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Abstract: In the paper some known and new extensions of the
famous theorem of Filippov (1967) and a theorem of Pliś (1965) for
differential inclusions are presented. We replace the Lipschitz condi-
tion on the set-valued map in the right-hand side by a weaker one-
sided Lipschitz (OSL), one-sided Kamke (OSK) or a continuity-like
condition (CLC). We prove new Filippov-type theorems for singu-
larly perturbed and evolution inclusions with OSL right-hand sides.
In the CLC case we obtain two extended theorems, one of which
implies directly the relaxation theorem. We obtain also a theorem
in Banach spaces for OSK multifunctions. Some applications to ex-
ponential formulae are surveyed.
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1. Introduction

This paper is devoted to some known and new extensions of the celebrated
Filippov theorem (1967) (sometimes called also Gronwall-Filippov-Wazewski
theorem), and the less known, earlier and not less important theorem of Pliś
(1965) for differential inclusions.

These theorems provide approximation and stability properties of the solu-
tions and reachable sets of a differential inclusion, with respect to perturbations
in the right-hand side and in the initial state of the inclusion. They play a
crucial role in the qualitative and numerical analysis of differential inclusions.

The central assumption of the Filippov theorem is the Lipschitz condition
of the right-hand side with respect to the state variable. The classical proof of
Filippov uses the method of successive approximations and provides exponential
stability estimates not only for the state variables but also for the velocities.
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We prove here some extensions of these theorems for differential inclusions
with possibly discontinuous right-hand sides, replacing the Lipschitz condition
on the right-hand side with some weaker conditions: one-sided Lipschitz (OSL),
one-sided Kamke (OSK) or a continuity-type condition (CLC). Let us note that
the class of multifunctions satisfying the one-sided Kamke condition is so large
that it is generic, while the subclasses of OSL and the smallest set of Lipschitz
functions are of first Baire category (see Donchev, 2005).

Our method of proving the existence does not exploit successive approxi-
mations, since they may not converge, as it is shown by an example in Laksh-
mikantham and Leela (1981) p. 37. We use existence theorems for solutions of
differential inclusions with upper (lower) semi-continuous right-hand sides (see
e.g. Deimling, 1992, Tolstonogov, 2000) and do not obtain estimates for the ve-
locities, but only for the states. The stability of the velocities may be achieved
by supposing continuity of the right-hand side of the differential inclusion as it
is done in Donchev, Farkhi and Mordukhovich (2007). A strengthened version
of the one-sided Lipschitz condition with better approximation order may be
found also in Lempio and Veliov (1998).

The most important applications of this type of theorems lie, for us, in
the relaxation theorems, in analysis of convergence and stability of discrete
approximations and in semigroup property of the reachable set. Notice that a
refined version of the theorem of Pliś, proved here (Theorem 8), implies in a
straightforward way the relaxation theorem important in control theory. We
remark that the application of relaxation stability to optimization problems is
harder than the relaxation in differential inclusions only. One study in this
direction and a proof of a Bogolyubov-type theorem may be found in Donchev,
Farkhi and Mordukhovich (2007).

We then present some applications of these extensions to the theory and nu-
merics of differential inclusions, like the exponential formula in finite and infinite
time interval for the one-sided Lipschitz case. Some of these results are pub-
lished in Donchev and Farkhi (2000), Donchev, Farkhi and Reich (2003, 2007),
Donchev, Farkhi and Wolenski (2003). Other applications of the one-sided Lip-
schitz conditions may be found in Donchev and Dontchev (2003), Sokolovskaya
(2003, 2004), Sokolovskaya and Filatov (2005).

The paper is organized as follows. After we recall some basic notations and
theorems of Filippov and Pliś in the next section, we present some extensions
for the one-sided Lipschitz maps in Section 3. We cite there our known results
on ordinary differential inclusions in R

n, and provide two new theorems in the
cases of singularly perturbed and evolution inclusions. The case of continuous-
like and one-sided Kamke multifunctions is discussed in Section 4, where some
new theorems are proved. Some known and new results, and open problems are
presented as applications and conclusions in Section 5.
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2. Preliminaries

In the paper we work in the finite dimensional Banach space E = R
n if it is not

pointed out otherwise.
First we give some definitions and notations.
We denote by B the closed unit ball in E. The set of continuous functions

from I = [0, T ] to the space E is denoted by C(I, E).
We denote by co A the closed convex hull of the set A and by extA the

closed hull of the set of extreme points of A. The sum of sets is defined in the
sense of Minkowski: A + B = {a + b : a ∈ A, b ∈ B}. The support function
of a set A ⊂ E is σ(x, A) = max

a∈A
〈x, a〉. The distance from a point to a set is

dist(x, A) = inf
a∈A

{|x − a|}, and Proj(x, A) = {a ∈ A : |x − a| = d(x, A)} is

the projection (or the set of projections) of the point x onto the set A. For
the bounded set A we denote |A| = sup{|x| : x ∈ A}. The Hausdorff distance
between the sets A, B is denoted by DH(A, B). The continuity of set-valued
maps is in the sense of the Hausdorff metric.

The multivalued map F is said to be upper semicontinuous (USC) on A
if for every x ∈ A and every ε > 0 there exists δ > 0 such that F (x + δB) ⊂
F (x)+εB; it is called lower semicontinuous (LSC) at x when for every fx ∈ F (x)
and every xn → x there exist fn ∈ F (xn) such that fn → fx. F (·) is called
upper hemicontinuous (UHC) when the support function σ(l, F (·)) is upper
semicontinuous as a real valued function.

The set-valued map F : I × E ⇉ E is said to be almost USC (LSC, UHC,
continuous) if for any ε > 0 there exists a compact set Iε ⊂ I with meas(Iε) >
meas(I)− ε such that F is USC (LSC, UHC, continuous) on Iε ×E. Note that
in the case of separable E and compact valued functions, the almost continuity
is equivalent to the Caratheodory property, i.e. the measurability of F (·, x) for
every x ∈ E and continuity of F (t, ·) for a.e. t ∈ I (see Tolstonogov, 2000, Ch. I,
sect. 1).

The function L : I × R
+ → R

+ is said to be integrally bounded on the
bounded sets, if for any bounded set U ⊂ R

+ there is an L1 function m(·)
such that |L(t, r)| ≤ m(t) for any r ∈ U . The non-negative almost continuous
function L : I×R

+ → R
+ is said to be Kamke function if it is integrally bounded

on the bounded sets, and moreover, L(t, 0) ≡ 0, and the differential equation

ṡ = L(t, s), s(0) = 0

admits only the solution s(t) ≡ 0.
The following conditions on a set-valued map, weaker than the Lipschitz

continuity, will be used throughout the paper:

Definition 1 F (t, x) : I × R
n

⇉ R
n is said to be:

1) one-sided Lipschitz (OSL) if there is an integrable function L : I → R

such that for every x, y ∈ R
n, t ∈ I and v ∈ F (t, x) there exists w ∈ F (t, y) with

〈x − y, v − w〉 ≤ L(t)|x − y|2; (1)
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2) one-sided Kamke (OSK) if there exists Kamke function L(·, ·) such that
for every x, y ∈ R

n, t ∈ I and v ∈ F (t, x) there exists w ∈ F (t, y) with

〈x − y, v − w〉 ≤ L(t, |x − y|)|x − y|; (2)

3) continuous-like (CLC) when (2) holds with a Caratheodory (not necessari-
ly Kamke) non-negative integrally bounded on the bounded sets, and L(t, 0) ≡ 0.

Clearly, among the just defined classes of mappings, the smallest one is OSL
and the largest is CLC.

Consider the system:

dx

dt
∈ F (t, x), x(t0) = x0, (3)

Denote by A(t, x0) the attainable (reachable) set of the system (3) at time t,
i.e. the set of all reachable points for this time.

We now recall the theorem of Filippov in a slightly more general formulation,
for a multifunction F measurable w.r. to t (see, e.g., Aubin and Cellina, 1984,
Aubin and Frankowska, 1990, Deimling, 1992).

Let y(·) : [0, T ] → R
n be absolutely continuous (AC). Assume that F :

[0, T ]× R
n

⇉ R
n has nonempty compact values and is such that:

(i) for all x ∈ R
n F (·, x) is measurable;

(ii) there exist β > 0 and Lebesgue integrable k(·) such that for every x, z ∈
y(t) + βB and a.a. t ∈ [0, T ] DH(F (t, x), F (t, z)) ≤ k(t)|x − z|;

(iii) there exists an integrable f(·) such that dist(ẏ(t), F (t, y(t))) ≤ f(t).

Theorem 1 (Filippov) If (i),(ii) and (iii) hold and χ(T ) ≤ β, then there exists
a solution x(·) of (3) such that:

|x(t) − y(t)| ≤ χ(t) , t ∈ [0, T ], and |ẋ(t) − ẏ(t)| ≤ k(t)χ(t) + f(t),

a.e.t ∈ [0, T]

where χ(t) = e
∫

t

0
k(s)ds

(

|x0 − y(0)| +
∫ t

0

f(s)ds

)

.

Note that Theorem 1 estimates not only the distance between the functions
x(·) and y(·), but also the distance between their derivatives. The original proof
of this theorem (see Filippov, 1967) uses the method of successive approxima-
tions. As we see here, this method is applicable also in some cases when F (·, ·)
is not necessarily compact valued.

For simplicity, we now assume that every solution of

ẏ(t) ∈ F (t, y(t)), y(0) = y0 (4)

is extendable on I = [0, T ]. Here F : I × R
n

⇉ R
n.
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The following stronger version of the theorem of Pliś is formulated in Blago-
datskikh and Filippov (1986) where the original compactness assumption of Pliś
is replaced by closedness of the values of F , and the estimate of the velocities dif-
ference (missing in the original paper of Pliś), is added. The main contribution
of Pliś, in our opinion, is replacing the Lipschitz continuity of the set-valued map
by a special uniform continuity condition, proving existence (without unique-
ness) by the convexity and the compactness, and also estimating the solutions
difference by the maximal solution of a proper differential equation. An esti-
mate of this type for differential equations may be found in the earlier paper of
Filippov (1960).

Theorem 2 (Pliś) Let DH(F (t, x), F (t, y)) ≤ L(t, r) for |x − y| ≤ r, with
L(·, ·) an integrally bounded Caratheodory function from R

2 to R
+, such that

L(·, 0) = 0 and let F (·, x) be measurable, with closed convex values. If x(·) is
AC and satisfies dist(ẋ(t), F (t, x(t))) ≤ f(t), where f(·) is a nonnegative L1

function, then there exists a solution y(·) of (4) such that

|x(t)−y(t)| ≤ r(t), t ∈ [0, T ], |ẋ(t)− ẏ(t)| ≤ L(t, r(t))+f(t), a.e. t ∈ [0, T].

Here r(·) is the maximal solution of the differential equation

ṙ(t) = L(t, r(t)) + f(t), r(0) = |x(0) − y0|. (5)

There is no proof of this theorem in Blagodatskikh and Filippov (1986) but
one can adopt the method of proof of Theorem 7 to prove it (see Remark 3),
when the values of F are compact, as Pliś has supposed originally.

Note that in Theorem 1 F is Lipschitz and not necessarily convex-valued,
while in Theorem 2 F is convex-valued and not necessarily Lipschitz.

In the Lipschitz case the distance between the derivatives is easily estimated,
although in general (if L(t, ·) is non-linear), it is harder to obtain explicit esti-
mates of the distance between the functions x, y and between their derivatives
from (5).

To prove Theorem 2 in general Banach spaces, one needs additional com-
pactness assumptions on F or L(·, ·) has to be a Kamke function.

3. Extensions to one-sided Lipschitz mappings

In this section we will present some extensions of the Filippov theorem. We call
such extensions Filippov-type theorems.

We relax the Lipschitz continuity of F to the weaker one-sided Lipschitz
property. In this case, however, we are not able to estimate the difference
between the derivatives of x(·) and y(·) in the Filippov-type theorem. The fol-
lowing one-sided Lipschitz condition formulated in Donchev and Farkhi (1998),
combined with the compactness and the upper-semicontinuity of F implies exis-
tence and the approximation stability of the solutions (but not of the velocities),
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even for some inclusions with discontinuous in the state variable right-hand
sides.

In terms of the support function σ, the OSL condition is equivalent to (see
Donchev and Farkhi, 1998)

σ(x − y, F (t, x)) − σ(x − y, F (t, y)) ≤ L(t)|x − y|2.

Examples of OSL multifunctions are given, e.g., in Donchev and Farkhi (1998).
Although OSL maps may be discontinuous, we succeed to prove Lipschitz con-
tinuity of the solution set with respect to the initial point and the "outer"
perturbation of the right-hand side f(t), and Hölder continuity of the solution
set with respect to "inner" perturbations of the state variable in the right-hand
side of the inclusion (see Theorem 4).

We like to stress also that the OSL constant L(t) may be negative, which
is impossible in the classical Lipschitz condition. The negative OSL constant
implies weak asymptotic stability (see Donchev and Farkhi, 2000).

To get existence of solutions of the differential inclusion, it is sufficient to
require that F (t, ·) be only USC instead of continuous.

In Donchev and Farkhi (1998), a generalization of the Filippov theorem was
proved under the conditions:

A1. F is defined on I×R
n, with nonempty compact and convex values, F (·, x)

measurable for each x and F (t, ·) USC for all t and F is OSL.

A2. (Linear growth) There is an integrable function λ(t) > 0 such that |F (t, x)|
≤ λ(t)(1 + |x|) for all x ∈ X and almost all t ∈ I.

Remark 1 It is not hard to show (see Donchev, Farkhi, 2000) that under
A1, A2 the system

ẋ(t) ∈ co F (t, x + B), x(0) = x0

admits a nonempty compact solution set and there exist constants M and K
such that |x(t)| ≤ M and |F (t, x)| ≤ K for every such a solution.

Theorem 3 (Donchev and Farkhi, 1998) Suppose A1 and A2 hold, I = [0, T ] is
a finite interval, and y : I → R

n is an absolutely continuous function satisfying
dist(ẏ(t), F (t, y(t))) ≤ g(t) for a.e. t ∈ I, where g is integrable. Then, for each
x0 ∈ Rn, there exists a solution x(·) of (3) on I such that

|x(t) − y(t)| ≤ u(t), t ∈ I, (6)

where u(·) is the solution of the initial value problem

du

dt
= L(t)u + g(t), u(t0) = |x0 − y0|. (7)
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We have in the case L(t) ≤ L = const the following estimate of the distance
between the attainable sets:

DH(A(t, x0), A(t, y0)) ≤ eLt|x0 − y0|. (8)

If L < 0, this leads to the conclusion that the attainable map is contractive
for a fixed positive time and the system is weakly asymptotically stable. For
non-positive L the system is weakly stable (see Donchev and Farkhi, 2000).

Remark 2 If F is OSL with a constant L, it has been proved in Donchev,
Farkhi (2000) that all solutions of the inclusion

ẋ(t) ∈ F ([0, T ], x(t) + B), x(0) ∈ X0,

and their velocities are globally bounded on [0, T ], provided X0 is bounded.
Namely, there are constants M, K such that |x(t)| ≤ M, |F (t, x(t))| ≤ K for
any solution x(t) and any t ∈ [0, T ]. Thus, the assumption that F is bounded
on bounded sets and OSL with a constant L may replace the growth condition
A2 in the corresponding existence theorem (see Deimling, 1992, Theorem 5.2).

In the following modification of the Filippov - Pliś theorem (see Donchev and
Farkhi, 2000), the given quasitrajectory solves the inclusion where also the state
argument in the right-hand side is perturbed. In the Lipschitz case, the estimate
also with these perturbation follows from the classical Filippov theorem, while
in the OSL case we arrive at a square root in the distance estimate.

Theorem 4 (Donchev and Farkhi, 2000) Let A1 and A2 hold with a constant
L, and let g(t), h(t) be measurable functions such that |h(t)| ≤ 1, 0 ≤ g(t) ≤ 1
for a.e. t ∈ I. If y(·) is a solution of

ẏ(t) ∈ F (t, y(t) + h(t)) + g(t)B, y(0) = y0

then there exists a solution x(·) of (4) such that

|x(t) − y(t)| ≤ eLt
{

|x0 − y0| +
∫ t

0

e−Lsg(s) ds

+
[

∫ t

0

e−2Ls|h(s)|(4K + 8|L|M + 2L+) ds
]

1
2

}

,

where L+ = max{0, L}.

Proof. We provide here a sketch of the proof. First we show that there exists a
solution z(·) of the inclusion

ż(t) ∈ F (t, z(t) + h(t)), z(0) = x0 (9)

such that |z(t) − y(t)| ≤ eLt
{

|x0 − y0| +
∫ t

0
e−Lsg(s) ds

}

.
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Consider the mapping

H(t, u) = {v ∈ F (t, u + h(t)) : 〈y(t) − u, ẏ(t) − v〉
≤ |y(t) − u|(L|y(t) − u| + g(t))}.

H(t, u) is nonempty for every t ∈ I, u ∈ X and convex-valued, since F is convex-
valued. H(t, ·) is closed valued USC. H(·, u) is measurable since F is almost
continuous. Hence, there exists a solution z(·) of the differential inclusion:

ż(t) ∈ H(t, z(t)), z(0) = x0. (10)

It follows from the definition of H(·, ·) that

〈y(t) − z(t), ẏ(t) − ż(t)〉 ≤ L|y(t) − z(t)|2 + g(t)|y(t) − z(t)|.

Denoting m(t) = |y(t) − z(t)|, we obtain for a.e. t ∈ I

ṁ(t) ≤ Lm(t) + g(t), m(0) = |y0 − x0|.

Hence

|z(t) − y(t)| ≤ eLt
{

|x0 − y0| +
∫ t

0

e−Lsg(s) ds
}

. (11)

Defining the mapping

G(t, u) =
{

v ∈ F (t, u) : 〈z(t) + h(t) − u, ż(t) − v〉 ≤ L|z(t) + h(t) − u|2
}

,

we obtain from the OSL condition that G(t, u) 6= ∅. As above, we establish that
it is closed and convex valued, G(·, u) is measurable, G(t, ·) is USC. Let

ẋ(t) ∈ G(t, x(t)), x(0) = x0. (12)

Therefore, one derives by the OSL condition and Remark 2,

〈x(t) − z(t), ẋ(t) − ż(t)〉
≤ L|x(t) − z(t)|2 + 2|L||h(t)||x(t) − z(t)| + 2K|h(t)| + L|h(t)|2.

Denote p(t) = |x(t) − z(t)|2. The last inequality gives

ṗ(t) ≤ 2Lp(t) + 2(2K + 4M |L|)|h(t)| + 2L|h(t)|2.

This, together with (11), implies the desired estimate.
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3.1. Singularly perturbed systems

The singularly perturbed systems with Lipschitz and non-Lipschitz right-hand
sides are widely investigated, see e.g. Donchev and Dontchev (2003), Sokolovska-
ya (2003), Donchev and Slavov (1995), Veliov (1994, 1997). We extend here to
the OSL case the well-known results for the Lipschitz case (Veliov, 1994), and
also generalize a result of Donchev and Dontchev (2003) for OSL control systems.

Consider the following singularly perturbed multivalued Cauchy problem:

(

ẋ
εẏ

)

∈ F (t, x(t), y(t)),
x(0) = x0

y(0) = y0.
(13)

Let F : I ×R
n+m

⇉ R
n+m. Here we denote the closed unit balls in R

n and
in R

m respectively by B1 and B2. We suppose that

S1. F (·, ·, ·) is almost USC, with nonempty convex compact values, bounded
on the bounded sets.

Notice that for every fixed ε > 0 the system (13) is an ordinary differential
inclusion. Singular perturbations theory studies the behavior of the solution set
Z(ε) of (13) as ε → 0+. For a bibliography we refer to Donchev and Dontchev
(2003), Veliov (1997) and the references therein.

In this section will call F (t, ·, ·) OSL if there exist positive constants A, B, C,
µ such that for every x1, x2 ∈ E1, every y1, y2 ∈ E2 and every (f1, g1) ∈
F (t, x1, y1) there exists (f2, g2) ∈ F (t, x2, y2) such that

〈x1 − x2, f1 − f2〉 ≤ A|x1 − x2|2 + B|y1 − y2|2,
〈y1 − y2, g1 − g2〉 ≤ C|x1 − x2|2 − µ|y1 − y2|2.

It is not difficult to see (as, e.g., in Donchev and Slavov, 1995) that if F is OSL
and satisfies S1, there exist constants M and N such that |x(t)| + |y(t)| ≤ M
and ‖F (t, x(t) + B1, y(t) + B2)‖ ≤ N for every ε > 0 and for every solution
(x(·), y(·)) of

(

ẋ
εẏ

)

∈ co F (t, x(t) + B1, y(t) + B2),
x(0) = x′ ∈ x0 + B1

y(0) = y′ ∈ y0 + B2.
(14)

The following Filippov-type theorem is very applicable in singular perturba-
tion theory (see Veliov, 1994, and Donchev and Dontchev, 2003, where special
cases are considered).

Theorem 5 Let F be OSL satisfying S1 and let (u, v) be a solution of the
system:

(

u̇
εv̇

)

∈ F (t, u(t) + f(t), v(t) + g(t)),
u(0) = u0

v(0) = v0,

where f(·), g(·) are bounded and measurable functions.
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Then there exist constants Kx, Ky and a solution (x, y) of (13) such that

ṙ(t) ≤ 2{Ar + Bs + Kx(|f(t)| + |g(t)|)}, r(0) = |x0 − u0|2
εṡ(t) ≤ 2{Cr − µs + Ky(|f(t)| + |g(t)|)}, s(0) = |y0 − v0|2,

where r(t) = |x(t) − u(t)|2 and s(t) = |y(t) − v(t)|2,

Proof. Consider the map

(t, x, y) → F̃ (t, x, y) = cl{(α, β) ∈ F (t, x, y) : 〈u(t) − x + f(t), u̇(t) − α〉
≤ A|u(t) − x + f(t)|2 + B|v(t) − y + g(t)|2,

ε〈v(t) − y + g(t), v̇(t) − β〉
≤ C|u(t) − x + f(t)|2 − µ|v(t) − y + g(t)|2}.

The so defined F̃ is almost USC with nonempty convex compact values. Fur-
thermore, the system

(

ẋ
εẏ

)

∈ F̃ (t, x, y),
x(0) = x′

y(0) = y′.

has a solution (x(t), y(t)) such that

〈u(t)−x(t)+f(t), u̇(t)− ẋ(t)〉 ≤ A|u(t)−x(t)+f(t)|2 +B|v(t)−y(t)+g(t)|2

and

ε〈v(t)− y(t) + g(t), v̇(t)− ẏ(t)〉 ≤ C|u(t)− x(t) + f(t)|2 − µ|v(t)− y(t) + g(t)|2.

Denoting P := A|u(t) − x(t) + f(t)|2 + B|v(t) − y(t) + g(t)|2, we get

〈x(t) − u(t), ẋ(t) − u̇(t)〉 ≤ P + |ẋ(t) − u̇(t)||f(t))| ≤ P + 2N |f(t)|.

On the other hand
∣

∣ |x(t) − u(t) + f(t)|2 − |x(t) − u(t)|2
∣

∣

=
∣

∣

∣
|x(t) − u(t) + f(t)| − |x(t) − u(t)|

∣

∣

∣
·
∣

∣

∣
|x(t) − u(t) + f(t)| + |x(t) − u(t)|

∣

∣

∣

≤ |f(t)|(2|x(t)| + 2|u(t)| + |f(t)|) ≤ |f(t)|(4M + 1).

Hence

〈x−u, ẋ−u̇〉 ≤ A|x−u|2+B|y−v|2+2N |f(t)|+(4M+1)A|f(t)|+(4M+1)B|g(t)|.

Analogously

ε〈y−v, ẏ−v̇〉 ≤ C|x−u|2−µ|y−v|2+2Nε|g(t)|+(4M+1)C|f(t)|+(4M+1)µ|g(t)|.

Since 〈x − u, ẋ − u̇〉 = 1
2

d
dt

x − u|2, 〈y − v, ẏ − v̇〉 = 1
2

d
dt
|y − v|2, we get the

conclusion of the theorem
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3.2. Evolution inclusions

In this section we will prove a Filippov-type theorem for evolution inclusions
in a Banach space E with uniformly convex dual E∗. Although our paper is
devoted mainly to differential inclusions in R

n, we believe that this result is
important, since parabolic partial differential inclusions are often represented
as evolution inclusions with unbounded operators.

Denote by J(·) the duality mapping. It is well known that in this case J(·)
is single-valued and uniformly continuous on the bounded sets (see Deimling,
1992).

The OSL condition here is σ(J(x− y), F (x))−σ(J(x− y), F (y)) ≤ L|x− y|2
for every x, y ∈ E.

Definition 2 The operator A : D(A) ⇉ E is said to be m-dissipative if 〈J(x−
y), vx − vy〉 ≤ 0 for every x, y ∈ D(A) ⊂ E and every vx ∈ Ax, vy ∈ Ay, and
for every λ > 0, Range(Id − λA) = E, where D(A) is the domain of A and Id
is the identity operator.

We refer to Chapter 3 of Lakshmikantham and Leela (1981) for the theory of
m-dissipative operators.

Consider the inclusion:

ẋ(t) ∈ Ax + F (t, x), x(0) = x0 ∈ D(A), t ∈ I. (15)

Solutions of (15) are understood in the following integral sense: x(·) is said to
be a solution of (15) if there exists f(t) ∈ F (t, x(t)) such that x(·) is a solution
of

ẋ(t) ∈ Ax(t) + f(t), x(0) = x0 ∈ D(A). (16)

The continuous function x(·) : I → D(A) is said to be a solution of (16) if
x(0) = x0 and for every u ∈ D(A), v ∈ Au, 0 ≤ s ≤ t ≤ 1 the following
inequality holds true

|x(t) − u|2 ≤ |x(s) − u|2 + 2

∫ t

s

〈J(x(τ) − u), f(τ) − v〉dτ.

We refer to Vrabie (1987) for more information related to equation (16).

Suppose:

AA1. A is m-dissipative operator, which is an infinitesimal generator of a
compact semigroup T (·).

AF1. F (·, ·) is almost UHC with nonempty convex weakly compact values.
Further, there exists an integrable λ(·) such that |F (t, x)| ≤ λ(t)(1 + |x|).

Notice that under the above assumptions for every K > 0, η > 0 there exists
M > 0 such that the differential inclusion

ẏ(t) ∈ Ay + F (t, y + ηB) + KB, y(0) = x0, t ∈ I (17)
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admits a nonempty C(I, E) compact set of solutions (hence equicontinuous),
satisfying |x(t)| ≤ M (see, e.g., Bressan and Staicu, 1994).

Let ΩJ : [0, 2M + 1] → R
+ be the modulus of continuity of the duality map

J on MB.
A special case of the following theorem has been proved in Donchev (2007)

for a linear operator A.

Theorem 6 Assume AA1 and AF1 hold. Let η ∈ (0, 1] be given. If F is OSL
(with a constant LF ), then there exists a constant C such that if x(·) is a solution
of

ẋ(t) ∈ Ax(t) + F (t, x(t) + ηB), x(0) = x0,

then there exists a solution y(·) of (15) such that |x(t) − y(t)| ≤ C
√

η + ΩJ (η)
on I.

Proof. It is easy to see that there exists a strongly measurable function |f̃(t)| < η
such that ẋ(t) ∈ Ax(t) + F (t, x(t) + f̃(t)), x(0) = x0. Moreover, there exists a
strongly measurable selection f(t) ∈ F (t, x(t) + f̃(t)). Define the multivalued
map

F1(t, z) := {v ∈ F (t, z) : 〈J(x(t) + f̃(t) − z), f(t) − v〉 ≤ LF |x(t) + f̃(t) − z|2}.

It is easy to see that F1(·, ·) is almost UHC with nonempty convex weakly
compact values. Therefore, there exists a solution y(·) of

ẏ(t) ∈ Ay(t) + F1(t, y(t)), y(0) = x0.

Now, there exists a strongly measurable selection f1(t) ∈ F1(t, y(t)) such that

ẏ(t) = Ay(t) + f1(t), y(0) = x0.

Consequently, 〈J(x(t) − y(t) + f̃(t)), f(t) − f1(t)〉 ≤ LF |x(t) + f̃(t) − y(t)|2.
Therefore

〈J(x(t) − y(t)), f(t) − f1(t)〉 ≤ LF |x(t) − y(t)|2

+|J(x(t) − y(t)) − J(x(t) − y(t) + f̃(t))| (|f(t)| + |f1(t)|)
+

∣

∣

∣
LF |x(t) − y(t)|2 − LF |x(t) − y(t) + f̃(t)|2

∣

∣

∣

≤ LF |x(t) − y(t)|2 + 2ΩJ(η)(M + 1 + η)λ(t) + |LF |η(4M + η).

Since |x(t) − y(t)|2 − |x(0) − y(0)|2 ≤ 2

∫ t

0

〈J(x(s) − y(s), f(s) − f1(s)〉ds, and

η ∈ (0, 1], one has that there exists a constant C such that |x(t) − y(t)| ≤
C

√

η + ΩJ(η) on I.
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4. Further extensions of the Filippov-Pliś theorem

In this section we present extensions of Theorem 2 in the case of CLC and OSK
right-hand sides.

In terms of the support function σ, the CLC is equivalent to

σ(x − y, F (t, x)) − σ(x − y, F (t, y)) ≤ L(t, |x − y|)|x − y|,
for every x, y ∈ X and a.e. t ∈ I. The OSK conditions in terms of support
function are similar.

The next theorem may be considered as an extension of Theorem 2 for CLC
multifunctions. The method of proof avoids successive approximations, but
requires convexity and compactness in order to ensure existence of solutions.
Also, there is no estimate of the velocities difference.

Theorem 7 Let F (·, ·) be almost continuous, convex and compact valued and
CLC with linear growth. If x(·) is AC, satisfying dist(ẋ(t), F (t, x(t))) ≤ f(t),
where f(·) is a nonnegative L1 function, then there exists a solution y(·) of (4)
such that

|x(t) − y(t)| ≤ r(t).

Here r(·) is the maximal solution of the differential equation

ṙ(t) = L(t, r(t)) + f(t), r(0) = |x(0) − y0|. (18)

Proof. Define the multifunction:

G(t, y) := {v ∈ F (t, y) : 〈x(t)−y, ẋ(t)−v〉 ≤ [L(t, |x(t)−y|) + f(t)] |x(t)−y|} .

It is easy to see that the map G(·, ·) is almost USC with nonempty convex
compact values. Indeed, let ẋ(·), f(·), L(·, ·) and F (·, ·) be continuous on ti → t∞
and xi → x∞. Let fn ∈ F (tn, xn) be such that fn → f∞. Since 〈·, ·〉 is
continuous, one has that f∞ ∈ G(t∞, x∞) and hence G(·, ·) is with almost closed
graph. Furthermore, G(t, x) ⊂ F (t, x), i.e. G(·, ·) is almost USC. G(t, x) 6= ∅
due to its definition. Moreover, it has convex values, because 〈x(t)−y, ·〉 is linear.

Let y(·) be a solution of ẏ(t) ∈ G(t, y(t)). Therefore
d

dt
|x(t) − y(t)|2 ≤ 2|x(t) −

y(t)| (L(t, |x(t) − y|) + f(t) + ε). Since the function t → |x(t) − y(t)| is AC one

has that it is a.e. differentiable. Hence,
d

dt
|x(t) − y(t)| ≤ L(t, |x(t) − y|) + f(t)

a.e. on I. The proof is therefore complete.

Remark 3 The proof of Theorem 7 may be easily modified to prove also Theo-
rem 2. Then one can define

G(t, y) := {v ∈ F (t, y) : |ẋ(t) − v| ≤ (L(t, |x(t) − y|) + f(t))} .

In this case, thanks to the continuity of F (t, ·), also the distance between the
derivatives |ẋ(t) − ẏ(t)| can be estimated.
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We will extend Theorem 2 in a form, which is very convenient to prove a
relaxation theorem.

Denote

H(t, x) =
⋂

ε>0

co F (t, x + εB). (19)

It is clear from the above definitions that F is CLC if and only if co F is CLC.
To show this also for H(t, x), we prove the following useful property:

Lemma 1 Let A ⊂ R
n be open. If F is bounded on bounded sets and for every

x, y ∈ A

σ(x − y, F (t, x)) − σ(x − y, F (t, y)) ≤ w(t, |x − y|),

where w(· , · ) is a Caratheodory function with w(t, 0) ≡ 0 then

σ(x − y, H(t, x)) − σ(x − y, F (t, y)) ≤ w(t, |x − y|).

Proof. It follows from the definition of H(·, ·) that for x, y ∈ A and a given
ε > 0 there exists lε ∈ εB such that

σ(x − y, H(t, x)) ≤ σ(x − y, F (t, x + lε)). (20)

Besides, by the Lipschitz continuity of the support function it is well-known
that for any compact F :

|σ(x − y + lε, F ) − σ(x − y, F ) ≤ |lε||F |.

Applying twice the last inequality, we get

σ(x − y, F (t, x + lε)) − σ(x − y, F (t, y))

≤ σ(x − y + lε, F (t, x + lε)) − σ(x − y + lε, F (t, y))

+|lε|{|F (t, x + lε)| + |F (t, y)|}.

Now, applying (20) and the given inequality

σ(x − y + lε, F (t, x + lε)) − σ(x − y + lε, F (t, y)) ≤ w(t, |x − y + lε|),

we get

σ(x − y, H(t, x)) − σ(x − y, F (t, y))

≤ w(t, |x − y + lε|) + |lε|{|F (t, x + lε)| + |F (t, y)|}.

Finally, since |lǫ| ≤ ε, letting ε → 0, we obtain the claim of the lemma.

It is clear from Lemma 1 that F (·, ·) is CLC iff its regularization H(·, ·) is CLC.

Now we prove a Filippov-type relaxation theorem.
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Theorem 8 Let F (·, ·) be almost continuous with convex compact values, CLC
and bounded on bounded sets. If x(·) is absolutely continuous with

dist(ẋ(t), F (t, x(t))) ≤ f(t),

where f(·) is nonnegative L1 function, then for every ε > 0 there exists a solution
y(·) of

ż(t) ∈ ext F (t, z(t)), z(0) = y0 (21)

such that |x(t) − y(t)| ≤ max{ε, r(t)}. Here r(·) is the maximal solution of the
differential equation

ṙ(t) = L(t, r(t)) + f(t) + ε, r(0) = |x(0) − y0|.

Proof. Here we follow the idea of Donchev (2004), presented there in the case
of OSL right-hand side. We consider the multivalued map:

Gε(t, z) :=
{

v ∈ ext F (t, z) : 〈x(t) − z, ẋ(t) − v〉 < (L(t, |x(t) − z|) + f(t)) |x(t) − z| + ε2
}

when |x(t) − z| > ε and Gε(t, z) := Proj(ẋ(t), ext F (t, z)) for |x(t) − z| ≤ ε.
Since F (·, ·) is CLC iff ext F (·, ·) is CLC, Gε(·, ·) is nonempty closed valued.

From Lemma 2.3.7 of Tolstonogov (2000) we know that ext F (·, ·) is almost LSC.
It is straightforward to prove that Gε(·, ·) is itself almost LSC. Consequently,
there exists a solution y(·) of

ż(t) ∈ Gε(t, z(t)), z(0) = y0.

It is easy to see that 〈x(t)−y(t), ẋ(t)−ẏ(t)〉 ≤ (L(t, |x(t) − y(t)|) + f(t) + ε) |x(t)
−y(t)|when|x(t) − y(t)| > ε. Since t → |x(t) − y(t)| is absolutely continuous,
one has that it is a.e. differentiable. Thus

|x(t) − y(t)| d

dt
|x(t) − y(t)| ≤ (L(t, |x(t) − y(t)|) + f(t) + ε) |x(t) − y(t)|,

when |x(t) − y(t)| ≥ ε. The proof can be completed by a standard argument.

Corollary 1 Relaxation Theorem. Let L(·, ·) be a Kamke function; then so-
lution set of (21) is dense (with respect to C(I, Rn)) in the solution set of (4).

Proof. Apply Theorem 8 with f(x) ≡ 0.

Now we give an analog of Theorem 8 for the regularized map H(t, x) de-
fined in (19). It may be regarded as a Filippov-Pliś-type theorem without the
convexity and the Lipschitz assumptions, but with a small ε appearing in the
right-hand side of the differential inequality.
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Theorem 9 Assume that F (·, ·) is almost LSC, CLC with linear growth and
nonempty compact values. Let x(·) be AC with ẋ(t) ∈ H(t, x(t))+ f(t)B. Then,
for every ε > 0 there exists a solution y(·) of (4) such that

d

dt
|x(t) − y(t)| ≤ L(t, |x(t) − y(t)|) + f(t) + ε, |x(0) − y(0)| = |x(0) − y0|.

Proof. Fix ε > 0 and define the following multifunction

Gε(t, y) =

{v ∈ F (t, y) : 〈x(t) − y, ẋ(t) − v〉 < (L(t, |x(t) − y(t)|) + f(t) + ε)|x(t) − y(t)|},

when y 6= x(t). If y = x(t) we let Gε(t, y) = F (t, y)
⋂

(ẋ(t) + (f(t) + ε)B).

Due to the CLC condition and to Lemma 1, Gε(·, ·) has nonempty compact
values. Furthermore, it is easy to see that it is almost LSC. Therefore there
exists a solution y(·) of

ẏ(t) ∈ Gε(t, y(t)), y(0) = y0.

This solution satisfies the conclusion of the theorem.

4.1. Filippov-Pliś-Type theorems in Banach spaces

In this section we study the problem (3) in an arbitrary Banach space E.
Let x, y ∈ E. Define [x, y]+ := lim

h→0+
h−1{|x+ hy| − |x|}, the right derivative

of |x| in direction y. The map [·, ·]+ is upper semicontinuous as a function
from E × E into R and moreover, |[x, y]+ − [x, z]+| ≤ |y − z|. If also for the
function x(·) ẋ(t) exists, then the upper Dini derivative of |x(t)| is [x(t), ẋ(t)]+.
In addition, if the duality map J(·) is single valued, then 〈J(y), x〉 = |y|[x, y]+.
We refer to Lakshmikantham and Leela (1981), Chapter 1, for more details.

Since we work in infinite-dimensional spaces, we need some compactness
type assumptions. The Hausdorff measure of noncompactness of the bounded
set A ⊂ E is defined as:

χ(A) = inf{R > 0 : A can be covered by finitely many balls of radius ≤ R}

To prove a version of Pliś theorem for almost LSC maps (see Donchev, 1997),
we use the following assumptions:

As1. There exists a Kamke function u : I × R
+ → R such that: for every

x, y ∈ E and every fx ∈ F (t, x) there exists fy ∈ F (t, y) with [x−y, fx−fy]+ ≤
u(t, |x − y|).

As2. There exists a Kamke function w : I × R+ → R such that

lim
h→0

χ(F ([t, t + h] × A)) ≤ w(t, χ(A))

for every bounded A ⊂ E.
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Theorem 10 Suppose F (·, ·) is almost LSC with linear growth satisfying As1,
As2. Let ε > 0 and x(·) be AC function such that dist(ẋ(t), F (t, x(t))) ≤ f(t)
for a.e. t ∈ I, with f(·) an L1-function. Then there exists a solution y(·) of (4)
such that |x(t)−y(t)| ≤ r(t), where r(0) = |x0−y0| and ṙ(t) = u(t, r)+f(t)+ε.

Proof. We claim that the following map is almost LSC nonempty compact valued

Γ(t, w) := cl{v ∈ F (t, w) : [x(t) − w, ẋ(t) − v]+ < u(t, |x(t) − w|) + f(t) + ε}.

If z ∈ F (t, x(t)), |z−ẋ(t)| ≤ f(t), then there exists v ∈ F (t, w) with [x(t)−w, z−
v]+ ≤ u(t, |x(t) − w|). Therefore, [x(t) − w, ẋ(t) − v]+ ≤ f(t) + u(t, |x(t) − w|),
i.e. Γ(t, x) is nonempty compact valued. From Scorza Dragoni and Lusin’s
properties we obtain that for every ε > 0 there exists a compact Iε ⊂ I with
µ(I\Iε) ≤ 1−ε, such that: F (·, ·) is LSC on Iε×E; u(·, ·) is continuous on Iε×R+

and ẋ(·), f(·) are continuous on Iε. Therefore it remains to show that Γ(·, ·) is
LSC on Iε×E. Let l ∈ Γ(t, w), (t ∈ Iε) and let [x(t)−w, ẋ(t)− l]+ ≤ u(t, |x(t)−
w|) + f(t) + ε − γ, where γ > 0. Since F (·, ·) is LSC and [·, ·]+ is USC, there
exist τ > t and µ > 0 such that [x(t′)−w′, ẋ(t′)− l′]+− [x(t)−w, ẋ(t)− l]+ < γ,
whenever |l′ − l| < µ, |w′ − w| < µ and t′ ∈ Iε

⋂

[t, τ). Thus, there exists
l′ ∈ F (t′, u′) such that [x(t′) − u′, ẋ(t′) − l′]+ < u(t′, |x(t′) − u′|) + f(t′) + ε.
Therefore, l′ ∈ Γ(t′, x(t′)) and hence Γ(·, ·) is almost LSC. This, together with
As2 implies that there exists a solution y(·) of

ẏ(t) ∈ Γ(t, y(t)), y(0) = y0.

This is the desired solution.

We close the section with a theorem for the special case of uniformly convex
E∗.

Theorem 11 Assume AA1, AF1 hold. Let f(·) be non-negative Lebesgue inte-
grable function. If F is CLC with a function w(·, ·) then for every solution x(·)
of

ẋ(t) ∈ Ax(t) + F (t, x(t)) + f(t)B, x(0) = x0,

there exists a solution y(·) of

ż(t) ∈ Az(t) + F (t, z(t)), z(0) = y0

such that |x(t) − y(t)| ≤ r(t), where r(·) is the maximal solution of ṙ(t) =
w(t, r(t)), r(0) = |x0 − y0|.

Proof. Let x(·) be a solution of ẋ = Ax + gx(t) + s(t), where gx(t) ∈ F (t, x(t))
and s(t) ∈ f(t)B. Define the multifunction:

G(t, y) :=

{z ∈ F (t, y) : 〈J(x(t)−y), gx(t) + s(t)−z〉 ≤ (w(t, |x(t)−y|) + |s(t)|) |x(t−y|} .
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It is easy to see that G(·, ·) is almost UHC with nonempty closed convex values.
Therefore the problem

ẏ(t) ∈ Ay + G(t, y(t)), y(0) = y0

has a solution y(·) with corresponding gy(t) ∈ G(t, y(t)). Since x(·) and y(·)
are continuous, the set A = {x(t) 6= y(t)} is open. On every interval (κ, τ),
contained in A, one has [x(t)−y(t), gx(t)−gy(t)]+ ≤ w(t, |x(t)−|y(t)|)+ |s(t)|. It
is standard now to establish that y(·) satisfies the requirement of the theorem.

5. Applications and conclusions

In this section we present an application of the Filippov-type theorems to the
Euler discrete approximation of differential inclusions. For simplicity, we restrict
our consideration to the autonomous problem in R

n

ẋ(t) ∈ F (x(t)), for t ∈ (0, T ), x(0) = x0. (22)

We are able to determine the reachable set by the exponential formula of
Donchev, Farkhi and Wolenski (2003), which is a direct consequence of the
Filippov theorem.

Denote h = T/N and define the Euler set-valued iterates of a given initial
set X :

(I + hF ){X} = {x + hf : x ∈ X, f ∈ F (x)}.

We denote (I + hF )k{X} = (I + hF ){(I + hF )k−1{X}} for k = 2, 3, . . ..

The following theorem proved in Donchev, Farkhi (2000) provides conver-
gence and distance estimate for the Euler set-valued approximant to the reach-
able set.

Corollary 2 (The Exponential Formula) Suppose F (·) is USC with con-
vex compact values, bounded on bounded sets and OSL with a constant L. The
reachable set A(t, x0) of the system (22) satisfies

A(t, x0) = lim
N→∞

(I +
t

N
F )N{x0}

and the error is DH

(

A(t, X0), (I +
t

N
F )N{X0}

)

≤ C√
N

.

If L < 0 in Corollary 2, then the following version of the exponential formula
holding on an infinite time interval is proved in Donchev, Farkhi and Reich
(2003) and in Donchev, Farkhi and Reich (2007) in the infinite-dimensional
case:
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Theorem 12 (The Infinite Time Exponential Formula) Let F satisfy
the conditions of Corollary 2 with a negative constant L. Then there exists
a compact set A∞ = lim

t→∞

R(t, X0), and if the sequence of positive numbers

{hk}∞k=1 satisfies
∑

k→∞

hk = ∞,
∑

k→∞

h2
k < ∞, the following exponential formula

holds

A∞ = lim
N→∞

(I + hNF ) ◦ (I + hN−1F ) ◦ . . . ◦ (I + h1F ){X0}.

We presented here various extensions of the theorems of Filippov and Pliś,
with estimates only for the solutions and not for the distance between their
derivatives, since the derivatives may belong to discontinuous right-hand sides.

A stronger Filippov-Pliś-type theorem with additional estimates of the dis-
tance between the derivatives may be obtained for right-hand sides satisfying
the so-called Modified OSL (MOSL) condition. The MOSL condition is weaker
than the Lipschitz one and stronger than the OSL (see Donchev, Farkhi, Mor-
dukhovich, 2007). This will be the subject of a future paper.

Open Problems.

1) One of the main open problems related to the Filippov-type theorems, as
well as to the discrete approximations, is whether the square root estimate in
Theorem 4 is sharp. This implies the order of one half in the error estimate of
the Euler discrete approximation (Corollary 2). So far we do not have examples
confirming that this rate is sharp.

2) There are many papers devoted to necessary optimality conditions for
optimal control systems described by differential inclusions when the right-hand
side is locally Lipschitz. It would be very interesting to prove such conditions
in case of one-sided Lipschitz (or OSK/CLC) right-hand sides. A first step in
this direction has been made in Donchev, Farkhi and Mordukhovich (2007).
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