . .

◦ exp(θR+2 − θR+1)k
0
R+1 ◦ exp(θR+1 − θR)k0

Rν(ε)◦

◦ exp(θR − θR−1)k
0
R−1 ◦ · · · ◦ exp(θ2 − θ1)k

0
1 ◦ exp(θ1 − 1)k0

0(q). (24)

Here and in the sequel the “◦” operation denotes the composition of maps. In
particular, the flow St(q, 0, 0), associated to the reference control, will be shortly
denoted as Ŝt(q).

By the properties of flows, formula (24) can be written by means of the
push–forward of the involved vector fields at time t = 1.

Namely, in a neighbourhood of x0(1) and for any choice k0
R ∈ {k0

R1, k
0
R2}

define

k̃0
r(q) := (Dq Ŝθr

(q))−1k0
r (Ŝθr

(q)) r = 0, . . . , R+R′. (25)

In order to write more compact formulas we introduce as variables the variations
of the lengths of the intervals Ir:

ωr := −δr+1 + δr r 6= R, ωR := |ε1 − ε2| = −δR+1 + δR. (26)

Is is easy to see that for each fixed ν, the map (δ, ε) 7→ ω is one–to–one.
For the push-forward of the flow we thus have (see e.g. Poggiolini and Stefani,

2004)

(Ŝ0)
−1S0(q, δ, ε) = expωR+R′ k̃0

R+R′ ◦ · · · ◦ expωR+1k̃
0
R+1◦

◦ expωRk̃
0
Rν ◦ expωR−1k̃

0
R−1 ◦ · · · ◦ expω0k̃

0
0(q).

Recalling definitions (19)–(25) and using Campbell–Hausdorff formula (see e.g.
Goodman, 1976) it is easy to see that the first–order approximation L(q, δ, ε) at
(x0(1), 0, 0) of the map (Ŝ0)

−1S0, is well defined and is given by:

L(q, δ, ε) := q +




R+R′∑

r=R+2

ωrk̃
0
r + δR+1 k̃

0
R+1


 (x0(1))−

− 2
2∑

i=1

εig̃
0
i (x0(1)) +

(
−δR−1 k̃

0
R−1 +

R−2∑

r=0

ωrk̃
0
r

)
(x0(1)). (27)

Remark 2 The first order approximation formula (27) proves that problem
(OP0) is C1.

From formula (27), applying Pontryagin Maximum Principle, it is easy to see
that the first variation of (OP0) is zero on the whole space of admissible tangent
directions (q, δ, ε), that is on those (q, δ, ε) such that L(q, δ, ε) = 0.
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Applying once again the Campbell–Hausdorff formula it is now a lengthy
but straightforward calculation to obtain that the second variation of (OP0) on
Mν , ν = 1, 2 is given by

Qν [δ, ε]2 :=
1

2

{(R+R′∑

r=0

ωrk̃
0
r

)2

· β0(x0(1))+

+

R+R′∑

r=0

ωr

[
k̃0

r ,

r−1∑

s=0

ωsk̃
0
s

]
· β0(x0(1))

}
(28)

where k̃0
R := k̃0

Rν .
Recalling (19), (25), (26) one can check that the analytic expression of the

second order variation of (OP0) changes according to the sign of ε1 − ε2 while
they coincide on M1 ∩M2. Namely, the second order variation is given by a
quadratic form Q1 onM1 and by another quadratic form Q2 onM2 that coincide
on M1 ∩M2, i.e. when ε1 = ε2.

Requiring the coercivity of such second variations is equivalent to requiring
the coercivity of both Q1 and Q2 on the whole tangent space.

To clarify the non–smoothness of the second variations, we give explicit
formulas for the case when only the double switch occurs. In this case we have
δ1 = max{ε1, ε2}, δ2 = min{ε1, ε2}, δ0 = δ3 = 0. Define

g̃0
ν(q) := (Dq Ŝτ0(q))−1g0

ν(Ŝτ (q)). (29)

For the two cases ν = 1, 2 the second variation is given by the two quadratic
forms:

Q1[ǫ1, ǫ2]
2 =2

(
ε1g̃

0
1 + ε2g̃

0
2

)
·
(
ε1g̃

0
1 + ε2g̃

0
2

)
· β0(x0(1))+

+ ε21 [g̃0
1 , k̃

0
0 ] · β

0(x0(1)) + ε22 [g̃0
2 , k̃

0
0 ] · β

0(x0(1))+

+ 2 ε2(ε2 − ε1) [g̃0
1 , g̃

0
2] · β

0(x0(1))

(30)

and

Q2[ǫ1, ǫ2]
2 =2

(
ε1g̃

0
1 + ε2g̃

0
2

)
·
(
ε1g̃

0
1 + ε2g̃

0
2

)
· β0(x0(1))+

+ ε21 [g̃0
1 , k̃

0
0 ] · β

0(x0(1)) + ε22 [g̃0
2 , k̃

0
0 ] · β

0(x0(1))+

+ 2 ε1(ε2 − ε1) [g̃0
1 , g̃

0
2] · β

0(x0(1)).

(31)

Remark 3 Notice that Q1 = Q2 and the problem is C2 if and only if the duality
product 〈µ0(τ0), [g0

1 , g
0
2](x

0(τ0))〉 = [g̃0
1 , g̃

0
2 ] · β

0(x0(1)) is null.

Remark 4 Under Assumptions 1–4 the optimality of the Pontryagin extremal
for the nominal problem (P0) is shown in Poggiolini and Spadini (2009), see
also Poggiolini and Stefani (2006) and Poggiolini and Spadini (2008) for some
preliminary results.
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6. Proof of the result

In this Section we give the proof of Theorem 1.

To start with we give the main steps explaining the underlying ideas coming
from the Hamiltonian approach to optimal control.

From the Hamiltonian point of view, each solution of the shooting system
(4)–(7) is a solution (µh, xh) of the Hamiltonian system associated to the max-
imised Hamiltonian Hmax

Hmax(p, q, h) := max{〈p, fh(q) + gh(q)u〉, u ∈ [−1, 1]m}, (32)

with boundary conditions µh(1) = −Dq β
h(xh(1)) and xh(0) = a(h).

In our caseHmax turns out to be non–smooth but the regularity Assumptions
1–3 ensure that the associated Hamiltonian system admits a unique flow which
is Lipschitz continuous with respect to the initial point.

The construction of such flow clearly shows that the regularity assumptions
yield the structural stability of Pontryagin extremals of control system (1) with
boundary conditions (µh(1), xh(1)) in a neighbourhood of (µ0(1), x0(1)) in the
cotangent bundle and small enough |h|. This construction is described in Section
6.1.

Using this construction and Assumption 4, in Section 6.2, we prove that
the shooting system (4)–(7) has a unique solution for small enough |h| and z
sufficiently close to x0(1).

Finally, in Section 6.3, by continuity, we observe that the sufficient optimality
conditions stated in Poggiolini and Spadini (2009) are fulfilled by the extremal
(µh, xh) of (Ph).

6.1. The maximised flow

Let t ∈ [0, 1] 7→ Hh
t (p, q) be the solution (if it exists) of the Hamiltonian system

associated to the maximised Hamiltonian with boundary condition Hh
1 (p, q) =

(p, q). Equivalently, Hh
t (p, q) = (µh(t), xh(t)) where (µh, xh) is the solution of

(4) with boundary conditions µh(1) = p, xh(1) = q.

In what follows we explain how our regularity conditions give the existence
of Hh

t (p, q). The construction will be pursued in a similar way to what is done
in Agrachev et al. (2002), Poggiolini and Stefani (2006), Poggiolini and Spa-
dini (2009) using the Implicit Function Theorem.

Since, by Assumption 1, the duality product 〈µ0(1), g0
j (x0(1))〉 = σ0

j (1),

j = 1, . . . ,m is not zero, there exists c > 0 such that 〈p, gh
j (q)〉 6= 0 for any

(p, q, h) such that ‖(p, q) − ℓ00‖ + |h| < c. That is, there exists a neighbourhood
W of ℓ00 and c > 0 such that for any (p, q, h) ∈ W × (−c, c) the maximised
Hamiltonian is given by

Hmax(p, q, h) = Kh
0 (p, q) = 〈p, fh(q) + gh(q)v0

0〉.
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Therefore, Hh
t (p, q) coincides, for t close to 1, with the flow exp(t−1)

−→
Kh

0 (p, q) of
−→
Kh

0 emanating from (p, q) at time t = 1. By continuity and because of regularity
Assumption 1, this flow coincides with the maximised flow until it intersects the
hyper–surface Kh

0 −Kh
1 = 0. By possibly restricting W and for c > 0 we get

that such intersection is transversal, since

∂

∂ t

(
Kh

0 −Kh
1

)
◦ exp(t− 1)

−→
Kh

0 (p, q)

∣∣∣∣
(θ0

1
,ℓ0

1
,0)

= −〈p0
1, [k

0
0 , k

0
1 ](q

0
1)〉

which is positive by (22). Hence, we may apply the implicit function theorem
and define a smooth function θ1(ℓ, h) such that

{
θ1(ℓ

0
0, 0) = θ01(

Kh
0 −Kh

1

)
◦ exp(θ1(ℓ, h) − 1)

−→
Kh

0 (ℓ) = 0.

We iterate this procedure by defining

θ0(ℓ, h) := 1 ϕ0(ℓ, h) := ℓ

and, θr(ℓ, h), ϕr(ℓ, h) as
{
θr(ℓ

0
0, 0) = θ0r(

Kh
r−1 −Kh

r

)
◦ exp(θr(ℓ, h) − 1)

−→
Kh

r−1 ◦ ϕr−1(ℓ, h) = 0.

ϕr(ℓ, h) = exp (1 − θr(ℓ, h))
−→
Kh

r ◦ exp (θr(ℓ, h) − 1)
−→
Kh

r−1 ◦ ϕr−1(ℓ, h)

for r = 1, . . . , R− 1. Thus, for any r = 0, . . . , R− 2 the maximised flow is thus
given by

Hh
t (ℓ) := exp(t− 1)

−→
Kh

r ◦ ϕr(ℓ, h) t ∈ [θr+1(ℓ, h), θr(ℓ, h)].

Notice that, possibly restricting W , such flow is well defined because the number
of switches is finite. Moreover the procedure coincides with the one introduced
in Agrachev et al. (2002) in the case of simple switches.

We now define the decoupling τ1(ℓ, h) and τ2(ℓ, h) of the double switching
time τ0 by

{
τν(ℓ00, 0) = τ0

(
Kh

Rν −Kh
R−1

)
◦ exp(τν(ℓ, h) − 1)

−→
Kh

R−1 ◦ ϕR−1(ℓ, h) = 0

and

ϕν
R(ℓ, h) = exp(1 − τν(ℓ, h))

−→
Kh

Rν ◦ exp(τν(ℓ, h) − 1)
−→
Kh

R−1 ◦ ϕR−1(ℓ, h).

Also we define τ̃1(ℓ, h), τ̃2(ℓ, h) by
{
τ̃1(ℓ

0
0, 0) = τ0

(
Kh

R+1 −Kh
R2

)
◦ exp(τ̃1(ℓ, h) − 1)

−→
Kh

R2 ◦ ϕ
2
R(ℓ, h) = 0
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and
{
τ̃2(ℓ

0
0, 0) = τ0

(
Kh

R+1 −Kh
R1

)
◦ exp(τ̃2(ℓ, h) − 1)

−→
Kh

R1 ◦ ϕ
1
R(ℓ, h) = 0.

That is, the index 1 always refers to the switching time of the first component of
the control, which is τ1(ℓ, h) if τ1(ℓ, h) ≥ τ2(ℓ, h), τ̃1(ℓ, h) otherwise. The index
2 always refers to the switching time of the second component, which is τ2(ℓ, h)
if τ2(ℓ, h) ≥ τ1(ℓ, h), τ̃2(ℓ, h) otherwise.

The decoupled switching times are then defined as

θR(ℓ, h) = max{τ1(ℓ, h), τ2(ℓ, h)}

θR+1(ℓ, h) =

{
τ̃2(ℓ, h) if τ1(ℓ, h) ≥ τ2(ℓ, h)

τ̃1(ℓ, h) if τ1(ℓ, h) ≤ τ2(ℓ, h).

Remark 1 θR+1(ℓ, h) ≤ θR(ℓ, h). Moreover, τ1(ℓ, h) = τ2(ℓ, h) if and only if
θR+1(ℓ, h) = θR(ℓ, h). For a short proof see Poggiolini and Spadini (2009).

The maximised flow is thus given by

Hh
t (ℓ) =






exp(t− 1)
−→
Kh

R−1 ◦ ϕ0r(ℓ, h) if t ∈ [θR(ℓ, h), θR−1(ℓ, h)]

exp(t− 1)
−→
Kh

Rν ◦ ϕν
R(ℓ, h)

if θR(ℓ, h) = τν(ℓ, h)

and t ∈ [θR+1(ℓ, h), θR(ℓ, h)].

Now we repeat the procedure given before for the simple switches for each of
the two possible paths. Define

ϕν
R+1(ℓ, h) = exp(1− θR+1(ℓ, h))

−→
Kh

R+1 ◦ exp(θR+1(ℓ, h)− 1)
−→
Kh

Rν ◦ϕ
ν
R(ℓ, h).

We can define θr, r = R+ 2, . . . , R+R′ as follows: first define θν
r (ℓ, h), ϕν

r (ℓ, h)
by

{
θν

r (ℓ00, 0) = θ0r(
Kh

r−1 −Kh
r

)
◦ exp(θν

r (ℓ, h) − 1)
−→
Kh

r−1 ◦ ϕ
ν
r−1(ℓ, h) = 0

ϕν
r (ℓ, h) = exp(1 − θν

r (ℓ, h))
−→
Kh

r ◦ exp(θν
r (ℓ, h) − 1)

−→
Kh

r−1 ◦ ϕ
ν
r−1(ℓ, h),

then choose θr(ℓ, h) according to the choice made at the decoupling of the double
switching time τ0:

θr(ℓ, h) =

{
θ1r(ℓ, h) if τ1(ℓ, h) ≥ τ2(ℓ, h)

θ2r(ℓ, h) if τ1(ℓ, h) ≤ τ2(ℓ, h).

The maximised flow is thus defined as

Hh
t (ℓ) = exp(t− 1)

−→
Kh

r ◦ ϕν
r (ℓ, h)

t ∈ [θr+1(ℓ, h), θr(ℓ, h)]
r = R+ 2, . . . , R+R′ + 1
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where

{
ν = 1 if θR(ℓ, h) = τ1(ℓ, h),

ν = 2 if θR(ℓ, h) = τ2(ℓ, h).

By construction, the maximised flow is Lipschitz continuous and piecewise
smooth. Also we point out that t 7→ Hh

t (ℓ, h) is a bang–bang Pontryagin ex-
tremal of control system (1), hence the vector of switching times Σ(ℓ, h) is well
defined and has the same length of Σ0.

The previous procedure can be summarised in the following Lemma:

Lemma 6.1 There exists a neighbourhood W of ℓ00 in (Rn)∗ × R
n and c > 0

such that the maximised flow

Hh : (t, p, q) ∈ [0, 1] ×W 7→ Hh
t : (p, q) ∈ (Rn)∗ × R

n

is well defined for any h ∈ (−c, c). Moreover, for any (p, q, h) ∈ W × (−c, c),
the extremal (xh, uh) of (Ph) associated to

t 7→ Hh
t (p, q)

preserves the structure of (x0, u0), that is: uh is a strict bang–bang control, each
component uh

i switches |Σ0
i | times and the double switch restriction also holds

true.

Remark 2 The only difference between the qualitative behaviour of u0 and uh

that may occur is that the double switching time τ0 = θ0R = θ0R+1 splits in two

different switching times for the components uh
1 and uh

2 of uh.

6.2. Proof of the stability result

Starting from Lemma 6.1 we consider the map

Ψ = (ψ, id) : πW × (−c, c) → R
n × (−c, c)

Ψ = (ψ, id) : (q, h) 7→ (ψ(q, h), h) := (πHh
0 (−Dq β

h(q), q), h).

The first step is to prove that if Clarke’s generalised Jacobian of ψ0 : q 7→ ψ(q, 0)
at q = x0(1) is maximal rank then Ψ is locally Lipschitz one–to–one and this
will yield the existence of one and only one local solution to the shooting system.
Namely we prove the following Lemma:

Lemma 6.2 If ∂qψ
0(x0(1)) is maximal rank, then there exist a neighbourhood

V of x0(1) in R
n and c > 0 such that for any h ∈ (−c, c) the shooting system

(4)–(7) in V admits a unique solution z(h). Moreover the map

h ∈ (−c, c) 7→ z(h) ∈ V

is Lipschitz continuous.
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Proof. The map Ψ is Lipschitz continuous, hence its Lipschitz invertibility can
be proven using Clarke’s Implicit Function Theorem (theorem 7.1.1 in Clarke,
1983). An easy computation shows that if ∂qψ

0(x0(1)) is of maximal rank, then
also ∂(q,h)Ψ(x0(1), 0) is of maximal rank.

Possibly restricting c > 0, there exists a neighbourhood V0 of a(0) = x0(0)
such that the inverse mapping Ψ−1 is defined in V0 × (−c, c):

Ψ−1 : V0 × (−c, c) → V × (−c, c).

Since a depends continuously on h, again possibly restricting c, we may assume
that (a(h), h) ∈ V0 × (−c, c).

Thus, the point z(h) defined by (z(h), h) = Ψ−1(a(h), h), solves the shooting
system (4)–(7), and the structure of (x0, u0) is preserved by construction.

Lemma 6.3 Under Assumption 4 the set ∂qψ
0(x0(1)) is of maximal rank.

Proof. A complete proof will appear in Poggiolini and Spadini (2009), here we
give the proof only in the study case when no simple switch occurs (so that
τ0 = θ01 = θ02 is the double switching time and R + R′ + 1 = 3), and the
reference vector field is given by

{
k0
2 = k0

0 − 2(g0
1 + g0

2) t ∈ [0, τ0],

k0
0 t ∈ [τ0, 1].

In this case

〈d τ̃2(ℓ
0
0, 0), (δℓ, 0)〉 = 〈dτ1(ℓ

0
0, 0), (δℓ, 0)〉−

− 〈d(τ1 − τ2)(ℓ
0
0, 0), (δℓ, 0)〉

〈p0
1, [k

0
0 , k

0
12](q

0
1)〉

〈p0
1, [k

0
11, k

0
2 ](q

0
1)〉

〈d τ̃1(ℓ
0
0, 0), (δℓ, 0)〉 = 〈dτ2(ℓ

0
0, 0), (δℓ, 0)〉+

+ 〈d(τ1 − τ2)(ℓ
0
0, 0), (δℓ, 0)〉

〈p0
1, [k

0
0 , k

0
11](q

0
1)〉

〈p0
1, [k

0
12, k

0
2 ](q

0
1)〉

(33)

and

H0
0(ℓ) = exp(−τ̃2(ℓ))

−→
K0

2 ◦ exp(τ̃2 − τ1)(ℓ)(
−→
K 0

0 − 2
−→
G0

1)◦

◦ exp(τ1(ℓ) − 1)
−→
K0

0(ℓ) if τ1(ℓ) ≥ τ2(ℓ),

H0
0(ℓ) = exp(−τ̃1(ℓ))

−→
K0

2 ◦ exp(τ̃1 − τ2)(ℓ)(
−→
K 0

0 − 2
−→
G0

2)◦

◦ exp(τ2(ℓ) − 1)
−→
K0

0(ℓ) if τ2(ℓ) ≥ τ1(ℓ).

The differentials at ℓ00 are given by

Dℓ H
0
0(ℓ

0
0)δℓ = Dℓ(exp(−τ0−→K0

2))(ℓ
0
1)
{
〈d τ̃2(ℓ

0
0), δℓ〉2

−→
G0

2(ℓ
0
1)+

+ 〈dτ1(ℓ
0
0), δℓ〉2

−→
G0

1(ℓ
0
1) + Dℓ(exp(τ0 − 1)

−→
K0

0))(ℓ
0
0)δℓ

}

if 〈dτ1(ℓ
0
0), δℓ〉 ≥ 〈dτ2(ℓ

0
0), δℓ〉,
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Dℓ H
0
0(ℓ

0
0)δℓ = Dℓ(exp(−τ0−→K0

2))(ℓ
0
1)
{
〈d τ̃1(ℓ

0
0), δℓ〉2

−→
G0

1(ℓ
0
1)+

+ 〈dτ2(ℓ
0
0), δℓ〉2

−→
G0

2(ℓ
0
1) + Dℓ(exp(τ0 − 1)

−→
K0

0))(ℓ
0
0)δℓ

}

if 〈dτ2(ℓ
0
0), δℓ〉 ≥ 〈dτ1(ℓ

0
0), δℓ〉.

For any δx ∈ R
n let δℓ := (−Dq β

0(q00)(δx, ·), δx). The differentials at q00 of ψ0

are thus given by

Dq ψ
0(q00)δx = A1δx

:= Dq Ŝ0(q
0
0)
{
2〈d τ̃2(ℓ

0
0), δℓ〉g̃

0
2(q

0
0) + 2〈dτ1(ℓ

0
0), δℓ〉g̃

0
1(q

0
0) + δx

}

= Dq Ŝ0(q
0
0)
{
2〈dτ1(ℓ

0
0), δℓ〉(g̃

0
1 + g̃0

2)(q
0
0)+2〈d(τ̃2− τ1)(ℓ

0
0), δℓ〉g̃

0
2(q

0
0)+ δx

}

if 〈dτ1(ℓ
0
0), δℓ〉 ≥ 〈dτ2(ℓ

0
0), δℓ〉,

and

Dq ψ
0(q00)δx = A2δx

:= Dq Ŝ0(q
0
0)
{
2〈d τ̃1(ℓ

0
0), δℓ〉g̃

0
1(q

0
0) + 2〈dτ2(ℓ

0
0), δℓ〉g̃

0
2(q

0
0) + δx

}

= Dq Ŝ0(q
0
0)
{
2〈dτ2(ℓ

0
0), δℓ〉(g̃

0
1 + g̃0

2)(q
0
0)+2〈d(τ̃1− τ2)(ℓ

0
0), δℓ〉g̃

0
1(q

0
0)+ δx

}

if 〈dτ2(ℓ
0
0), δℓ〉 ≥ 〈dτ1(ℓ

0
0), δℓ〉.

We have to show that every map in Clarke’s Jacobian of ψ0 at q00 = x0(1) is
maximal rank, i.e. we must show that for any γ ∈ [0, 1] the map γA1+(1−γ)A2

is invertible. Taking into account that the map Dq Ŝ0(q
0
0) is an isomorphism,

this is equivalent to proving that the map

Bγ := (Dq Ŝ0(q
0
0))

−1 (γA1 + (1 − γ)A2)

is an isomorphism for any γ ∈ [0, 1]. Since

Bγδx = δx+ 2γ
{
〈dτ1(ℓ

0
0), δℓ〉(g̃

0
1 + g̃0

2)(q
0
0) + 〈d(τ̃2 − τ1)(ℓ

0
0), δℓ〉g̃

0
2(q

0
0)
}

+

+ 2(1 − γ)
{
〈dτ2(ℓ

0
0), δℓ〉(g̃

0
1 + g̃0

2)(q
0
0) + 〈d(τ̃1 − τ2)(ℓ

0
0), δℓ〉g̃

0
1(q

0
0)
}
,

the kernel of Bγ is a linear sub-space of

V := span{g̃0
1(q

0
0), g̃0

2(q
0
0)}.

Also, if V ⊂ ker dτ1(ℓ
0
0) ∩ ker dτ2(ℓ

0
0), then the restriction of Bγ to V is the

identity map, hence Bγδx 6= 0 for any δx ∈ R
n \ {0} and for any γ ∈ [0, 1].

Let us assume that V 6⊂ ker dτ1(ℓ
0
0) ∩ ker dτ2(ℓ

0
0). In Poggiolini and Spadini

(2009) it is shown that both B0 and B1 have the same orientation of the identity
mapping, that is: if we choose bases of R

n, and the matrices B0, B1 represent
B0 and B1 in such bases, then detB0 detB1 > 0

If dim V = 1 then detBγ is a linear function of γ, thus Bγ is an isomorphism
for any γ ∈ [0, 1] and we are done. If dimV = 2, then we distinguish between
two cases:
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A) V ⊂ ker d(τ1 − τ2)(ℓ
0
0)

In this case, for any δx ∈ V we have

Bγδx = B0δx = B1δx ∀γ ∈ [0, 1].

B) V 6⊂ ker d(τ1 − τ2)(ℓ
0
0)

In this case V ∩ ker d(τ1 − τ2)(ℓ
0
0) is a one–dimensional linear space. Let

us fix δy ∈ V ∩ ker d(τ1 − τ2)(ℓ
0
0) and δz ∈ V ∩ ker dτ1(ℓ

0
0) \ ker dτ2(ℓ

0
0) so

that span{δy, δz} = V .
Denote by Bγ the matrix associated to Bγ in the bases {δy, δz} and
{g̃0

1(q
0
0), g̃

0
2(q00)}. Since

Bγδy = δy + 2 〈dτ1(ℓ
0
0), δy〉(g̃

0
1(q00) + g̃0

2(q
0
0)),

Bγδz = γA1δz + (1 − γ)A0δz,

we get

detBγ = γ detB1 + (1 − γ) detB0.

In Poggiolini and Spadini (2009) the authors prove that the determinants of
both matrixes B0 and B1 have the same sign of the matrix representing the
identity map, thus our claim is proven, both in case A) and in case B).

Remark 3 ψh(q) is the target mapping T defined in (7). Moreover, the ex-
tremal (xh, uh) preserves the structure of (x0, u0), in the sense of Lemma 6.1:
uh is a strict bang–bang control, each component uh

i switches |Σ0
i | times and the

double switch restriction also holds true. By construction of the maximised flow
it is clear that the switching times of uh depend smoothly on the initial point ℓ.
Since ℓ = (−Dq β

h(z(h)), z(h)) is Lipschitz continuous with respect to h, then
also Σh has the same regularity.

Remark 4 The statements in Lemmata 6.2, 6.3 strengthen the stability results
from Kim and Maurer (2003) and Felgenhauer (2008b) specifying them on state–
parameter neighbourhoods (i.e. w.r.t. strong topology) for simple as well as for
double switching points. The restriction to an L1 neighbourhood of the reference
control as formerly used in Felgenhauer (2008b) is no longer required.

6.3. Proof of the optimality

Lemmata 6.2 and 6.3 yield that there exists c > 0 such that for any h ∈ Ω, such
that |h| < c, there is a unique solution z(h) ∈ V of the shooting system (4)–(7).
Therefore, we obtain a Pontryagin extremal given by

t 7→ (µh(t), xh(t)) := Ht(−Dq β
h(z(h)), z(h))

with associated bang–bang control uh. Hence, for sufficiently small h, such
extremal is a regular bang–bang extremal with the strict bang–bang property
and it has at most one double switch.
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Thus, we can define the quadratic forms Q1(h), Q2(h) along the extremal

(µh, xh) by means of k̃h
0 , . . . , k̃h

Rν , . . . , k̃h
R+R′ . It is clear that, possibly restricting

c, they are coercive by continuity.
Applying the results in Poggiolini and Spadini (2008 and 2009) we have that

(xh, uh) is a strong local optimiser of (Ph).
This completes the proof of the theorem.

References

Agrachev, A. and Sachkov, Y. (2004) Control theory from the geometric
viewpoint. Encyclopaedia of Mathematical Sciences, 87. Control Theory
and Optimization, II. Springer, Berlin.

Agrachev, A., Stefani, G. and Zezza, P. L. (2002) Strong optimality for
a bang–bang trajectory. SIAM J. Control Optim. 41 (4), 991–1014.

Arutyunov, A.V., Avakov, E.R. and Izmailov, A.F. (2007) Directional
regularity and metric regularity. SIAM J. Optim. 18 (3), 810–833.

Clarke, F.H. (1983) Optimization and Nonsmooth Analysis. Wiley Inc., New
York.

Felgenhauer, U. (2003) On stability of bang–bang type controls. SIAM J.
Control Optim. 41 (6), 1843–1867.

Felgenhauer, U. (2004) Optimality and sensitivity for semilinear bang–bang
type optimal control problems. Internat. J. Appl. Math. Computer Sc. 14

(4), 447–454.
Felgenhauer, U. (2005) Optimality properties of controls with bang–bang

components in problems with semilinear state equation. Control & Cyber-
netics 34 (3), 763–785.

Felgenhauer, U. (2008a) Lipschitz stability of broken extremals in bang–
bang control problems. In: I. Lirkov et al., eds., Proc. th Internat. Conf.
Large–Scale Scientific Computing, Sozopol 2007, Lecture Notes Comp. Sci.
4818, Springer, 306–314.

Felgenhauer, U. (2008b) The shooting approach in analyzing bang–bang
extremals with simultaneous control switches. Control & Cybernetics 37

(2), 307–327.
Goodman, R.W. (1976) Nilpotent Lie groups: structure and applications to

analysis, Lecture Notes in Mathematics 562, Springer
Kim, J. R. and Maurer, H. (2003) Sensitivity analysis of optimal control

problems with bang–bang controls. In: Proc. 42nd IEEE Conference on
Decision and Control, Hawaii 2003, 4, 3281–3286.

Klatte, D. and Kummer, B. (2002) Nonsmooth Equations in Optimization.
Kluwer Acad. Publ, Dordrecht.

Ledzewicz, U., Nowakowski, A. and Schättler, H. (2004) Stratifiable
families of extremals and sufficient conditions for optimality in optimal
control problems. J. Optim. Theory Appl. 122 (2), 345–370.

Maurer, H. and Osmolovskii, N. P. (2004) Second order sufficient condi-



Optimality and stability result 1325

tions for time–optimal bang–bang control. SIAM J. Control Optim. 42

(6), 2239–2263.
Maurer, H. and Osmolovskii, N.P. (2005) Equivalence of second–order op-

timality conditions for bang–bang control problems. Control & Cybernetics
34 (3), 927–950.

Maurer, H. and Osmolovskii, N.P. (2007) Equivalence of second order op-
timality conditions for bang–bang control problems. II. Proofs, variational
derivatives and representations. Control & Cybernetics 36 (1), 5–45.

Milyutin, A.A. and Osmolovskii, N.P. (1998) Calculus of Variations and
Optimal Control, Amer. Mathem. Soc., Providence, Rhode Island.

Mordukhovich, B.S. (2006) Variational Analysis and Generalized Differen-
tiation I,II. Springer, Berlin.

Noble, J. and Schättler, H. (2002) Sufficient conditions for relative min-
ima of broken extremals in optimal control theory. J. Math. Anal. Appl.
269, 98–128.

Oberle H.J. (1987) Numerical computation of singular control functions for
a two-link robot arm. In: R. Burlisch et al., eds., Optimal Control. LNCIS

95, Springer, 244-253.
Osmolovskii, N.P. (1995) Quadratic conditions for nonsingular extremals in

optimal control (A theoretical treatment). Russian J. of Mathem. Physics
2, 487–512.

Osmolovskii, N.P. (2004) Quadratic extremality conditions for broken ex-
tremals in the general problem of the calculus of variations. Optimal con-
trol and dynamical systems. J. of Mathem. Sciences 123 (3), 3987–4122.

Osmolovskii, N.P. and Lempio, F. (2002) Transformation of quadratic forms
to perfect squares for broken extremals. Set–Valued Analysis 10, 209–232.

Poggiolini, L. and Spadini, M. (2008) Sufficient optimality conditions for
a bang–bang trajectory in a Bolza Problem. In: A. Sarychev et al., eds.,
Mathematical Control Theory and Finance, Springer, 337–357.

Poggiolini, L. and Spadini, M. (2009) Strong local optimality for a bang–
bang trajectory in a Mayer problem. Submitted.

Poggiolini, L. and Stefani, G. (2004) State–local optimality of a bang–
bang trajectory: a Hamiltonian approach. Systems Control Lett. 53, 269–
279.

Poggiolini, L. and Stefani, G. (2006) Sufficient optimality conditions for
a bang–bang trajectory. In: Proc. 45th IEEE Conference on Decision and
Control, San Diego (USA).

Rockafellar, R.T. and Wets, R.J. (1998) Variational Analysis. Springer,
Berlin.

Schättler, H. (2006) Local fields of extremals for optimal control problems
with state constraints of relative degree 1. J. Dyn. Control Syst. 12 (4),
563–599.

Sarychev, A.V. (1997) First– and second–order sufficient optimality condi-
tions for bang–bang controls. SIAM J. Control Optim. 35 (1), 315–340.




