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Abstract: Numerical solution of PDE optimal control problems
involving affine pointwise control constraints is investigated. Opti-
mality conditions are derived and a semi-smooth Newton method is
presented. Global and local superlinear convergence of the method
are obtained for linear problems. Differently from box constraints,
in the case of general affine constraints a proper weighting of the
control costs is essential for superlinear convergence of semi-smooth
Newton methods. This is also demonstrated numerically by con-
trolling the two-dimensional Stokes equations with different kinds of
affine constraints.
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1. Introduction

Numerical solution of optimal control problems in presence of control constraints
has become an active research field in recent years. The presence of pointwise
constraints on the control adds new analytical and numerical difficulties to the
already challenging unconstrained control problems. The importance of control
constraints becomes clear if e.g. technological or financial restrictions are given.
In recent years the case of box constraints has received a considerable amount
of attention, both analytically and numerically. We refer to e.g. Bergounioux
(1999), Ito and Kunisch (2004), Kunisch and Rösch (2002), Casas and Tröltzsch
(2002), Weiser (2005), and the literature cited there.

Methods that are being investigated include the primal-dual active set strat-
egy, semi-smooth Newton methods, Lavrentiev regularization and interior point
methods. A special feature of the primal-dual active set strategy and the semi-
smooth Newton methods lies in the fact that for box constrained optimal con-
trol problems it can be shown for a rather general class of problems that these
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methods do not require an additional regularization parameter for obtaining
local super-linear convergence. For certain classes of problems it was shown,
moreover, that the primal-dual active set method and the semi-smooth New-
ton method coincide, Hintermüller et al. (2002), and that convergence from
arbitrary initial data holds, Ito and Kunisch (2004). Such methods have been
utilized for the control of a variety of phenomena including fluid flow, De Los
Reyes and Kunisch (2005), Hintermüller and Hinze (2006), reaction diffusion
systems, Griesse and Volkwein (2005), or crystal growth processes, Meyer et al.
(2006).

While box constrained problems are fairly well understood, relatively little
research was directed towards devising and analyzing efficient second order type
methods for more general constraints. This paper is intended to make a step in
this direction by considering constraints of affine type. While for the derivation
of optimality conditions we consider a quite general class of affine constraints, in
the numerical part of this paper we restrict ourselves to the case where the ma-
trix, characterizing the inequality constraints, is surjective. The non-surjective
case appears to require a different treatment.

After deriving optimality conditions, the algorithm is analyzed, showing its
equivalence to primal-dual iterations and proving its local superlinear conver-
gence for linear state equations. Subsequently, a certain class of optimal control
problems with nonlinear dynamics is treated as well. First order necessary and
second order sufficient optimality conditions are derived. Differently from pre-
vious contributions (see Bonnans, 1998; Dunn, 1995; Wachsmuth, 2006), the
second order sufficient optimality condition avoids the so called two-norm dis-
crepancy by using a contradiction argument and exploiting the structure of the
cost functional.

To obtain the desired superlinear convergence rate for the semi-smooth New-
ton method it is necessary that the control cost term is put into correspondence
to the type of constraints that are imposed. In particular, the angle between the
affine manifolds characterizing the control constraints influences the numerical
behavior of the algorithm. Numerical examples involving the optimal control of
the Stokes equations will illustrate the practical importance of this issue.

The outline of the paper is as follows. In Section 2 the optimal control prob-
lem with affine state equations is studied and an optimality system is derived.
For the solution of this system, a semi-smooth Newton method is proposed
in Section 3. Local superlinear convergence of the method is proved and its
equivalence to the primal-dual active set strategy shown. In Section 4 a global
convergence result for the semi-smooth Newton algorithm is presented. Nonlin-
ear control problems are studied in Section 5. Optimality conditions of first and
second order are obtained and sufficient conditions for local superlinear con-
vergence of the semi-smooth Newton method are proved. Finally, in Section 6,
numerical experiments illustrate the importance of using a proper weight in the
control costs.
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2. Optimal control problem

Let Ω be a bounded domain of R
n. We consider the following optimal control

problem:






min J(y) + α
2 |Cu|2

L2(Ω̂,Rl) + α
2 |Pu|2U

subject to

e(y, u) = f

Cu ≤ ψ a.e.,

(1)

where α > 0, C ∈ R
l×m, ψ ∈ L2(Ω̂,Rl) and P : R

m → R
m is the orthogonal

projection onto ker(C). The operator e : Y ×U → Y ′, with Y, U Hilbert spaces,
is assumed to be linear and continuous in both variables, i.e.

e(y, u) = ey(y) + eu(u),

with ey ∈ L(Y, Y ′), eu ∈ L(U, Y ′). The Hilbert spaces are R
n-valued function

spaces over a bounded domain Ω ⊂ R
n, such that Y = H1(Ω,Rn). Throughout,

the space of controls is

U = L2(Ω̂,Rm), Ω̂ ⊂ Ω ⊂ R
n.

Further, we choose f ∈ Y ′ and J as

J(y) =
1

2
(y,Qy)Y + (q, y)Y ,

where Q ∈ L(Y, Y ), Q is positive semi-definite and q ∈ Y .

Assumption 1 The operator ey is continuously invertible.

In particular, this implies that for every u ∈ U, there exists a unique y = y(u) ∈
Y such that e(y, u) = f and the mapping u 7→ y(u) is a continuous affine
operator from U to Y .

Example 1 Consider the Stokes equations in Ω ⊂ R
n

−ν∆y + ∇p = u in Ω

div y = 0 in Ω

y = 0 on ∂Ω,

where ν stands for the viscosity coefficient of the fluid, y for the velocity vector
field, p for the scalar pressure and u for a distributed body force. Introducing
the spaces Y = {H1

0 (Ω,Rn) : div y = 0}, U = L2(Ω,Rn) and the operator

e : Y → Y ′ (2)

y 7→ ν(∇y,∇·)U − (u, ·)U , (3)
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the equations can be formulated in weak form as

e(y, u) = 0 in Y ′,

and satisfy Assumption 1.

Throughout the paper we will use the following assumption with respect to
the restriction matrix:

Assumption 2 For any v ∈ R
m satisfying Cv ≤ ψ(x) and for a.e. x ∈ Ω̂ the

rows {Ci}i∈A(v,x) are linearly independent in R
m, where A(v, x) := {i : (Cv)i =

ψi(x)}.
Example 2 For U = L2(Ω̂,R2), the constraints u1 ≤ ψ1, u2 ≤ ψ2 result in
C = I, P = 0, which was considered in previous work (see De Los Reyes, 2006;
De Los Reyes and Kunisch, 2005).

Example 3 The case U = L2(Ω,Rm), ui ≤ 0, −1 ≤ ∑m
i=1 ui results in l =

m + 1, C =

(
I
−e

)
, where e = (1, . . . , 1) ∈ R

m, I is the m × m identity

matrix, ψ = (0, . . . , 0, 1) and P = 0. Here, Assumption 2 is satisfied.

Example 4 The case U = L2(Ω,Rm) with bilateral constraints ψ1 ≤ u1 ≤ ψ2

a.e. in Ω results in C =

(
1 0 · · · 0
−1 0 · · · 0

)
, which also satisfies the requirements

of Assumption 2. The techniques of Ito and Kunisch (2004) are applicable in
this case.

Theorem 1 If there exists a feasible control u∈ L2(Ω̂,Rm) satisfying Cu≤ ψ
and Assumption 1 holds, then there exists a unique solution (y∗, u∗)=(y(u∗), u∗)
to problem (1).

Proof. Let (y(un), un) be a minimizing sequence. From the structure of the
cost functional the sequence {un}∞n=1 is bounded in U and hence there exists a
weakly convergent subsequence, denoted again by {un}, and a limit u∗ ∈ U such
that un ⇀ u∗ in U . We have Cu∗(x) ≤ ψ(x) a.e. and, since a bounded linear
operator maps weakly convergent sequences into weakly convergent sequences,
y(un) ⇀ y∗ = y(u∗).

Moreover, since the cost functional

J (y, u) = J(y) +
α

2
|Cu|2L2(Ω̂,Rl) +

α

2
|Pu|2U

is weakly lower semi-continuous, it follows that

J (y∗, u∗) ≤ lim inf J (yn, un),

and, therefore, (y∗, u∗) is a solution to (1). Uniqueness follows from the strict
convexity of the cost functional and the affine properties of the constraints.
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Next, existence of Lagrange multipliers for (1) is verified and a first order
optimality system is derived. We set

A =

l⋃

i=1

Ai

where

Ai = {x ∈ Ω̂ : Ciu(x) = ψi(x)},

and define the inactive set I = Ω\A.

Theorem 2 Let Assumptions 1 and 2 hold.Then there exist multipliers p ∈ Y
and λ ∈ L2(Ω̂,Rl) such that

e(y∗, u∗) = f (4)

e⋆
yp = −J ′(y∗) (5)

αCTCu∗ + αPu∗ + CTλ+ e⋆
up = 0 (6)

Cu∗ ≤ ψ, λ ≥ 0, λT (Cu∗ − ψ) = 0 a.e. in Ω̂. (7)

Proof. The first order necessary and sufficient optimality condition satisfied by
u∗ is given by

(αCTCu∗ + αPu + e⋆
up, u− u∗)L2(Ω̂) ≥ 0, (8)

for all u ∈ L2(Ω̂,Rm) satisfying Cu ≤ ψ, where

{
e(y∗, u∗) = f

e⋆
yp = −J ′(y∗).

(9)

To obtain from (8) the pointwise almost everywhere relations given in (7) it
will be convenient to introduce an auxiliary control problem for which the point-
wise control constraints are imposed only on the active set. For that purpose
we define a partitioning of the active set next.

Note that by Assumption 2 at most m constraints can be active simultane-
ously at a.e. x ∈ Ω̂. Let P be the set of all subsets of {1, ..., l} of cardinality
≤ m and set for I ∈ P

ΩI = {x ∈ Ω̂ : Cju
∗(x) = ψj(x), for all j ∈ I}.

Then Ω̂ =
⊎

I⊂P

ΩI ⊎ I and we have

Ai = {x ∈ ΩI : Ciu(x) = ψi(x) for some I ∈ P}.
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We consider the auxiliary problem






min
u∈L2(Ω̂,Rm) J(y) + |Cu|2

L2(Ω̂,Rl) + α
2 |Pu|2U

subject to:

e(y, u) = f

Ciu ≤ ψi on ΩI for i ∈ I and all I ∈ P .

(Paux)

Note that the inequality constraints in (Paux) can equivalently be expressed
as Ciu ≤ ψi on Ai, for i = 1, . . . , l. Clearly, (Paux) admits a unique solution
û ∈ U. Associated to (Paux) we introduce the LagrangianL : Y ×U×Y ×Z → R,
where Z =

⊗
I∈P

L2(ΩI ,R
#(I)), with #(I) the cardinality of I,

L(y, u, p, λ̃) = J(y) + |Cu|2
L2(Ω̂,Rl) +

α

2
|Pu|2U + 〈p, e(y, u) − f〉Y,Y ′+
∑

I∈P

∑

i∈I

(λI
i , Ci u− ψi)L2(ΩI ,R).

By Assumptions 1 and 2 the linearized constraints

(e, {(Ci)i∈I : I ∈ P}) : Y × U → Y ′ × Z

are surjective. Here we identify U with
⊗

I∈P
L2(ΩI ,R

l) × L2(I,Rl). Hence,
there exists (p, {λI}I∈P)∈ Y×Z, which is a Lagrange multiplier for (Paux), i.e.:






e(ŷ, û) = f

e⋆
yp = −J ′(ŷ)

αCTCû + αP û+ e⋆
up+

∑
I∈P

∑
i∈I C

T
i λ

I
iχΩI

= 0

Cû ≤ ψ, in Ω̂

λI
i ≥ 0, λi(Ciû− ψi) = 0, i ∈ I, I ∈ P .

(10)

Defining λ ∈ L2(Ω̂,Rl) by setting

λi = λI
i for i ∈ I, and λi = 0 for i 6∈ I, for any I ∈ P , x ∈ ΩI ;

λi = 0 on I,

(10) can equivalently expressed as






e(ŷ, û) = f

e⋆
yp = −J ′(ŷ)

αCTCû + αP û+ e⋆
up+ CTλ = 0

λ ≥ 0, Cû ≤ ψ, (λ,Cû − ψ)L2(Ω̂,Rl) = 0.

(11)

From (11) we obtain for Cu ≤ ψ,

(αCTCû+ αP û+ e⋆
up, u− û) = (λ,Cû− Cu) = (λ, ψ − Cu) ≥ 0.
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Hence, û satisfies the first order condition (8) and therefore û = u∗. System
(4)-(7) follows from (11).

Remark 1 Note that from equation (6) we have αPu∗ + Pe⋆
up = 0.

3. Semi-smooth Newton method

The complementarity condition (7) can be reformulated as the following opera-
tor equation

λ = max(0, λ+ c(Cu∗ − ψ)), (12)

for any c > 0. Here max is interpreted componentwise and (12) must be in-
terpreted in the a.e. in Ω̂ sense. Throughout the remainder of this section we
assume that

C is surjective. (13)

Then CT is injective and (6) can equivalently be expressed as

{
αCu∗ + λ+D−1CPR(CT )e

⋆
up = 0

αPu∗ + Pe⋆
up = 0,

(14)

where

D = CCT ∈ R
l×l

and PR(CT ) denotes the projection onto range(CT ). Since CT is injective,

range(CT ) = R
m and we may replace the operator PR(CT ) by the identity

matrix. Choosing c = α in (12) results in

−αCu−D−1Ce⋆
up = max(0,−D−1Ce⋆

up− αψ). (15)

Considering p as a function of u given by equations in (4)-(5), the optimality
system can equivalently be expressed as

F (u) = 0, (16)

where F : L2(Ω̂; Rm) → L2(Ω̂; Rl) × L2(Ω̂; Rm) is defined by

F (u) =

(
αCu +D−1Ce⋆

up+ max(0,−D−1Ce⋆
up− αψ)

αPu + Pe∗up

)
, (17)

and p = p(u). We shall use a semi-smooth Newton approach to solve (17). For
this purpose it is convenient to recall the following definition and superlinear
convergence result from Hintermüller, Ito and Kunisch (2002).
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Definition 1 Let X and Z be Banach spaces and D ⊂ X an open subset. The
mapping F : D → Z is called Newton differentiable on the open subset U ⊂ D
if there exists a generalized derivative G : U → L(X,Z) such that

lim
h→0

1

|h|X
|F (x + h) − F (x) −G(x+ h)h|Z = 0,

for every x ∈ U.

Proposition 1 If x∗ is a solution of F (x) = 0, F is Newton differentiable
in an open neighborhood U containing x∗ with generalized derivative G. If
{|G(y)−1|L(Z,X) : y ∈ U} is bounded, then the Newton iterations

xk+1 = xk −G(xk)−1F (xk)

converge superlinearly to x∗, provided that |x0 − x∗|X is sufficiently small.

We shall apply Proposition 1 with X = L2(Ω̂,Rm) and Z = L2(Ω̂,Rl) ×
L2(Ω̂, kerC). To define a generalized derivative of F in the sense of Definition
1 we first introduce a generalized derivative for max : L2(Ω̂,Rl) 7→ L2(Ω̂,Rl) by
setting

(Gmϕ(x))i =

{
1 if ϕ(x)i > 0

0 if ϕ(x)i ≤ 0.
(18)

From Hintermüller, Ito and Kunisch (2002) it is known that max : Lq(Ω̂,Rl)
7→ L2(Ω̂,Rl) is Newton differentiable with generalized derivative given by (18)
if q > 2. We henceforth assume that

h→ p(h) is continuous from L2(Ω̂; Rm) to Lq(Ω; Rn), for some q > 2. (19)

For Example 1, p ∈ H1
0 (Ω,Rm), which embeds continuously into Lq(Ω,Rm) for

q ≤ 2m
m−2 , and hence (19) is satisfied for any dimension of Ω.

Note that h→ p(h) is affine and is given as the solution to

e(y, h) = f and e⋆
yp = −J ′(y). (20)

As a generalized derivative for F we choose

GF (u)h =

{
αCh+D−1Ce⋆

up
′(h) −Gm(−D−1Ce⋆

up(u) − αψ)D−1Ce⋆
up

′(h)

αPh+ Pe⋆
up

′(h),

(21)

where GF ∈ L(L2(Ω̂; Rm), L2(Ω̂; Rl) × L2(Ω̂; Rm)), and p′(h) is the solution to

e(v, h) = 0,

e⋆
yp

′(h) = −Qv.
(22)
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Utilizing (19) and a chain rule argument it is by now quite standard that GF (u)
defines a Newton derivative for F on L2(Ω̂; Rm), Ito and Kunisch (2004).

To show local superlinear convergence of the semi-smooth Newton method
it remains to argue that GF ∈ L(L2(Ω̂,Rm), L2(Ω̂,Rl) × L2(Ω̂,Rm)) admits a
uniformly bounded inverse for all u in a neighborhood U(u∗) of u∗.

This will imply the following theorem.

Theorem 3 Let Assumptions 1 and 2 hold and let C : R
m → R

l be surjective.
Then the semi-smooth Newton method applied to F (u) = 0, with F given in (17)
and generalized derivative GF (u) as in (21) converges locally superlinearly.

Proof. It remains to analyze uniform bounded invertibility of GF (u). We define
for i = 1, . . . , l

Ãi = {x ∈ Ω̂ : (−D−1Ce⋆
up(u) − αψ)i(x) > 0} and Ĩi = Ω̂\Ãi.

and the diagonal matrix valued function χ
Ã
∈ L2(Ω̂,Rm×n) with

(χ
Ã

)i,i = χ
Ãi for i = 1, . . . , l, and (χ

Ã
)i,j = 0, for i 6= j,

and analogously for χ
Ĩ
. Then, for u ∈ L2(Ω̂,Rm) and (f1, f2) ∈ L2(Ω̂,Rl) ×

L2(Ω̂, ker(C)) the equation

GF (u)h = (f1, f2),

for h ∈ L2(Ω̂,Rm) can be expressed as





αχ
Ã
Ch = χ

Ã
f1

αχ
Ĩ
Ch+ χ

Ĩ
D−1Ce⋆

up
′(h) = χ

Ĩ
f1

αPh+ Pe⋆
up

′(h) = f2.

(23)

Observe that the dependence of this equation on u appears through Ãi and Ĩi.
To argue the existence of a solution h to (23) and continuous dependence on

(f1, f2) we consider the following auxiliary problem





min Ja(v, h) = 1
2 (v,Qv)Y + α

2 |χĨ
(C h− g1)|2L2(Ĩ,Rl)

+ α
2 |Ph− g2|2U

subject to:

e(v, h) = 0

χ
Ã
Ch = χ

Ã
g1

(24)

where (g1, g2) = ( 1
α
f1,

1
α
f2) ∈ L2(Ω̂,Rl) × L2(Ω̂, ker(C)), where ker(C) ⊂ R

m

and dimker(C) = m− l. This is a linear quadratic optimization problem of the
form






min
(v,h)∈Y ×U

Ja(v, h)

subject to:

E(v, h) = 0,

(25)
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with equality constraint E : Y × U → Y ′ × ⊗l
i=1 L

2(Ãi,R) given by

E(v, h) =

(
e(v, h)

χ
Ã

(C h− g1)

)
.

The kernel of the linearized equality constraints E ′ is given by

ker(E ′) = {(v, h) ∈ Y × U : χ
Ã
Ch = 0, e(v, h) = 0}.

For the Hessian of Ja we find

J ′′
a (δv, δh)2 = (δv,Q δv)Y + α|χ

Ĩ
C δh|2

L2(Ĩ,Rl)
+ α|P δh|2U

and hence for (δv, δh) ∈ ker(E ′)

J ′′
a (δv, δh)2 ≥ α

∫

Ω̂

|C δh|2 + α

∫

Ω̂

|P δh|2.

Since C is surjective, there exists a constant K̄ > 0, such that

J ′′
a (δv, δh)2 ≥ αK̄|δh|2U for all (δv, δh) ∈ ker (E ′) (26)

independently of u. By Assumption 1, there exists K ≥ 1 such that

|δv|Y ≤
√
K |δh|U

for all (δv, δh) satisfying e(δv, δh) = 0. Combined with (26) this implies that

J ′′
a (δv, δh)2 ≥ αK̄

2K
|(δv, δh)|2Y ×U for all (δv, δh) ∈ ker (E ′), (27)

where, without loss of generality, we assume that K ≥ 1.
By Assumption 1 and surjectivity of C the linearization E ′ : Y × U →

Y ′ ×
⊗l

i=1 L
2(Ãi,R) is surjective. These properties of J and E imply the

existence of a unique solution (v∗, h∗) ∈ Y × U of (24) as well as of (p∗, µ∗),
such that the Lagrangian

L : Y × U × Y ×
l⊗

i=1

L2(Ãi,R),

given by

L(v, h, p, µ) = Ja(v, h) + 〈p, e(v, h)〉Y,Y ′ + (µ, χ
Ã

(C h− g1))L2(Ã,Rl)

with L2(Ã,Rl) :=
⊗l

i=1 L
2(Ãi,R), is stationary at (v∗, h∗, p∗, µ∗), i.e.

{
L′(v∗, h∗, p∗, µ∗) = 0

E(v∗, h∗) = 0,
(28)
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where L′ denotes the derivative of L with respect to (v, h). This is equivalent to






e(v∗, h∗) = 0,

e⋆
yp = −J ′

a(v∗),

χ
Ã

(C h∗ − g1) = 0,

αCTχ
Ĩ
(C h∗ − g1) + α(Ph∗ − g2) + e⋆

up
∗ + CTχ

Ã
µ∗ = 0.

(29)

Projecting the last equation in (29) with respect to P and I−P =CT (C CT )−1C,
we obtain the equivalent system






e(v∗, h∗) = 0,

e⋆
yp

∗ = −J ′
a(v∗)

χ
Ã

(C h∗ − g1) = 0,

αχ
Ĩ
Ch∗ + χ

Ĩ
D−1Ce⋆

u p
∗ = αχ

Ĩ
g1

χ
Ã
µ∗ + χ

Ã
D−1Ce⋆

up
∗ = 0

αPh∗ + Pe⋆
up

∗ = α g2.

(30)

Using (22) this implies the existence of a solution to (23), with (g1, g2) =
( 1

α
f1,

1
α
f2). The solution (v∗, h∗, p∗, µ∗) to (30) depends linearly on (g1, g2).

We next argue that this dependence is continuous, independently of Ã, Ĩ, i.e.
independently of u ∈ U .

Continuous dependence of the solutions to

{
L′(v, h, p, µ) = 0,

E(v, h) = 0
(31)

or equivalently of the solution to (30) with respect to (g1, g2) ∈ L2(Ω̂,Rl) ×
L2(Ω̂, ker(C)) can be argued with techniques which are quite standard by now,
see e.g. Alt (1983), Ito and Kunisch (1992). From these general results it is
not immediate to conclude the required uniformity of the bound for the in-
verse of GF (u) with respect to u, however. For this reason and for the sake of
completeness, we include the proof.

System (31) can be equivalently expressed as

{
J ′′

a (v, h) + (E ′)⋆(p, µ) = (0, αCT χ
Ĩ
g1 + αg2)

T

Y ′×L2(Ω̂,Rm)

E ′(v, h) = (0, χ
Ã
g1)

T .
(32)

Since neither J ′′
a nor E ′ depend on the point where the derivatives are taken, we

only indicate the direction, in which J ′′
a and E ′ are evaluated. By Assumption 1

and surjectivity of C, the operator E ′ : Y ×U → Y ∗ ×⊗m
i=1 L

2(Ãi,R) given by

E ′(v, h) =

(
e(v, h)
χ
Ã
C h

)
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is surjective. Hence range((E ′)⋆) is closed and the decomposition

(v, h) = (vk, hk) + (vr, hr) ∈ ker(E ′) ⊕ range((E ′)⋆)

is well defined. Throughout the remainder of the proof Ki denote constants,
which are independent of u ∈ U , α > 0 and (g1, g2) ∈ L2(Ω̂,Rl)×L2(Ω̂, ker (C)).
From the second equation in (32) we obtain that χAChr = χAg1, which im-
plies that |hr|L2 ≤ K2|g1| (since χAC is invertible on range((E ′)⋆)). Also since
(vr, hr) satisfies equation e(vr, hr) = 0, we obtain from Assumption 1 that there
exists K1 such that

|(vr, hr)|Y ×U ≤ K1|g1|L2(Ω̂,Rl). (33)

Since E ′ is surjective, (E ′)⋆ is continuously invertible on its range. Hence the
first equation in (32) implies that for some K2

|(p, µ)|Y ×L2(Ã,Rl) ≤ K2(|(v, αh)|Y ×U +α|(g1, g2)|L2(Ω̂,Rl)×L2(Ω̂,ker (C))). (34)

Using (27) and (32) we find

αK̄

2K
|(vk, hk)|2Y ×U ≤ 〈J ′′

a (vk, hk), (vk, hk)〉

= 〈J ′′
a (v, h), (v, h)〉 − 2〈J ′′

a (vk, hk), (vr , hr)〉 − 〈J ′′
a (vr , hr), (vr , hr)〉

= α(χ
Ĩ
g1, χĨ

Ch)
L2(Ω̂,Rl) + α(g2, h)L2(Ω̂,Rm)

−(µ, χ
Ã
g1)L2(Ã,Rl) − 2〈J ′′

a (vk, hk), (vr , hr)〉 − 〈J ′′
a (vr, hr), (vr, hr)〉

≤ α(χ
Ĩ
g1, χĨ

Ch)L2(Ω̂,Rl) + α(g2, hk)L2(Ω̂,Rm) + α(g2, hr)L2(Ω̂,Rm)

−(µ, χ
Ã
g1)L2(Ã,Rl) − 2〈J ′′

a (vk, hk), (vr, hr)〉. (35)

From (33) and (34) we deduce that there exist K3 and K4 such that

(µ, χ
Ã
g1)L2(Ã,Rl) ≤ K3α(|g1|2 + |g2|2 +

1

α2
|g1|2) +

αK̄

8K
|hk|2

and

2〈J ′′
a (vk, hk), (vr , hr)〉 ≤ K4α(|g1|2 +

1

α2
|g1|2) +

αK̄

8K
|vk|2.

These estimates imply

αK̄

2K
|(vk, hk)|2Y ×U ≤ α|C|Rl×m |g1|(|hk| + |hr|) + α|g2||hk|

+ α|g2||hr| + α(K3 +K4)(|g1|2 + |g2|2 +
1

α2
|g1|2) +

αK̄

4K
|(vk, hk)|2Y ×U .
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Taking also into account (33) we conclude that there exists K5 such that

|(vk, hk)|2Y ×U ≤ K5(|g1|2 + |g2|2 +
1

α2
|g1|2),

and therefore

|(v, h)|Y ×U ≤ 1

α
K6(|f1|L2(Ω̂,Rl) +

1

α
|f1|L2(Ω̂,Rl) + |f2|L2(Ω̂,ker C)).

This estimate implies the desired a-priori bound on the inverse of GF (u) uni-
formly. Moreover, this bound decreases as α increases.

As announced in the introduction, we now turn to the semi-smooth Newton
iteration applied to F (u) = 0 and explain its relationship to the primal-dual
active set method.

Algorithm 1 (Semi-smooth Newton method)
1. Initialize u0, set k = 0
2. Solve GF (uk)δuk = −F (uk).
3. Set uk+1 = uk + δuk.
3. Solve e(y, uk+1) = f for yk+1.
4. Solve e⋆

yp = −J ′(yk+1) for pk+1 = p(uk+1).
5. Stop or set k = k + 1, goto 2.

Note that GF (uk) depends, besides p(uk), also on p′(δuk), which is the solution
to

e(δy, δuk) = 0, e⋆
yp

′(δuk) = −J ′(δy). (36)

Setting

Ak
i = {x ∈ Ω̂ : −(D−1Ce∗u pk + αψ)i > 0}, Ik

i = Ω̂\Ak
i ,

step 2. can equivalently be expressed as





αχAkC δuk = −αχAk(Cuk − ψ),

αχIkC δuk + χIkD−1Ce⋆
up

′(δuk) = −αχIkCuk − χIkD−1Ce⋆
up(uk)

αPδuk + Pe⋆
up

′(δuk) = −αPuk
− Pe⋆

up(uk).

(37)

Utilizing (36) and yk+1 = yk + δyk, pk+1 = pk + p′(δuk) the Newton step
(37) can equivalently be expressed as






e(yk+1, uk+1) = f, e⋆
y pk+1 = −IY J ′(yk+1),

χAkCuk+1 = χAkψ,

αχIkCuk+1 + χIkD−1Ce⋆
upk+1 = 0

αPuk+1 + Pe⋆
upk+1 = 0.

(38)
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Note that (38) is the necessary and sufficient optimality system for






min J(y) + α
2 |Cu|2L2(Ω̂,Rl) + α

2 |Pu|2U
subject to

e(y, u) = f

χAk
Cu = χAk

ψ a.e.

(39)

If we introduce a Lagrange multiplier λk ∈ L2(Ak,R
l) associated to the con-

straint χAk
Cu = χAk

ψ, then line 3 of the optimality system can be replaced
by

αCuk+1 +D−1Ce⋆
upk+1 + χAkλk+1 = 0. (40)

Let us extend (λk+1)i by 0 on (Ik)i. Then

λk+1 + α(Cuk+1 − ψ) = −D−1Ce⋆
upk+1 − αψ.

The expression on the right hand side determines the active/inactive sets in
(38). The expression on the left is used in the primal-dual active set method,
see Hintermüller, Ito and Kunisch (2002), with α replaced by any c > 0, where
the active sets are determined on the basis of

Âk
i = {x ∈ Ω̂ : (λk+1 + α(Cuk+1 − ψ))i > 0}.

We have just seen that Âk
i and Ak

i coincide for the choice α = c, and it can be
argued as in Bergounioux, Ito and Kunisch (1999) that this is also the case for
arbitrary c 6= α, after the initialization phase, with k ≥ 1.

Algorithm 2 (Primal dual-active set strategy)
1. Initialize p0 and set k = 0.
2. Set Ai

k = {x : −(D−1Ce⋆
upk + αψ)i(x) > 0} and Ii

k = Ω̂\Ai
k.

3. Solve (39) (or equivalently (38)) for (yk+1, uk+1, pk+1).

4. Update λk+1 =

{
0 on Ik

−αψ −D−1Ce⋆
u pk+1 on Ak

.

5. Stop or set k = k + 1, goto 2.

The λ−update is not explicitly needed for Algorithm 2 but it will be convenient
for later reference. The initialization p0 need not correspond to the adjoint state
at u0. If it does, the Algorithms 1 and 2 coincide.

4. Global convergence

In this section, we give a sufficient condition for the convergence of Algorithm 2,
respectively Algorithm 1 from arbitrary initial data.
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Theorem 4 Suppose that Assumption 1 holds and that C is surjective. If α
is sufficiently large, then the iterates (yk, uk, pk) converge in Y × U × Y to
(y(u∗), u∗, p(u∗)) as k → ∞, for arbitrary initialization p0 ∈ Y.

Proof. We can follow a procedure developed in Ito and Kunisch (2004), adapted
to the present situation. Let k ≥ 1. For v ∈ L2(Ω̂,Rl), w ∈ L2(Ω̂,Rl) we use
the notation

v = w on Ak−1 ∩Ak

if vi(x) = wi(x) for all x ∈ Ak−1
i ∩ Ak

i , i = 1, . . . , l, and analogously for other
combinations of active and inactive sets. For two consecutive iterates of controls
we have

Cuk+1 − Cuk =






0 on Ak−1 ∩ Ak

ψ − Cuk on Ik−1 ∩ Ak

− 1
α
D−1Ce⋆

u(pk+1 − pk) + 1
α
λk on Ak−1 ∩ Ik

− 1
α
D−1Ce⋆

u(pk+1 − pk) on Ik−1 ∩ Ik,

where, as above pk = p(uk). Therefore

Cuk+1 − Cuk = − 1

α
χIk

D−1Ce⋆
u(pk+1 − pk) +Rk (41)

where

Rk =






0 on Ak−1 ∩ Ak

ψ − Cuk ≤ 0 on Ik−1 ∩ Ak

1
α
λk ≤ 0 on Ak−1 ∩ Ik

0 on Ik−1 ∩ Ik.

(42)

We next estimate two consecutive adjoint states:

|p′(uk+1 − uk)|Y ≤ |e⋆
u|L(Y,U)|(e⋆

y)−1|L(Y ∗,Y )|Q|L(Y )|yk+1 − yk|Y ,

where yk = y(uk). Consequently

|p′(uk+1 − uk)|Y ≤ K1|uk+1 − uk|U ,

where

K1 = |eu|L(U,Y ∗)|e−1
y |2L(Y ∗,Y )|Q|L(Y ). (43)

Hence there exists a constant K2 = K2(K1, C) such that

|pk+1−pk|Y = |p′(uk+1−uk)|Y ≤ K2

(
|Cuk+1−Cuk|L2(Ω̂,Rl) + |P (uk+1−uk)|U

)

≤ K2

α
|eu|L(U,Y ∗)(|D−1C|Rl×m + 1)|pk+1 − pk|Y +K2|Rk|L2(Ω̂,Rl).
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Let K3 = K2|eu|L(U,Y ∗)(|D−1C|Rl×m + 1) and assume that

α ≥ 2K3. (44)

Then we have the estimate

|p′(uk+1 − uk)|Y ≤ αK2

α−K3
|Rk|L2(Ω̂,Rl) ≤ 2K2|Rk|L2(Ω̂,Rl). (45)

Let us define M : U × L2(Ω̂,Rl) → R by

M(u, λ) = α2

∫

Ω̂

|max(0, Cu− ψ)|2dx+

∫

Ω̂

|min(0, λ)|2dx.

By (42) and (45) we have

|p′(uk+1 − uk)|2Y ≤ 4K2
2

α2
M(uk, λk). (46)

To estimate M(uk, λk) note that on Ak

λk+1 = −D−1Ce⋆
up

′(uk+1 − uk) −D−1Ce⋆
up(uk) − αψ

and hence by (38)

λk+1 = −D−1Ce⋆
up

′(uk+1 − uk) +

{
λk > 0 on Ak−1 ∩ Ak

α(Cuk − ψ) > 0 on Ik−1 ∩ Ak.

Since λk+1(x) = 0 on Ik we find

∫

Ω̂

|min(0, λk+1)|2dx ≤ |D−1C|2
Rl×m |eu|2L(U,Y ∗)|p′(uk+1 − uk)|2Y . (47)

Similarly on Ik

Cuk+1 − ψ = − 1

α
D−1Ce⋆

up
′(uk+1 − uk) − 1

α
D−1Ce⋆

upk − ψ

and thus

Cuk+1 −ψ = − 1

α
D−1Ce⋆

up
′(uk+1 − uk) +

{
1
α
λk ≤ 0 on Ak−1 ∩ Ik

Cuk − ψ ≤ 0 on Ik−1 ∩ Ik.

Since Cuk+1 = ψ on Ak we have

∫

Ω̂

|max(0, Cuk+1 − ψ)|2dx ≤ 1

α2
|D−1C|2

Rl×m |eu|2L(U,Y ∗)|p′(uk+1 − uk)|2Y ,
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and combined with (47)

M(uk+1, λk+1) ≤ 2|D−1C|2
Rl×m |eu|2L(U,Y ∗)|p′(uk+1 − uk)|2Y ,

and (46)

M(uk+1, λk+1) ≤
ρ2

α2
M(uk, λk), k = 1, 2, . . . (48)

where ρ =
√

8|D−1C|Rl×m |eu|L(U,Y ∗)K2. Then

M(uk+1, λk+1) ≤
( ρ
α

)2k

M(u1, λ1),

and hence {pk}∞k=1 is a Cauchy sequence in Y , provided that α > ρ. Thus, there
exists p∗ ∈ Y such that limk→∞ pk = p∗ in Y and by the last equation in (38)
there exists u∗ker ∈ L2(Ω̂, kerC) such that

lim
k→∞

Puk = u∗ker in U.

Since Ak
i = {x : (−D−1Ce⋆

upk − αψ)i > 0}, i = 1, . . . , l,

λk+1 = max(0,−D−1Ce⋆
upk − αψ) + χAkD−1Ce⋆

u(pk+1 − pk).

We conclude that {λk} converges in L2(Ω̂,Rl) to some λ∗ ∈ L2(Ω̂,Rl) and

λ∗ = max(0,−D−1Ce⋆
up

∗ − αψ). (49)

Since αCuk = −D−1Ce⋆
upk − λk for all k and since the expression on the

right hand side converges in L2(Ω̂,Rl), there exists uker⊥ ∈ L2(Ω̂, kerC⊥) such
that

lim
k→∞

(I − P )uk = uker⊥

and

αCuker⊥ +D−1Ce⋆
up

∗ + λ∗ = 0.

Moreover, limk→∞ uk = uker + uker⊥ .
For y∗ = limk→∞ y(uk) it follows that (y∗, u∗, p∗, λ∗) is the unique solution

to the optimality system (4)–(7)

5. Nonlinear case

In this section we consider some cases in which the operator e : Y × U → Y ′ is
not necessarily linear in both variables and turn to nonlinear operators of the
form:

e(y, u) = e1(y) + e2u, (50)

with e2 a compact linear operator from U to Y ′ and e1 : Y → Y ′ satisfies the
following conditions.
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Assumption 3 There exists a neighborhood V (y∗) of the optimal state y∗ such
that:

a) e1 : Y → Y ′ is twice Frechet differentiable in V (y∗).
b) e′1(y) is continuously invertible for each y ∈ V (y∗).
c) e′′1 is Lipschitz continuous in V (y∗), i.e., there exists a constant L > 0

such that

|e′′1(ȳ) − e′′1(y∗)|L(Y ×Y,Y ′) ≤ L|ȳ − y∗|Y , for ȳ ∈ V (y∗). (51)

These regularity requirements are needed for first and second order optimality
conditions as well as for the convergence analysis of the semi-smooth Newton
method.

Example 5 Let Ω ⊂ R
m, m ≤ 3, be a bounded domain. Consider the stationary

Navier-Stokes equations

−ν∆y + (y · ∇)y + ∇p = u in Ω

div y = 0 in Ω

y = 0 on ∂Ω,

with (y · ∇)y =
∑m

i=1 yi∂iy, Y = {H1
0 (Ω,Rm) : div y = 0}, U = L2(Ω,Rm) and

the remaining data as in Example 1. The operator e1 is given by

e1 : Y → Y ′ (52)

y 7→ ν(∇y,∇·)U − ((y · ∇)y, ·)U . (53)

It can be easily verified that the operator e1 is twice Frechet differentiable with
its first and second derivatives given by

e′1(y)w = ν(∇w,∇·)U + ((w · ∇)y + (y · ∇)w, ·)U and e′′1(y)[w]2

= (2(w · ∇)w, ·)U ,

respectively. Condition (51) follows immediately from the expression for the
second derivative. To verify the surjectivity e′1(y) let us consider the linearized
equation

e′1(y)w = ν(∇w,∇·)U + ((w · ∇)y + (y · ∇)w, ·)U = 〈g, ·〉Y ′,Y , (54)

with g ∈ Y ′. We assume that ν is sufficiently large so that

ν >M(y∗) := sup
v∈Y

∣∣((v · ∇y∗), v)L2(Ω)

∣∣

|v|2Y
.

It can be argued that there exists a neighborhood V (y∗) ⊂ Y of y∗ such that
this inequality remains correct with y∗ replaced by y ∈ V (y∗). Then there exists
a unique solution wg to the linearized equation (54) associated with g for each
y ∈ V (y∗). From the bijectivity of e′1(y) the continuous invertibility follows.
Summarizing, Assumption 3 holds for this problem.
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Similar to the linear case we assume that for every u ∈ U, there exists a
locally unique y = y(u) ∈ Y such that e(y, u) = 0. Moreover, we assume that
the corresponding optimal control problem






min J(y) + α
2 |Cu|2L2(Ω̂,Rl) + α

2 |Pu|2U
subject to

e1(y) + e2u = 0

Cu ≤ ψ a.e.,

(55)

has a local solution (y∗, u∗) ∈ Y ×U . The differentiability of the control to state
mapping in a neighborhood of the optimal solution follows from Assumption 3
and the implicit function theorem. From hypothesis b) in Assumption 3 the
surjectivity of e′1(y) follows. Therefore a first order necessary condition for (55)
is given by

(αCTCu∗ + αPu + e⋆
up, u− u∗) ≥ 0, (56)

for all u ∈ L2(Ω̂,Rm) satisfying Cu ≤ ψ, where
{

e(y∗, u∗) = 0

(e′1(y
∗))⋆p = −J ′(y∗).

(57)

Proceeding as in the proof of Theorem 2, it can be shown that the first order
necessary condition can be equivalently expressed as the following optimality
system,

e(y∗, u∗) = 0 (58)

(e′1(y
∗))⋆p = −J ′(y∗) (59)

αCTCu∗ + αPu∗ + CTλ+ e⋆
up = 0 (60)

Cu∗ ≤ ψ, λ ≥ 0, λT (Cu∗ − ψ) = 0 a.e. in Ω̂. (61)

For the subsequent analysis let us next introduce the Lagrangian

L(y, u, p) = J (y, u) + 〈p, e(y, u)〉Y,Y ′ .

We consider the following cone of critical directions

K(u∗) =

{
v ∈ U : (Cjv)(x)

{
= 0 if λj(x) 6= 0

≤ 0 if (Cu∗)j = ψj and λj(x) = 0

}
.

A second order sufficient optimality condition is stated next. The result uti-
lizes the critical cone K(u∗), which does not involve strongly active constraints.
Moreover, sufficient optimality is obtained without the use of a two-norm dis-
crepancy argument. Rather a technique based solely on a second order opti-
mality condition and the structure of the cost functional is used. The technique



1236 J. C. DE LOS REYES, K. KUNISCH

was previously applied in Casas, Mateos and Raymond (2007) to the optimal
control of the Navier-Stokes equations with box constraints and in Casas, De
Los Reyes and Tröltzsch (2008) to semilinear state constrained optimal control
problems.

For some work concerning second order conditions for control problems with
special kinds of control constraints we refer to Bonnans (1998), Dunn (1995).
In the cited papers, constraints of the type u(x) ∈ U , with U independent of x
and polygonal, are considered.

In Wachsmuth (2006) second order sufficient conditions for control problems
with quadratic cost functionals and more general convex control constraints
are studied. The result is based on the direct approach used in, e.g., Tröltzsch
(2005), which includes strongly active constraints in the definition of the critical
cone. Moreover, the result involves the classical two-norm discrepancy resulting
from the residuum estimates.

In our case, due to the contradiction argument (see Casas et al., 2007, 2008),
the strongly active constraints may be avoided. Additionally, the proof tech-
nique, together with the quadratic structure of the cost functional, allows us to
obtain a sufficient optimality condition without the two-norm discrepancy. The
complete proof of the following result is given in the Appendix.

Theorem 5 Suppose that Assumption 3 holds and let (y∗, u∗, p∗) be a solution
of the necessary condition (56)-(57). Suppose that there exists a constant κ > 0
such that

α

∫

Ω̂

|C h|2 + α

∫

Ω̂

|P h|2 + (v,Qv) + (p∗, e′′1(y∗)[v]2) ≥ κ |h|2U (SSC)

holds for every pair (v, h) ∈ Y ×K(u∗), (v, h) 6= (0, 0) that solves the linearized
equation

e′1(y
∗)v + euh = 0. (62)

Then there exist ε > 0 and δ > 0 such that

J(y∗, u∗) +
δ

2
|u− u∗|2U ≤ J(y, u),

for every feasible pair (y, u) such that |u− u∗|U ≤ ε.

Let us now turn to the analysis of semi-smooth Newton methods applied to
(58)-(61). Let us hereafter assume that C is surjective. From the optimality
system we obtain that

λ(x) = −
(
αCu∗ +D−1Ce⋆

up
)
(x).

The system can then be expressed as the operator equation

F (u) =

(
αCu +D−1Ce⋆

up(u) + max(0,−D−1Ce⋆
up(u) − αψ)

αPu + Pe⋆
up(u)

)
= 0. (63)
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The generalized derivative of F at u is given byGF ∈ L(L2(Ω̂; Rm), L2(Ω̂; Rl)
×L2(Ω̂; Rm)) with

GF (u)h=
(
αCh+D−1Ce⋆

up
′(u;h)−Gm(−D−1Ce⋆

up(u)−αψ)D−1Ce⋆
up

′(u;h)
αPh+ Pe∗up

′(u;h)

)
,

(64)

where p′(u;h) is solution of
{
e′1(y)y

′ + euh = 0

e⋆
y(y)p′(u;h) = −J ′(y′) − ((e′1)

⋆)′(p(u), y′).
(65)

For the subsequent analysis the following additional hypotheses are used:

u→ e∗up(u) is Frechet differentiable from L2(Ω̂; Rm) to Lq(Ω; Rn),

for some q > 2. (H1)

e′1(y)
⋆ is uniformly continuously invertible in V (y∗). (H2)






any solution (v, h) ∈ Y × U of the linearized equation

e′1(y)v + e2h = 0 satisfies, for y ∈ V (y∗), the estimate

|v|Y ≤
√
K|h|U , with K independent of y.

(H3)

Hypothesis (H1) guarantees Newton differentiability of the operator equation
(63).

The following stronger second order condition is also assumed to hold: there
exists a constant κ > 0 such that

α

∫

Ω̂

|C h|2 + α

∫

Ω̂

|P h|2 + (v,Qv) + (p(u∗), e′′1 (y∗)[v]2) ≥ κ|h|2U (SSC’)

holds for every pair (v, h) ∈ Y × U that solves the linearized equation (62).

Theorem 6 Let C : R
m → R

l be surjective and let Assumption 3, (H1), (H2),
(H3) and (SSC’) hold. Then the semi-smooth Newton method applied to F (u) =
0, with F given in (63) and generalized derivative GF (u) as in (64) converges
locally superlinearly.

Proof. The proof is given in the Appendix.

A complete semi-smooth Newton step for problem (55) is then given by the
following algorithm.

Algorithm 3 (Semi-smooth Newton method for nonlinear problems)

1. Initialize, u0, k = 0
2. Solve GF (uk)δuk = −F (uk).
3. Set uk+1 = uk + δuk.
3. Solve e(y, uk+1) = f for yk+1.
4. Solve (ey(yk))⋆p = −J ′(yk+1) for pk+1 = p(uk+1).
5. Stop or set k = k + 1, goto 2.
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6. Numerical experiments

In this section we test the efficiency of Algorithm 2 for solving optimal control
problems governed by the Stokes equations in the presence of different affine
constraints. The domain Ω = (0, 1)2 was discretized using a uniform triangu-
lar mesh. Boundary conditions of Dirichlet type were imposed. On the upper
boundary the horizontal velocity takes the value one, while the vertical compo-
nent is zero. On the remaining boundary the condition is of no slip type. This
problem is referred to as "driven cavity flow".

For the numerical solution of the state and adjoint equations a finite element
method was used. Taylor-Hood elements with quadratic basis functions for
the velocity and linear functions for the pressure were employed on a uniform
triangular mesh. For this type of elements, the following estimates are known
to hold, Gunzburger (2000): if y ∈ Hm(Ω) ∩H1

0(Ω) and p ∈ Hm−1(Ω)∩L2
0(Ω),

m = 2, 3, then

|y − yh|H1

0

= O(hm−1), |y − yh|L2 = O(hm), |p− ph|L2 = O(hm−1).

For the solution of the discretized systems appearing in each semi-smooth
Newton step a penalty method was applied (see Gunzburger, 2000, p.125). This
method considers, for 0 < ε << 1, the modified Stokes system

(
A BT

B εI

) (
~Y
~P

)
=

(
F
0

)
,

where A and B are the matrices resulting from the discretization of the Stokes
equations, I is the identity matrix and ~Y , ~P are the solution vectors for the
velocity and pressure, respectively. A similar penalty scheme was used for the
adjoint equations. For convergence results on this approach we refer to Gun-
zburger (2000).

The semi-smooth Newton algorithm stops if the L2-residuum of the dis-
cretized control is lower than a given tolerance, typically set as 10−5. The
method is initialized setting the controls equal to 0 and solving successively the
Stokes and the adjoint equations. With this values at hand, the active and
inactive sets are determined for the first iteration.

We introduce the quantities

̺k = |uk − uk−1|L2

h

, ϑk =
|uk − uk−1|L2

h

|uk−1 − uk−2|L2

h

for the evaluation of the increment and the convergence rate, respectively. For
the discrete cost functional evaluation, the mass matrix from the finite element
discretization is used.

The resulting linear systems in each SSN iteration were solved using Matlab
exact solver. All algorithms were implemented in Matlab 6.3 and run on a
Pentium 5 machine with a precision of eps = 2.2204e− 016.
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6.1. Example 1

First, we consider the optimal control problem (1) with

C =

(
1 0
1 1

)
and ψ =

(
0.05
0.02

)

as constraint matrix and vector respectively. The correspondent projection ma-
trix is given by P = 0 and the desired state by zd ≡ 0. The remaining parameter
values are α = 0.01 and ε =

√
eps.

With a mesh step size h = 1/400, the algorithm stops after 4 iterations. The
sizes of the resulting active sets are 648 and 598 for the first and the second con-
straints, respectively. The constraints and the correspondent multipliers for the
optimal solution are depicted in Fig. 1. From the graphics the complementarity
condition can be verified by inspection.

Figure 1. Polygonal constraints and their multipliers

In Table 1 the convergence history is documented. From the data, superlin-
ear rate of convergence can be inferred. Also a monotonic decrease of the cost
functional value can be observed.

The sensitivity of the semi-smooth Newton method with respect to changes
in the matrix coefficients was also tested. We considered the parameter depen-
dent matrix

C =

(
−1 0
1 γ

)



1240 J. C. DE LOS REYES, K. KUNISCH

Table 1. Example 1, α = 0.01, 400 mesh points.

Iteration | A1
k | | A2

k | J(y, u) ̺k ϑk

1 0 0 0.032628 - -
2 883 755 0.032362 0.283736 -
3 647 598 0.032361 0.015507 0.0546537
4 648 598 0.032361 5.7025e-7 0.0000367

Table 2. Example 1, α = 0.01, 225 mesh nodes.

γ it. with step 2. it. with step 2’.
1000 4 4
100 4 4
10 4 no convergence
1 4 no convergence

0.1 5 no convergence
0.01 8 no convergence
0.001 11 no convergence

and studied the behavior of the algorithm with respect to changes of the pa-
rameter γ. As γ → 0+ the opening angle of the cone of admissible directions
tends to zero.

In the second column of Table 2 the number of iterations for different γ values
is tabulated. As γ decreases a moderate increase of the number of iterations is
required to achieve convergence.

In order to realize the importance of using matrix C in the control cost term,
a semi-smooth Newton algorithm with the cost functional

Ĵ (y, u) = J(y) +
α

2
|u|2

L2(Ω̂,Rm)

was also implemented. In this case, the optimality condition is given by

αu+ CTλ+ e⋆
up = 0,

which implies that

αCu+Dλ+ Ce⋆
up = 0.

Consequently,

λ+ α(Cu − ψ) = −αD−1Cu−D−1Ce⋆
up+ α(Cu − ψ),

and, therefore, step 2. in Algorithm 2 has to be replaced by
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2’. Set Ai
k+1 = {x : [−αD−1Cuk −D−1Ce⋆

upk + α(Cuu − ψ)]i(x) > 0} and

Ii
k+1 = Ω̂\Ai

k+1.

Without C in the cost functional the algorithm diverges unless γ is large
enough. This phenomenon can be noted from the last column in Table 2. Note
that the large values of γ correspond to small values of the the angle between
the two inequality constraints.

6.2. Example 2

In this example we consider the matrix C = (1, 1) and the right hand side bound
ψ = 0.05, which corresponds to the constraint u1 +u2 ≤ 0.05. For this problem,
the projection matrix is given by

P =
1

2

(
1 −1
−1 1

)
.

The constraint, evaluated at the optimal control, and its multiplier, are depicted
in Fig. 2. The regularization parameter α = 0.01 and the desired state zd ≡ 0
were utilized in this case.

In Table 3 the number of iterations and the value of the cost functional for
different values of α are presented. More iterations are needed as α becomes
smaller. The mesh independence behavior of the method was also tested. From
the data in Table 4 a mesh independent behavior of the method can be observed.

Table 3. Example 2, 225 mesh points.

α it. J(y, u) Active points
0.1 4 0.0323742 0
0.01 4 0.0320779 288
0.001 4 0.0298277 440
0.0001 5 0.0225571 455
0.00001 7 0.0155221 439

Table 4. Example 2: number of iterations vs. mesh size; α = 0.01.

1/h 5 10 15 20 25
it. 4 4 4 4 4

To verify the global convergence of the method, tests with different initial
values were carried out. Apart from the initial control value (u0

1, u
0
2) = (0, 0)

we initialized the algorithms with the control values (0, 0.05), (−1,−1) and
(−10, 10). The number of iterations for each initialization are recorded in Ta-
ble 5. Convergence to the same solution is obtained for each initial value.
Moreover, the numbers of iterations do not differ for these particular choices.
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Figure 2. Example 2: affine constraint and its multipliers

Table 5. Example 2, number of iterations for different initial values, h = 1/121.

u0(x) (0,0) (0,0.05) (-1,-1) (-10,10)
iter. 4 4 4 4

7. Appendix

Proof. (of Theorem 5) Let us suppose that u∗ does not satisfy the quadratic
growth condition. Then there exists a feasible sequence {uk}∞k=1 ⊂ U such that

|uk − u∗|U <
1

k2
(66)

and

J(y∗, u∗) +
1

k
|uk − u∗|2U > J(yk, uk) = L(yk, uk, p

∗) for all k, (67)
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where yk denotes the unique solution of (58) associated with uk. As we define

ρk = |uk − u∗|U and hk =
1

ρk

(uk − u∗),

it follows that |hk|U = 1 and, therefore, we may extract a subsequence, denoted
also by {hk}, such that hk ⇀ h weakly in U . The proof is now given in four
steps.

Step 1: ( ∂L
∂u

(y∗, u∗, p∗)h = 0). From the mean value theorem it follows that

L(yk, uk, p
∗) +

∂L
∂y

(zk, uk, p
∗)(y∗ − yk) = L(y∗, uk, p

∗)

= L(y∗, u∗, p∗) + ρk

∂L
∂u

(y∗, wk, p
∗)hk,

where wk and zk are points between u∗ and uk and y∗ and yk, respectively. By
(67) it follows that

∂L
∂u

(y∗, wk, p
∗)hk <

1

k
|uk − u∗|U +

1

ρk

∂L
∂y

(zk, uk, p
∗)(y∗ − yk). (68)

Working on the last term we obtain

∂L
∂y

(zk, uk, p
∗) (y∗ − yk) = J ′(zk)(y∗ − yk) + 〈p∗, ey(zk)(y∗ − yk)〉Y,Y ′

= J ′(zk)(y∗ − yk) + 〈p∗, e′1(y∗)(y∗ − yk)〉Y,Y ′

+〈p∗, e′′1(y∗)(zk − y∗)(y∗ − yk)〉Y,Y ′

+〈p∗, (e′′1(ζk) − e′′1(y∗))(zk − y∗)(y∗ − yk)〉Y,Y ′ ,

with ζk = y∗ + ξ(zk − y∗), for some ξ ∈ [0, 1]. From the optimality system and
Assumption 3 we get that

∣∣∣∣
∂L
∂y

(zk, uk, p
∗) (y∗ − yk)

∣∣∣∣ ≤ |J ′(zk) − J ′(y∗)|Y ′ |y∗ − yk|Y

+|p∗|Y |e′′1(y∗)|L(Y ×Y,Y ′)|zk−y∗|Y |y∗−yk|Y +L|p∗|Y |zk−y∗|2Y |y∗−yk|Y .

Due to the quadratic nature of J and since hk ⇀ h weakly in U , wk → u∗ in U
and yk → y∗ in Y , we obtain from (68) that

∂L
∂u

(y∗, u∗, p∗)h = lim
k→∞

∂L
∂u

(y∗, wk, p
∗)hk ≤ 0. (69)

On the other hand, we know that Cuk(x) ≤ ψ(x) a.e. in Ω, which implies that

∂L
∂u

(y∗, u∗, p∗)hk = ρk

∂L
∂u

(y∗, u∗, p∗)(uk − u∗) ≥ 0, (70)
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and consequently

∂L
∂u

(y∗, u∗, p∗)h = lim
k→∞

∂L
∂u

(y∗, wk, p
∗)hk ≥ 0.

Altogether we obtain that

∂L
∂u

(y∗, u∗, p∗)h = 0. (71)

Step 2: (h ∈ K(u∗)). The set

{v ∈ U : (Cjv)(x) ≤ 0, if (Cju
∗) = ψj , λj(x) = 0, j = 1, . . . , l}

is closed and convex and, therefore, it is weakly sequentially closed. Since each
hk belongs to this set, then h also does. From the optimality condition, it follows
that −λj(x)Cjh(x) ≥ 0 for all j, a.e. in Ω, which implies that

0 =
∂L
∂u

(y∗, u∗, p∗)h = (αC∗Cu∗ + e∗up
∗, h)U

= −
l∑

i=1

∫

Ω

λj(x) Cjh(x) dx =

l∑

i=1

∫

Ω

|λj(x) Cjh(x)| dx.

Consequently, Cjh(x) = 0 if λj(x) 6= 0 and, therefore, h ∈ K(u∗).

Step 3: ( h = 0). From condition (SSC) it suffices to show that

∂2L
∂u2

(y∗, u∗, p∗)h+
∂2L
∂y2

(y∗, u∗, p∗)v

= α

∫

Ω̂

|C h|2 + α

∫

Ω̂

|P h|2 + (v,Qv) + (p∗, e′′1(y∗)[v]2) ≤ 0. (72)

Using a Taylor expansion of the Lagrangian we get that

L(yk, uk, p
∗) = L(y∗, u∗, p∗) + ρk

∂L
∂u

(y∗, u∗, p∗)hk

+
ρ2

k

2

∂2L
∂u2

(y∗, u∗, p∗)h2
k +

1

2

∂2L
∂y2

(zk, u
∗, p∗)(yk − y∗)2, (73)

with zk an intermediate point between y∗ and yk. We therefore get that

ρk

∂L
∂u

(y∗, u∗, p∗)hk +
ρ2

k

2

∂2L
∂u2

(y∗, u∗, p∗)h2
k +

ρ2
k

2

∂2L
∂y2

(y∗, u∗, p∗)

(
yk − y∗

ρk

)2

= L(yk, uk, p
∗) − L(y∗, u∗, p∗)

+
ρ2

k

2

[
∂2L
∂y2

(y∗, u∗, p∗) − ∂2L
∂y2

(zk, u
∗, p∗)

] (
yk − y∗

ρk

)2

. (74)
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Additionally, by (67),

L(yk, uk, p
∗) − L(y∗, u∗, p∗) ≤ ρ2

k

k
. (75)

Since uk → u∗ in U and |hk|U = 1, we obtain from (51) that

∣∣∣∣∣

[
∂2L
∂y2

(y∗, u∗, p∗) − ∂2L
∂y2

(zk, u
∗, p∗)

] (
yk − y∗

ρk

)2
∣∣∣∣∣

≤ |p∗|Y |e′′1 (y∗) − e′′1(yk)|L(Y 2,Y ′)

∣∣∣∣
yk − y∗

ρk

∣∣∣∣
2

→ 0 when k → ∞. (76)

For the latter we used the fact that, due to the differentiability of the control

to state mapping,
∣∣∣ yk−y∗

ρk

∣∣∣
Y

is bounded.

Consequently by (74),

lim
k→∞

inf
∂2L
∂u2

(y∗, u∗, p∗)h2
k + lim

k→∞
inf

∂2L
∂y2

(y∗, u∗, p∗)

(
yk − y∗

ρk

)2

≤ 2 lim
k→∞

sup
1

ρ2
k

(L(yk, uk, p
∗) − L(y∗, u∗, p∗)) − 2 lim

k→∞
inf

1

ρk

∂L
∂u

(y∗, u∗, p∗)hk,

which implies, since ∂2
L

∂u2 (y∗, u∗, p∗) is w.l.s.c. and thanks to (70), (75), that

∂2L
∂u2

(y∗, u∗, p∗)h2 + lim
k→∞

inf
∂2L
∂y2

(y∗, u∗, p∗)

(
yk − y∗

ρk

)2

≤ 2 lim
1

k
= 0.

Additionally,

∂2L
∂y2

(y∗, u∗, p∗)

(
yk − y∗

ρk

)2

=
∂2L
∂y2

(y∗, u∗, p∗)

(
yk − y∗

ρk

− vhk

)2

+ 2
∂2L
∂y2

(y∗, u∗, p∗)

(
yk − y∗

ρk

− vhk
, vhk

)
+
∂2L
∂y2

(y∗, u∗, p∗) (vhk
)
2
,

where vhk
is the solution to (62) associated to hk, which also corresponds to

the derivative of the control-to-state mapping at u∗ in direction hk. Due to the

differentiability of this mapping, continuity of the bilinear form ∂2
L

∂y2 (y∗, u∗, p∗),

and since vhk
→ vh strongly in Y (by the compactness of e2), we obtain that

∂2L
∂u2

(y∗, u∗, p∗)h2 +
∂2L
∂y2

(y∗, u∗, p∗)v2
h ≤ 2 lim

1

k
= 0.

Since h ∈ K(u∗), it follows by (SSC) that (vh, h) = (0, 0).
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Step 4: (hk → 0 strongly in U). Since hk ⇀ 0 weakly in U , it follows that
vhk

→ 0 strongly in Y . By (70), (74), (75), (76) and due to (SSC), we obtain
that

κ lim
k→∞

sup |hk|2U ≤ lim
k→∞

sup
∂2L
∂u2

(y∗, u∗, p∗)h2
k ≤ 2 lim

1

k
= 0.

Thus, hk converges to 0 strongly. Since |hk|U =1, a contradiction is obtained.

Proof. (of Theorem 6) We need to verify the assumption of Proposition 1.
Newton differentiability of F follows from (H1), Newton differentiability of the
max-function from Lq(Ω̂) to L2(Ω̂) and the chain rule for Newton-differentiable
functions, see Ito and Kunisch (2004). It remains to argue uniform boundedness
of the inverse of the generalized derivative.

We proceed as in Theorem 3 and only indicate the necessary changes. We
have to analyze the equation

GF (u)h = (f1, f2),

for (f1, f2) ∈ L2(Ω̂; Rl) × L2(Ω̂; kerC) and h ∈ L2(Ω̂; Rm), which can also be
written as






αχ
Ã
Ch = χ

Ã
f1

αχ
Ĩ
Ch+ χ

Ĩ
D−1Ce⋆

up
′(u;h) = χ

Ĩ
f1

αPh+ Pe⋆
up

′(u;h) = f2.

(77)

To argue existence we consider the auxiliary problem:






min Ja(v, h) = 1
2 (v,Qv)Y + α

2 |χĨ
(C h− g1)|2L2(Ĩ,Rl)

+α
2 |Ph− g2|2U + 1

2 〈p, e′′1(y)[v]2〉Y,Y ′

subject to:

e′1(y)v + euh = 0

χ
Ã
Ch = χ

Ã
g1

(78)

with (g1, g2) = ( 1
α
f1,

1
α
f2).

We again define E : Y × U → Y ′ ×
⊗m

i=1 L
2(Ãi,R) by

E(v, h) =

(
e′1(y)v + e2h
χ
Ã

(C h− g1)

)
,

with ker(E ′) = {(v, h) ∈ Y × U : χ
Ã
Ch = 0, e′1(y)v + e2h = 0}.

The Hessian of Ja is given by

J ′′
a (δu, δh)2 = (δv,Q δv)Y +α|χ

Ĩ
C δh|2

L2(Ĩ,Rl)
+α|P δh|2U +〈p, e′′1(y)[δv]2〉Y,Y ′ .
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For (δv, δh) ∈ ker(E ′) we therefore obtain that

J ′′
a (δv, δh)2 ≥ α

∫

Ω̂

|C δh|2 +α

∫

Ω̂

|P δh|2 + (δv,Qδv) + 〈p, e′′1(y)[δv]2〉Y,Y ′ ,

which by (SSC’) and the Lipschitz continuity of e′′1 implies the existence of a
constant K̄ > 0, independent of u, such that

J ′′
a (δv, δh)2 ≥ αK̄|δh|2U for all (δv, δh) ∈ ker (E ′) (79)

in a neighborhood of u∗. Additionally, due to (H2) we obtain that

J ′′
a (δv, δh)2 ≥ αK̄

2K
|(δv, δh)|2Y ×U for all (δv, δh) ∈ ker (E ′), (80)

The auxiliary problem is therefore a linear quadratic optimization problem with
convex objective function and, consequently, there exists a unique solution to
(77).

Moreover, since E ′(y) is surjective, there exist multipliers (q, ϕ) such that
the Lagrangian

L(v, h, q, ϕ) = Ja(v, h) + 〈q, ey(y, u)v + euh〉Y,Y ′ + (µ, χ
Ã

(Ch− g1)). (81)

is stationary at (v, h, q, ϕ), i.e.,






e′1(y)v + euh = 0,

(e′1(y))
⋆q = −Qv − ((e′1(y))

⋆)′(p, v)

χ
Ã

(C h∗ − g1) = 0,

αχ
Ĩ
Ch∗ + χ

Ĩ
D−1Ce⋆

u q = αχ
Ĩ
g1

χ
Ã
ϕ+ χ

Ã
D−1Ce⋆

uq = 0

αPh+ Pe⋆
uq = α g2.

(82)

In particular, this implies the solvability of (77).
The bounded invertibility analysis is again based on (31) and (32). In the lat-

ter, J ′′
a now depends on (y, u) through the additional term 〈((e′1(y))⋆)′(p(u), vr),

vr〉Y ′,Y which then appears on the right hand side of (35). By Assumption 5.1

and (H2) there exists a neighborhood Û(u∗) of u∗ and K̂ such that

|〈((e′1(y))⋆)′(p(u), vr), vr〉Y ∗,Y | ≤ K̂|vr|2Y

for all u ∈ Û(u∗), where y = y(u) and p = p(y(u)).
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