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Abstract: We present a brief survey of the nonsmooth maxi-
mum principle of optimal control, focusing, in particular, upon the
alternative forms of the adjoint equation. We obtain a new version
of the theorem that asserts for the first time the full Weierstrass con-
dition together with the Euler form of the adjoint equation, thereby
extending a result of de Pinho and Vinter. The new theorem also
features stratified hypotheses and conclusions. Two examples illus-
trate its use.
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1. Introduction

The original version

The Pontryagin maximum principle (see Pontryagin et al., 1962) plays a central
role in optimal control. The first versions of this celebrated theorem for data
that are nonsmooth appeared in Clarke (1973, 1974, 1975), where the adjoint
equation is replaced by an inclusion in terms of the generalized gradient intro-
duced by the author. Later work treated the case of full endpoint constraints,
and since then a number of related or parallel results were developed by other
authors; see, for example, Vinter (2000) and Milyutin and Osmolovskii (1998).
We also refer the reader to Clarke (2005) for a detailed survey of the nonsmooth
analysis approach.

The nonsmooth maximum principle can now be considered a well-known
result; we proceed to state it, in essentially its original form (see Clarke 1975,
1976b), for the standard optimal control problem in its Mayer formulation.
Consider the problem (P ) that consists of minimizing the cost functional

ℓ(x(a), x(b))
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subject to the boundary conditions

(x(a), x(b)) ∈ S

and the dynamics

x′(t) = f(t, x(t), u(t)) a.e. [a, b],

where the (measurable) control function u(·) is constrained by

u(t) ∈ U(t) a.e. [a, b].

Here x(t) lies in ℜn, and U(t) is a subset of ℜm. It is assumed throughout the
article (without further mention) that f(t, x, u) is L×B-measurable with respect
to t and (x, u),1 that the multifunction U(·) has L × B-measurable graph, that
f is locally Lipschitz with respect to x, that the set S is closed, and that ℓ is
locally Lipschitz.

Definition 1 We say that a given (admissible) trajectory/control pair (x∗, u∗)
is a strong local minimum for the problem (P ) if, for some ǫ > 0, the process
(x∗, u∗) is optimal relative to the other admissible processes (x, u) satisfying

‖x − x∗‖∞ := max
t∈[a,b]

|x(t) − x∗(t)| < ǫ.

Definition 2 We say that f is Lipschitz in x near x∗(·) if there exist ǫ > 0
and a function k (L × B-measurable) such that, for almost every t ∈ [a, b], for
every u ∈ U(t), we have:

|f(t, x2, u) − f(t, x1, u)| ≤ k(t, u)|x2 − x1| ∀ x1, x2 ∈ B(x∗(t), ǫ).

Theorem 1 (Nonsmooth Maximum Principle) (Clarke, 1975) If (x∗, u∗)
is a strong local minimum for the problem (P ), if f is Lipschitz in x near x∗,
and if t 7→ k(t, u∗(t)) is summable, then there exist an absolutely continuous
function p(·) on [a, b] together with a scalar λ0 equal to 0 or 1, satisfying the
nontriviality condition [NT ]:

λ0 + |p(t)| 6= 0, t ∈ [a, b],

the transversality condition [T ] :

(p(a),−p(b)) ∈ λ0∂Lℓ(x∗(a), x∗(b)) + NL
S (x∗(a), x∗(b)),

the adjoint equation [A] :

−p′(t) ∈ ∂C 〈p(t), f(t, ·, u∗(t))〉 (x∗(t)) a.e. t ∈ [a, b],

1This refers to the smallest σ-field containing the products of Lebesgue measurable subsets
of [a, b] and Borel measurable subsets of ℜn × ℜm. See for example Clarke et al. (1998) for
the basic theory of measurable multifunctions.
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and the Weierstrass condition [W ] :

max
u∈U(t)

〈p(t), f(t, x∗(t), u)〉 at u = u∗(t) a.e. t ∈ [a, b].

In the formulation of the theorem, ∂C denotes the generalized gradient (with
respect to the x variable), ∂L is the limiting subdifferential, and NL

S the limit-
ing normal cone to S. We refer to Clarke (2005) for a brief summary of these
constructs of nonsmooth analysis, or to Clarke et al. (1998) for a detailed presen-
tation. In terms of the (pseudo) Hamiltonian H(t, x, p, u) := 〈p, f(t, x, u)〉, the
adjoint equation and Weierstrass condition may be expressed in the equivalent
forms

−p′(t) ∈ ∂CH(t, ·, p(t), u∗(t))(x∗(t)) a.e.

max
u∈U(t)

H(t, x∗(t), p(t), u) at u = u∗(t) a.e.

The Hamiltonian is useful in expressing the Erdmann condition, which refers
to extra information that can be obtained, notably when the problem is au-
tonomous (see Clarke, 2005, or Vinter, 2000, for example). We do not discuss
this issue here.

We remark that the versions of the theorem prior to 1976 use in the transver-
sality ∂Cℓ and NC

S rather than the potentially smaller constructs ∂Lℓ and NL
S ,

but (as B. Mordukhovich was the first to observe) the original proof actually
yields this minor improvement without any modifications.

This article will discuss variants of the above result, with emphasis on the
two principal hypotheses (the type of local minimum, and the Lipschitz behav-
ior), as well as on the different versions of the adjoint equation [A] and the
Weierstrass condition [W ] that can be asserted. The nontriviality and transver-
sality conditions will not change. In the context of the calculus of variations,
Ioffe and Rockafellar (1996) have treated some similar issues.

The Euler form of the adjoint equation

We now proceed to discuss a variant of Theorem 1 due to de Pinho and Vinter
(1995), which features an ‘Euler form’ of the adjoint equation, one that arises
from the Euler inclusion when considering the control problem as a generalized
problem of Bolza (see Clarke, 1976b). It requires that U(t) be a closed set for
each t, and that near x∗ the function f be integrably Lipschitz jointly in
(x, u) in the following sense: there exist ǫ > 0 and a summable function k such
that, for almost every t ∈ [a, b], one has, for every x1, x2 in B(x∗(t), ǫ) and u1, u2

in U(t):

|f(t, x2, u2) − f(t, x1, u1)| ≤ k(t){|x2 − x1| + |u2 − u1|}.

Theorem 2 (de Pinho and Vinter, 1995) If (x∗, u∗) is a strong local minimum
for the problem (P ), and if f is integrably Lipschitz jointly in (x, u) near x∗(·),
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then there exist an absolutely continuous function p(·) on [a, b] together with a
scalar λ0 equal to 0 or 1, satisfying the nontriviality condition, the transversality
condition, and, for almost every t ∈ [a, b], the Euler adjoint equation [EA] :

(−p′(t), 0) ∈ ∂C 〈p(t), f(t, ·, ·)〉 (x∗(t), u∗(t)) − {0} × NC
U(t)(u∗(t)).

Note that in this result, in contrast to Theorem 1, the generalized gradient
appearing in the adjoint equation is taken with respect to both x and u jointly.
The resulting adjoint equation [EA] does not imply the adjoint equation [A]
of Theorem 1 in general (or conversely). To clarify its meaning, we observe
that the Weierstrass condition of Theorem 1 asserts that a certain maximum
relative to U(t) is attained at u∗(t). A necessary (stationarity) condition for
that maximum is given by the relation

0 ∈ ∂C 〈p(t), f(t, x∗(t), ·)〉 (u∗(t)) − NC
U(t)(u∗(t)). (1)

In the light of this, the adjoint equation [EA] can be viewed as an amalgam of
the adjoint equation [A] together with a stationary form of the Weierstrass con-
dition. It general, however, [EA] neither implies nor is implied by [A] together
with (1), so this interpretation is not a precise one.

It follows that Theorems 1 and 2 give different information in general. The-
orem 2 has the drawback of requiring that f be Lipschitz in the control variable
u. It possesses the feature, however, that in a fully convex problem the normal
form of the conditions of Theorem 2 (that is, for λ0 = 1) are sufficient for op-
timality. This is not always the case for Theorem 1, essentially because there
can be a disparity between the generalized gradient (or convex subdifferential)
taken with respect to one variable and the projection on that variable of the
generalized gradient taken jointly; an example along these lines is adduced in
de Pinho and Vinter (1995).

We remark that if (x∗, u∗) is assumed to be merely a weak local minimum,
that is with respect to the further constraint u ∈ U(t)∩B(u∗(t), ǫ) (as is the case
in de Pinho and Vinter, 1995), the conclusions of Theorem 2 are unaffected, since
one may simply replace U(t) by U(t)∩B(u∗(t), ǫ). This reflects the regrettable
defect of Theorem 2 of not including the Weierstrass condition, responsible for
the very phrase ‘maximum principle’. This will be remedied below. First, we
need to recall some recent advances on the maximum principle.

The stratified maximum principle

A measurable function R : [a, b] → (0, +∞] is called a radius function.

Definition 3 Let R(·) be a radius function. The process (x∗, u∗) is a local

W 1,1 minimum of radius R for the problem (P ) if, for some ǫ > 0, it is
optimal for (P ) relative to the admissible processes (x, u) satisfying

‖x − x∗‖∞ < ǫ,

∫ b

a

|x′(t) − x′

∗
(t)| dt < ǫ,
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as well as

|x′(t) − x′

∗
(t)| ≤ R(t), a.e. t ∈ [a, b].

Note that when R is identically +∞ (which is allowed), this reduces to what
is usually referred to as a local W 1,1 minimum, which is a weaker assumption
than that of a strong local minimum. When R is finite, we obtain a type of
minimum that is known in the calculus of variations as a ‘weak local minimum’.

Definition 4 The function f is pseudo-Lipschitz in x near x∗ of radius

R if there exist ǫ > 0 and a summable function k(·) such that, for almost every
t ∈ [a, b], the relations

x1, x2 ∈ B(x∗(t), ǫ), u ∈ U(t), |f(t, x1, u) − x′

∗
(t)| ≤ R(t)

imply

|f(t, x2, u) − f(t, x1, u)| ≤ k(t)|x2 − x1|.

Definition 5 An arc p is said to satisfy the Weierstrass condition of radius

R for (x∗, u∗) (denoted [WR]) if, for almost every t ∈ [a, b], for every u ∈ U(t)
satisfying |f(t, x∗(t), u) − x′

∗
(t)| ≤ R(t), we have

〈p(t), f(t, x∗(t), u)〉 ≤ 〈p(t), f(t, x∗(t), u∗(t))〉 .

Note that when R is identically +∞, this reduces to the usual (global)
Weierstrass condition.

Theorem 3 (Clarke, 2005) If (x∗, u∗) is a local W 1,1 minimum of radius R for
the problem (P ), and if f is pseudo-Lipschitz in x near x∗(·) of radius R, where
for some η > 0 we have R(t) ≥ ηk(t)a.e., then there exist an absolutely continu-
ous function p(·) on [a, b] together with a scalar λ0 equal to 0 or 1 satisfying the
nontriviality condition, the transversality condition, the adjoint equation [A] :

−p′(t) ∈ ∂C 〈p(t), f(t, ·, u∗(t))〉 (x∗(t)) a.e. t ∈ [a, b],

and the Weierstrass condition [WR] of radius R.
If the above holds for a sequence of radius functions Ri (with the parameters

ǫ, k, η possibly depending on i) for which

lim inf
i→∞

Ri(t) = +∞ a.e.,

then the conclusions hold for an arc p which satisfies the global Weierstrass
condition.

Theorem 3 imposes hypotheses only up to radius R, and asserts conclusions
relative to that same radius. This stratified structure, which is elaborated upon
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in Clarke (2005), is particularly useful in obtaining multiplier rules for problems
with side constraints (see Clarke and de Pinho, 2009) and unbounded controls,
as well as developing solution-independent hypotheses, under which the neces-
sary conditions hold. We remark that the theorem fails in the absence of the
hypothesis R(t) ≥ ηk(t) a.e., which may be viewed as a requirement that the
class of competing arcs (or the radius of optimality) be large enough.

A new nonsmooth maximum principle

The main purpose of this article may now be apparent. It consists of extending
Theorem 2 to the case of the stratified hypotheses of Theorem 3. It turns
out, however, that more is possible: we are also able to assert the Weierstrass
condition alongside the Euler adjoint equation.

In the following, we suppose that U(t) is a closed set for each t, and that
f(t, x, u) is locally Lipschitz in (x, u) for each t.

Theorem 4 If (x∗, u∗) is a local W 1,1 minimum of radius R for the problem
(P ), and if f is pseudo-Lipschitz in x near x∗(·) of radius R, where for some
η > 0 we have R(t) ≥ ηk(t) a.e., then there exist an absolutely continuous
function p(·) on [a, b] together with a scalar λ0 equal to 0 or 1 satisfying the
nontriviality condition, the transversality condition, the Euler adjoint equation
[EA] :

(−p′(t), 0) ∈ ∂C 〈p(t), f(t, ·, ·)〉 (x∗(t), u∗(t)) − {0} × NC
U(t)(u∗(t))

as well as the Weierstrass condition [WR] of radius R.
If the above holds for a sequence of radius functions Ri (with the parameters

ǫ, k, η possibly depending on i) for which

lim inf
i→∞

Ri(t) = +∞ a.e.,

then the conclusions hold for an arc p which satisfies the global Weierstrass
condition.

Note that even when R is taken to be identically +∞, this extends Theorem 2
in several ways: the Lipschitz behavior in u is less restrictive, the local minimum
need only be of W 1,1 type, and of course the Weierstrass condition is asserted.

We prove Theorem 4 in the next section.

2. Proof of Theorem 4

A. The crux of the proof lies in an appeal to Theorem 3.1.1 of Clarke (2005),
a theorem on differential inclusions, which is a template for deriving necessary
conditions in several other contexts (such as the calculus of variations, or gen-
eralized control systems). We recall the theorem next.
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We are given a multifunction F from [a, b] × ℜn to the subsets of ℜn. It is
assumed that F is measurable and graph-closed. A trajectory of F refers to an
absolutely continuous function x on [a, b] satisfying x′(t) ∈ F (t, x(t)) a.e. We
consider the problem (Q) of minimizing ℓ(x(a), x(b)) over the trajectories x of
F satisfying the boundary constraints (x(a), x(b)) ∈ S.

Definition 6 F is said to satisfy a pseudo-Lipschitz condition of radius

R near the arc x∗ if there exist ǫ > 0 and a summable function k such that, for
almost all t ∈ [a, b], for every x1 and x2 in B(x∗(t), ǫ), one has

F (t, x1) ∩ B(x′

∗
(t), R(t)) ⊂ F (t, x2) + k(t) |x2 − x1|B.

When R is identically +∞, the above reduces to a (true) Lipschitz condition.

Definition 7 F is said to satisfy the tempered growth condition of radius R
near x∗ if there exist ǫ > 0, λ ∈ (0, 1), and a summable function r0 such that
for almost every t ∈ [a, b] we have 0 < r0(t) ≤ λR(t) and

|x − x∗(t)| ≤ ε =⇒ F (t, x) ∩ B(x′

∗
(t), r0(t)) 6= ∅.

The notion of local W 1,1 minimum of radius R given by Definition 3 clearly
carries over to the problem (Q). Note that by taking the minimum of the three
parameters ǫ, we may assume that the ǫ defining the local minimum is the same
as that of both the pseudo-Lipschitz and the tempered growth conditions.

In the following, G(t) refers to the graph of the multifunction F (t, ·).

Theorem 5 (Clarke, 2005) If x∗ is a local W 1,1 minimum of radius R for the
problem (Q), and if F satisfies the pseudo-Lipschitz and tempered growth condi-
tions near x∗ for the radius R, where for some η > 0 we have R(t) ≥ ηk(t) a.e.,
then there exist an absolutely continuous function p(·) on [a, b] together with a
scalar λ0 equal to 0 or 1, satisfying the nontriviality condition, the transversality
condition, the Euler equation [E] :

p′(t) ∈ co
{

ω : (ω, p(t)) ∈ NL
G(t)(x∗(t), ẋ∗(t))

}

a.e. t ∈ [a, b],

as well as the Weierstrass condition [WR] of radius R:

〈p(t), v〉 ≤ 〈p(t), ẋ∗(t)〉 ∀v ∈ F (t, x∗(t)) ∩ B(ẋ∗(t), R(t)), a.e. t ∈ [a, b].

If the above holds for a sequence of radius functions Ri (with all parameters
ǫ, k, λ, r0 possibly depending on i) for which

lim inf
i→∞

Ri(t) = +∞ a.e.,

then the conclusions hold for an arc p which satisfies the global Weierstrass
condition.
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B. The first step in the proof of Theorem 4 is to recast the problem (P ) of the
preceding section in a form to which Theorem 5 can be applied. The state of
the new problem (Q) that we now define will be denoted z = (x, y), for x ∈ ℜn

and y ∈ ℜm. Let θ : ℜm → ℜm be the smooth function given by

θ(u) :=
u

1 + |u|2
.

Note that θ is one-to-one, and that θ and ∇θ are bounded, with |θ(u)| ≤ 1 ∀u.
For a fixed δ ∈ (0, 1) we define

F (t, z) = F (t, x, y) := {(f(t, x, u), γδ(t)θ(u)) : u ∈ U(t)} ,

where γδ(t) := δ(1 − δ)ηk(t)/2. It follows that F is measurable and has closed
graph. We set

ℓ̃(xa, ya, xb, yb) := ℓ(xa, xb),

S̃ := {(xa, ya, xb, yb) : (xa, xb) ∈ S} ,

and we further define z∗(t) := (x∗(t), y∗(t)) where

y∗(t) :=

∫ t

a

γδ(τ)θ(u∗(τ)) dτ.

Note that z∗ is admissible for the case of the problem (Q) defined by these data;
that is, z∗ is a trajectory for F satisfying (z∗(a), z∗(b)) ∈ S̃.

C. We claim that z∗ is a local W 1,1 minimum of radius R for the problem (Q),
for the same ǫ. The proof of the claim is by contradiction: suppose there is an
arc z = (x, y) admissible for (Q) that satisfies

‖z − z∗‖∞ < ǫ,

∫ b

a

|z′(t) − z′
∗
(t)| dt < ǫ,

as well as

|z′(t) − z′
∗
(t)| ≤ R(t), a.e. t ∈ [a, b]

and ℓ̃(z(a), z(b)) < ℓ̃(z∗(a), z∗(b)). Then, (x(a), x(b)) lies in S, and (by a stan-
dard measurable selection theorem) there is a measurable function u(·) such
that

u(t) ∈ U(t) a.e., x′(t) = f(t, x(t), u(t)) a.e.

That is, the pair (x, u) is an admissible process for the original problem (P ).
Further, we have

‖x − x∗‖∞ < ǫ,

∫ b

a

|x′(t) − x′

∗
(t)| dt < ǫ,



The nonsmooth maximum principle 1159

as well as

|x′(t) − x′

∗
(t)| ≤ R(t), a.e. t ∈ [a, b].

The fact that ℓ(x(a), x(b)) < ℓ(x∗(a), x∗(b)) contradicts the hypothesis that x∗

is a local W 1,1 minimum of radius R (with constant ǫ) for the problem (P ), and
the claim is established.

D. To justify the application of Theorem 5 to z∗, we verify the pseudo-
Lipschitz and tempered growth conditions, for the radius R, and for ǫ̃ :=
min[ǫ, η/2]. As regards tempered growth (see Definition 7), let us take λ = 1/2
and r0(t) = ǫ̃k(t). Almost every t satisfies R(t) ≥ ηk(t), in which case we have

r0(t) = ǫ̃k(t) ≤ ηk(t)/2 ≤ R(t)/2 = λR(t),

as required. Now consider any x ∈ B(x∗(t), ǫ̃) and any y. The point

(f(t, x, u∗(t)), γδ(t)θ(u∗(t)))

belongs to F (t, x, y). To confirm tempered growth, it suffices to show that its
distance to the point (f(t, x∗(t), u∗(t)), γδ(t)θ(u∗(t))) is no greater than r0(t).
But the pseudo-Lipschitz hypothesis implies

|f(t, x∗(t), u∗(t)) − f(t, x, u∗(t))| ≤ k(t)|x∗(t) − x| ≤ k(t)ǫ̃ = r0(t),

and so tempered growth is confirmed.
As regards the pseudo-Lipschitz hypothesis (see Definition 6), let x1, x2 be-

long to B(x∗(t), ǫ̃), choose any points y1, y2 in ℜm, and let (f(t, x1, u), γδ(t)θ(u))
be a point in F (t, x1, y1) ∩ B((x′

∗
(t), y′

∗
(t)), R(t)). Then |f(t, x1, u) − x′

∗
(t)| ≤

R(t), and the pseudo-Lipschitz hypothesis for f (Definition 4) gives

|f(t, x2, u) − f(t, x1, u)| ≤ k(t)|x2 − x1|.

This implies that the distance of the point (f(t, x1, u), γδ(t)θ(u)) to the set
F (t, x2, y2) is no greater than k(t)|(x2, y2) − (x1, y1)|, as required.

E. Having verified the hypotheses, we deduce the existence of an arc p̃ = (p, q)
and a number λ0 satisfying the conclusions of Theorem 5.

By definition, a point (x, y, x′, y′) belongs to G(t) iff (x′, y′) ∈ F (t, x, y).
But F actually depends only upon (t, x), and not upon y. It follows that any
limiting normal vector (ω, ν, p, q) to G(t) has ν = 0 (it suffices to prove this for
proximal normal vectors, and for those the result is evident from the definition,
as we show below). We conclude from the Euler equation [E] that the arc q has
q′(t) = 0 a.e.

Similarly, the lack of dependence of ℓ̃ and S̃ upon both the second and
the fourth of the four components allows us to deduce from the transversality
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condition that q(a) = q(b) = 0. Thus, the arc q is identically 0. It follows that p
and λ0 together satisfy the required nontriviality and transversality conditions of
Theorem 4. There remain the Euler adjoint equation [EA] and the Weierstrass
condition to obtain.

As a preliminary step in obtaining [EA], fix t such that all relevant equa-
tions and inclusions hold, and let (ω, ν, p, q) be any proximal normal to G(t)
at a typical point (x̄, ȳ, f(t, x̄, ū), γδ(t)θ(ū)) of G(t), where ū ∈ U(t). We may
consider only such points in a neighborhood of the base point

(x∗(t), y∗(t), f(t, x∗(t), u∗(t)), γδ(t)θ(u∗(t))).

Then it follows from the definition of proximal normal that for a certain σ > 0,
the following function of (x, y, u) attains a minimum at (x̄, ȳ, ū):

−ω · x − ν · y − p · f(t, x, u) − q · γδ(t)θ(u) + σ|(x − x̄, y − ȳ, u − ū)|2

relative to all (x, y) in a neighborhood of (x̄, ȳ) and u ∈ U(t) in a neighborhood
of ū. (We have used here the fact that f is locally Lipschitz with respect to
(x, u).)

Writing the necessary condition for this minimum yields ν = 0, as pointed
out above. In addition, the minimum with respect to (x, u) implies the station-
arity condition2

(ω, qγδ(t)∇θ(ū)) ∈ ∂L 〈−p, f(t, ·, ·)〉 (x̄, ū) + {0} × NL
U(t)(ū). (2)

Now consider a limiting normal (ω, 0, p(t), 0) to G(t) at the point

(x∗(t), y∗(t), x
′

∗
(t), y′

∗
(t)) = (x∗(t), y∗(t), f(t, x∗(t), u∗(t)), γδ(t)θ(u∗(t))),

as occurs in the Euler equation [E] of Theorem 5. By definition, and in view
of the preceding analysis, (ω, 0, p(t), 0) is the limit of a sequence of vectors
(ωi, 0, pi, qi), each of which satisfies (2):

(ωi, qiγδ(t)∇θ(ui)) ∈ ∂L 〈−pi, f(t, ·, ·)〉 (xi, ui) + {0} × NL
U(t)(ui), (3)

where (xi, f(t, xi, ui), γδ(t)θ(ui)) converges to

(x∗(t), f(t, x∗(t), u∗(t)), γδ(t)θ(u∗(t))).

It follows that ui → u∗(t) (since θ is one-to-one, and since, without loss of
generality, we may assume k(t) > 0 and hence γδ(t) > 0). Passing to the limit
in (3) yields

(ω, 0) ∈ ∂L 〈−p(t), f(t, ·, ·)〉 (x∗(t), u∗(t)) + {0} × NL
U(t)(u∗(t)). (4)

2This requires some nonsmooth calculus: see Section 1.10 of Clarke et al. (1998); the fact
that f is Lipschitz with respect to u is used here once more.
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In the light of (4), the Euler equation therefore implies that (p′(t), 0) lies in the
convex hull of the set

∂L 〈−p(t), f(t, ·, ·)〉 (x∗(t), u∗(t)) + {0} × NL
U(t)(u∗(t)),

a convex hull, which, in turn, is contained in the corresponding set in which ∂L

and NL are replaced by ∂C and NC . This yields the Euler adjoint equation
[EA] of Theorem 4.

F. We turn next to the Weierstrass condition (see Definition 5). Let u ∈ U(t)
satisfy

|f(t, x∗(t), u) − x′

∗
(t)| ≤ Rδ(t) := [1 − δ(1 − δ)]R(t).

Then we have, for almost every t,

|(f(t, x∗(t), u), γδ(t)θ(u)) − (x′

∗
(t), γδ(t)θ(u∗(t)))| ≤ Rδ(t) + 2γδ(t)

= Rδ(t) + δ(1 − δ)ηk(t) ≤ R(t),

so that the Weierstrass condition of radius R (for F ) can be invoked to yield
(bearing in mind that q ≡ 0):

〈p(t), f(t, x∗(t), u)〉 ≤ 〈p(t), f(t, x∗(t), u∗(t))〉 .

This shows that the Weierstrass condition asserted in Theorem 4 holds for the
smaller radius Rδ, rather than the radius R we require.

A familiar sequential compactness argument will allow us to obtain the re-
quired conclusion. It hinges upon the fact that (see Clarke, 2005) the set of
couples (p, λ0) satisfying the transversality condition, the adjoint equation, and
the condition ‖p‖∞+λ0 = 1 is closed relative to uniform convergence of p, weak
L1 convergence of p′, and convergence of λ0 in ℜ.

We take a sequence δi decreasing to 0. As we have seen, we can obtain for
each i an arc pi and a scalar λ0i

satisfying all the conclusions above: nontrivi-
ality, transversality, the Euler and adjoint equations, the Weierstrass condition
of radius Rδi

. We normalize by setting ‖pi‖∞ + λ0i
= 1. This means dividing

both pi and λ0i
by ‖pi‖∞ + λ0i

, and no longer imposing that λ0i
must equal 0

or 1; the normalized data continue to satisfy transversality as well as the Euler
and adjoint equations.

The Euler equation (or the adjoint equation) provides an estimate of the
form |p′i(t)| ≤ k(t)|pi(t)|, which, by a standard weak compactness criterion3

in L1, allows us to extract a weakly convergent sequence from {p′i} and then
(by Ascoli’s Theorem) a further subsequence (we do not relabel) such that {pi}
converges uniformly to an arc p, and {λ0i

} to a scalar λ0. The limiting couple

3See for example Dunford and Schwartz (1967), Theorem IV.8.9.
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(p, λ0) then satisfies the transversality condition, the Euler adjoint equation,
and ‖p‖∞ +λ0 = 1. It is easy to see that the limiting p satisfies the Weierstrass
condition of full radius R. If λ0 > 0, we normalize: replace (p, λ0) by (p/λ0, 1)
to conclude.

Finally, the proof of the limiting case of the theorem follows the same lines
as the last step above, by considering the couple (pi, λ0i

) that is obtained for
each radius Ri, and passing to the limit along an appropriate subsequence.

3. Two examples

The first example illustrates the advantages of the stratified hypotheses. We
consider (for n = 1) the problem (P1) of minimizing the integral cost

∫ 1

0

{

x(t) + |u(t)|2
}

dt

over the processes (x, u) satisfying

x′(t) = g(x(t))θ(u(t))/t a.e., x(0) = α, u(t) ∈ Bm,

where Bm is the unit ball in ℜm. We take θ : ℜm → ℜ to be continuous, with
θ(0) = 0, while g : ℜ → ℜ is a smooth function with global Lipschitz constant
Kg > 0 and values in [1, 2]. We also suppose that there are values of u arbitrarily
near 0 for which θ(u) < 0.

This can be put into Mayer form by the standard device of introducing
another state variable y together with the additional dynamic equation

y′(t) = x(t) + |u(t)|2 a.e.

Then the problem becomes the one that has the form (P ) discussed in §1 : to
minimize y(1) subject to

(x′(t), y′(t)) = f(t, x(t), y(t), u(t)) := (g(x(t))θ(u(t))/t, x(t) + |u(t)|2) a.e.

and the boundary conditions (x(0), y(0)) = (α, 0), with U(t) = Bm.
We now ask whether the admissible process u∗ ≡ 0 is a strong local mini-

mum, a question we seek to answer by applying the necessary conditions to the
proposed optimal process

(x∗(t), y∗(t), u∗(t)) := (α, αt, 0).

Notice that the hypothesis of Lipschitz integrability of Theorem 2 fails: the
Lipschitz constant of f relative to x is in general at least Kgθ(u)/t, which is not
summable when θ(u) 6= 0. Thus, that result cannot be invoked here, much less
the classical maximum principle.



The nonsmooth maximum principle 1163

However, we now verify the pseudo-Lipschitz condition for any radius func-
tion R which is a finite constant. The inequality |f(t, x1, y1, u)−(x′

∗
(t), y′

∗
(t))| ≤

R of Definition 4 implies |θ(u)|/t ≤ R, whence

|f(t, x1, y1, u) − f(t, x2, y2, u)| ≤ (KgR + 1)|x2 − x1| = kR(t)|x2 − x1|,

where kR(t) ≡ KgR + 1. Thus, Theorem 3 applies (with η = R/(KgR + 1)).
In fact, the theorem applies in its stated limiting form, so that (if u∗ = 0
corresponds to a local minimum) there must exist an arc (p, q) satisfying the
global conclusions of the maximum principle as given by Theorem 3.

The adjoint and transversality conditions imply that q is the constant −λ0,
and that p(1) = −λ0. If λ0 were 0, then p, q would also both vanish at t = 1,
contradicting nontriviality. Thus λ0 = 1. Now the adjoint equation [A] gives
p′(t) = 1, so that p(t) = t − 1. The Weierstrass condition asserts that (almost
everywhere on [0, 1]) the maximum over u ∈ Bm of the function

u 7→ (t − 1)g(α)θ(u)/t − |u|2

is attained at u = 0 (where the value of the function is 0). Since we have
(t − 1)g(α)θ(u) > 0 for some values of u, and for t arbitrarily small, this is
clearly absurd. Thus u∗ = 0 is ruled out by Theorem 3 as a strong local
minimum (or even as a local W 1,1 minimum).

We remark that if θ is assumed to be locally Lipschitz, then Theorem 4 also
applies, and leads to the same conclusion.

A second example

We now give an example in which the Euler adjoint equation [EA] of Theorem 4
yields more precise information than the usual adjoint equation [A]. The avail-
ability of the Weierstrass equation will also be useful in the analysis, as we shall
see.

We consider the problem (P2) (with m = n = 1) of minimizing

∫ 1

0

|x(t) − u(t)| dt

over the processes (x, u) satisfying

x′(t) = g(x(t))u(t), x(0) = α,

∫ 1

0

u(t)2 dt ≤ 1.

We assume that g is continuously differentiable, that |g(x)| ≤ 1 ∀ x, and that
for some constant Kg > 0 we have

|g(x2) − g(x1)| ≤ Kg|x2 − x1| ∀ x1, x2 ∈ ℜ, t ∈ [0, 1].
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We remark that under the stated hypotheses, routine arguments prove that (P2)
admits a solution (x∗, u∗). We turn now to the necessary conditions, which, in
contrast to the first example, are employed here to identify the solution.

We use the standard device to express the problem in the Mayer form, by
introducing two new state variables, y and z. Thus, we are led to introduce the
problem (P ) of minimizing the endpoint cost y(1) over the processes (x, y, z, u),
satisfying the dynamics

x′(t) = g(x(t))u(t) a.e.

y′(t) = |x(t) − u(t)| a.e.

z′(t) = u(t)2 a.e.

and subject to the boundary conditions

x(0) = α, y(0) = 0, z(0) = 0, z(1) ≤ 1.

This has the form of the problem (P ) considered in Section 1 (with U(t) = ℜ);
the solution is denoted (x∗, y∗, z∗, u∗) for the evident choices of the functions
y∗, z∗.

With an eye to applying Theorem 4, note that in this example f is locally
Lipschitz in (x, u) for each t. We proceed to verify the pseudo-Lipschitz hypoth-
esis. For any positive integer i, let the radius function Ri be defined by

Ri(t) := i + u∗(t)
2.

Then the inequality |f(t, x1, y1, z1, u) − (x′

∗
(t), y′

∗
(t), z′

∗
(t))| ≤ Ri(t) of Defini-

tion 4 implies |u2 − u∗(t)
2| ≤ Ri(t), whence

|u| ≤
{

Ri(t) + u∗(t)
2
}1/2

=
{

i + 2u∗(t)
2
}1/2

,

in the light of which we deduce

|f(t, x1, y1, z1, u) − f(t, x2, y2, z2, u)| ≤ ki(t)|x2 − x1|,

where ki(t) := Kg[i + 2u∗(t)
2]1/2 + 1 ∈ L1. Note that Ri(t) ≥ ki(t)/(2Kg), so

that both Theorems 3 and 4 apply (with η = (2Kg)
−1) in their limiting forms.

We deduce the existence of an arc (p, q, r) satisfying the global conclusions of
either theorem (but not both simultaneously). We proceed now to compare the
resulting necessary conditions, depending upon which adjoint equation is used:
[A] or [EA].

Either adjoint equation implies that q and r are constants, and transversality
yields

p(1) = 0, q = −λ0, r ≤ 0, r = 0 if

∫ 1

0

u∗(t)
2 dt < 1.
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Suppose that λ0 = 0. Then p(1) = q = 0, so that r < 0 by nontriviality. Con-

sequently,
∫ 1

0
u∗(t)

2 dt = 1. Also, when q = 0, either adjoint equation implies
−p′(t) = g′(x∗(t))u∗(t)p(t), whence p ≡ 0 by Gronwall’s Lemma. But then
the Weierstrass condition asserts that (almost everywhere) ru2 is maximized at

u = u∗(t), so that u∗ ≡ 0. Since this contradicts
∫ 1

0
u∗(t)

2 dt = 1, we deduce
λ0 = 1 necessarily.

We therefore take q = −1. The Weierstrass condition involves the maxi-
mization of the Hamiltonian

H = φ(t)u − |x∗(t) − u| + ru2

over u ∈ ℜ, where φ(t) := p(t)g(x∗(t)). Either adjoint equation implies

−p′(t) = p(t)g′(x∗(t))u∗(t) − λ1(t), λ1(t) ∈ ∂C | · −u∗(t)|(x∗(t)), (5)

where |λ1(t)| ≤ 1. It follows from this and from the state equation that the
function φ has derivative λ1(t)g(x∗(t)), which is bounded in absolute value by 1.
Since φ(1) = 0, we deduce |φ(t)| < 1 for almost every t ∈ [0, 1].

If r = 0, then the maximization of φ(t)u − |x∗(t) − u| implies that u∗(t) =
x∗(t) a.e., which is clearly optimal when it happens to be admissible. We now
exclude this trivial case, so that we may take r strictly negative.

Note that for r < 0, the maximum of H is attained at a unique point (by
strict concavity). A necessary and sufficient condition for this maximization to
occur at u = u∗(t) is:

φ(t) + λ2(t) + 2ru∗(t) = 0, λ2(t) ∈ ∂Ch(t, ·)(u∗(t)), (6)

where h(t, u) := −|u − x∗(t)|.
When x∗ > (pg(x∗) + 1)/(−2r) (let us call this zone 1), we find that the

choice

u∗ = (pg(x∗) + 1)/(−2r) < x∗ and λ2(t) = +1

satisfies this condition. When x∗ < (pg(x∗) − 1)/(−2r) (zone 2), it holds for

u∗ = (pg(x∗) − 1)/(−2r) > x∗ and λ2(t) = −1.

In the remaining case (zone 3), where

(pg(x∗) − 1)/(−2r) ≤ x∗ ≤ (pg(x∗) + 1)/(−2r), (7)

it follows that u∗(t) = x∗(t), and we find (from (6)):

λ2(t) = −pg(x∗) − 2rx∗ ∈ [−1, +1]. (8)

It follows that the optimal control is given by a feedback u = F (x, p) in the
phase-plane (x, p), defined differently on each of the three zones. The state
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equation determines x′(t) in each zone. The missing ingredient is the differential
equation for p′(t), which must come from the adjoint equation.

Suppose that form [A] of the adjoint equation is used. Then in zone 1, we
have u < x and u = (pg(x) + 1)/(−2r), so the phase plane dynamics become

−p′ = pg′(x)(pg(x) + 1)/(−2r) − 1, x′ = pg(x)(pg(x) + 1)/(−2r). (9)

Similarly, we find that in zone 2 we have

−p′ = pg′(x)(pg(x) − 1)/(−2r) + 1, x′ = pg(x)(pg(x) − 1)/(−2r). (10)

However, the adjoint equation (5) does not specify p′(t) when x∗ lies in zone 3;
that is, we do not know λ1(t) precisely, since the generalized gradient appearing
there is the interval [−1, +1].

If, however, [EA] is used, then the same dynamics as above result in zones
1 and 2, while in zone 3 we have

(−p′, 0) = (pg′(x)u − λ3, pg(x) + λ3 + 2rx)

for some λ3, since the (joint) generalized gradient of |x − u| at (0, 0) is the set

{(λ3,−λ3) : |λ3| ≤ 1}.

It follows from this and (8) that

λ3 = λ2 = −pg(x) − 2rx.

Thus the λ1 of (5) must be λ3. Accordingly, the phase plane dynamics in zone 3
is given by

−p′ = pg′(x)x + pg(x) + 2rx, x′ = pg(x)x. (11)

The phase-plane system (9)(10)(11) may now be used in the usual way to-
gether with the boundary conditions x(0) = α, p(1) = 0 in order to determine
the optimal control u∗, as well as the value of r, which must be taken to respect

the saturation condition
∫ 1

0
u∗(t)

2 dt = 1. The case g ≡ 1 can be completed
analytically.

We remark that another approach to finding the correct expression for p′

in zone 3 (in the absence of [EA]) would be to exploit the Erdmann condition
(H = constant) for this autonomous problem.
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