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Abstract: Piezoelectric actuators are widely used in microma-
nipulation tasks such as atomic force microscopy and cell manipu-
lation. However, the hysteresis nonlinearity and the creep reduce
their fidelity and cause difficulties in the micromanipulation con-
trol procedure. Besides, variation of temperature and external loads
could change the model parameters identified for the piezo actu-ator.
In this paper, a novel feedforward-feedback controller is proposed.
The modified Prandtl-Ishlinskii model is utilized to linearize the ac-
tuator hysteresis in feedforward scheme and a sliding mode based
impedance control with perturbation estimation is used to cancel
out the thermal and external load disturbances in feedback scheme.
The efficiency of the proposed controller is verified by experiments.
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1. Introduction

Piezoceramics hold great promise for smart sensors and actuators in a variety of
applications. Micro manipulation, civil structures, aerospace, machine tools and
bio-medical systems for im-proving performance and augmenting stability are
examples. It is well known that a piezoelectric actuator has many advantages
such as: (1) no moving parts; (2) capacity of producing large forces; (3) almost
unlimited resolution; (4) high efficiency; (5) fast response. The major limita-
tion of piezoceramic actuators is their nonlinear hysteretic behavior, leading to
performance degradation in precision positioning applications, Ge (1969). The
maximum error due to hysteresis is found to be as much as 10-15% of the path
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covered if the actuators are run in an open-loop fashion. This error affects sys-
tem performance in general and is particularly undesirable for structural shape
control purposes. Reliable predictions of system output taking into account the
hysteresis characteristics would be a proper tool when the piezoceramic actua-
tors are employed as part of a closed loop system for purposes of motion and
position control.

To deal with the effect of hysteresis, feedforward and feedback techniques
have been proposed. In the open-loop technique (feedforward), a model with
high precision is needed in order to model the hysteresis. The key idea of a
feedforward controller is to cascade the inverse of the hysteresis model with
the actual hysteretic plant. In this manner, an identity mapping between the
desired output and actuator response can be provided.

Preisach (Ge and Jouaneh, 1995; Hughes and Wen, 1997; Gorbet, Morris
and Wang, 2001), and Prandtl-Ishlinskii (Krejci and Kuhnen, 2001) are the well-
known feedforward models. Implemen-tation complexity is the major setback
of the Preisach model. Prandtl-Ishlinskii (PI) is less com-plex and its inverse
can be computed analytically. Identification of PI model is performed for a
single loop. Therefore, in feedforward scheme, any deviation from the identified
loop leads to hysteresis compensation error. Hysteresis loop deviation due to
external disturbances is investigated in this paper.

In this study a modified PI model (see Kuhnen and Fabio, 2003) is applied
and its inverse is used to cancel out the hysteresis effect. The nonlinear piezoelec-
tric actuator is linearized using feedfor-ward inverse hysteresis. The linearized
uncertain model is used to design the controller (Bashash and Jalili, 2007).
To deal with the influence of parametric uncertainties, external disturbance ef-
fects and PI identifi-cation error, a perturbation term is considered in linearized
model. For proper trajectory tracking, a sliding mode based impedance control
with perturbation estimation is proposed. In order to evaluate the proposed ap-
proach, performance of the piezoelectric actuator in trajectory tracking under
thermal and load disturbances is investigated.

2. Piezo stage and hysteresis modeling

2.1. Dynamic modeling for the piezo stage

The piezo stage consists of a 1-DOF stage actuated by a piezo stack actuator.
Development of a dynamic model, describing hysteretic behavior is very impor-
tant for improvement of control per-formance of the piezo-positioning mecha-
nism. In many investigations, second-order linear dynamics has been utilized
for describing system dynamics. As shown in Fig. 1, this model combines mass-
spring-damper ratio with a nonlinear hysteresis function, appearing in the input
excitation to the system.

Following equation defines the model:

msẍs(t) + bsẋs(t) + ksxs(t) = HF (v(t)) (1)
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Figure 1. The piezoelectric actuator

where xs(t) is the stage position, ms, bs and ks are stage mass, viscous coefficient
and stiff-ness, respectively, andHF (v(t)) denotes the hysteretic relation between
input voltage and excitation force.

Piezoelectric actuators have very high stiffness, and so possess very high nat-
ural frequencies. In low-frequency operations, the effects of actuator damping
and inertia could be safely neglected. Hence, the governing equation of motion
is reduced to the following static hysteresis relation be-tween the input voltage
and actuator displacement:

xs(t) =
1

ks

HF (v(t)) = Hx(v(t)) {msẍs(t) ≪ bsẋs(t) ≪ ksxs(t)}. (2)

Equation (2) facilitates the identification of the hysteresis function HF (v(t))
between the input voltage and the excitation force. This is performed by first
identifying the hysteresis map between the input voltage and the actuator dis-
placement, Hx(v(t)). It is then, scaled up to ks to obtain.

msẍs(t) + bsẋs(t) + ksxs(t) + ksHx(v(t)). (3)

To consider the influence of parametric uncertainties, unmodeled dynamics
and identification error, a perturbation term is added to the stage model. Thus,
model (1) can be rewritten as:

msẍs(t) + bsẋs(t) + ksxs = HF (v(t)) + P (t) = ksHx(v(t)) + P (t). (4)

To consider the interaction with environment, the force Fǫ exerted by the
environment is inserted into the model. Therefore, the dynamic model of piezo
stage can be written as follows:

msẍs(t) + bsẋs(t) + ksxs(t) = ksHx(v(t)) + P (t) − Fǫ (5)

2.2. Hysteresis modeling

We use the Prandtl-Ishlinskii (PI) model to cancel out hysteresis nonlinearity. It
is known that the PI model consists of both play and stop operators, Kuhnen and
Fabio (2003). Considering the difficulty of the determination of the parameters
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for PI model, the elementary operators of the simplified PI model are only
backlash operators. The hysteresis can be described by a sum of weighted
backlash operators with different thresholds and weight values. This model can
approx-imate the hysteresis loop accurately and its inverse could be obtained
analytically. Therefore, it facilitates the inverse feedforward control design.

Graphically, the inverse is the reflection of the resultant hysteresis loop about
the 45◦ line. Kuhnen and Fabio (2003) proved that PI and inverse PI are
Lipschitz continuous and thus input-output stable.

2.2.1. Feedforward hysteresis compensation

The structure of inverse feedforward hysteresis compensation is shown in Fig. 2.
The key idea of an inverse feedforward controller is to cascade the inverse hys-
teresis operator H−1

x with the actual hysteresis represented by the hysteresis
operator Hx. In this manner, an identity mapping between the desired actuator
output xd(t) and actuator response x(t) is obtained. The inverse of PI operator
H−1

x uses xd(t) as input and transforms it into a control input vH
−1

x

(t) which
produces x(t) in the hysteretic system that closely tracks.

 

 

Figure 2. The feedforward inverse control

3. The temperature effect analysis

In the temperature effect analysis, two effects must be considered:

A. Linear thermal expansion: Thermal stability of piezoceramics is better
than that of most other materials. Actuators and positioning systems consist of
a combination of piezoceramics and other materials and their overall behavior
differs accordingly.

B. Temperature dependency of the piezo effect : Piezo translators work in a
wide temperature range. The piezo effect in PZT ceramics is known to function
down to almost zero Kelvin. But the magnitude of the piezo coefficients is
temperature dependent. Also, the closed-loop piezo positioning systems are less
sensitive to temperature changes than open-loop systems. Optimum accuracy is
achieved if the operating temperature is identical to the calibration temperature.
At liquid helium temperature, piezo gain drops to approximately 10–20% of its
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room temperature value which causes a displacement error of more than 10µm
in the micromanipulation system.

It is well known that as the temperature increases, the creep is amplified.
For the representation of this phenomenon in the piezoelectric actuator, a step
voltage is applied and the displacement is monitored for about four minutes. As
shown in Fig. 3, the creep is considerably amplified. This behavior decreases
the accuracy of the micro-positioning system.

Figure 3. The effect of thermal disturbance on creep

Temperature variation affects hysteresis as well. To observe that, a sine
voltage of 60 of amplitude is applied to the piezoelectric actuator. The resultant
hysteretic loops are plotted for two temperatures (T = 26◦C and T = 55◦C).
Fig. 4 shows how temperature variations affect hysteretic behavior.

Figure 4. The effect of thermal disturbance on hysteresis

Effect of load on the hysteresis loop

Fig. 5 depicts experimental voltage-to-displacement hysteresis in a PEA
when the external mechanical load changes according to Fig. 6. As shown in



640 M. ZAREINEJAD, S.M. REZAEI, S.S. GHIDARY, A. ABDULLAH, M. MOTAMEDI

Fig. 5, external mechanical load affects the inclination of the hysteresis curve.
The effect of the load on the hysteresis curve obviously increases as the load
increases.

Figure 5. The effect of load applied to the piezo stage on the shape of hysteresis
loop

Figure 6. Dynamic load signal applied the piezo stage

4. Impedance control for the piezoelectric actuator with

sliding mode based perturbation estimation

4.1. Impedance control

Control of manipulators interacting with their environment has received consid-
erable attention. The most efficient method of controlling interaction between
a manipulator and its environment is impedance control. It enables to regu-
late response properties of the manipulator to external forces by modifying the
mechanical impedance parameters. In position-based impedance control, the
impedance controller alters the position for any force applied to the manipula-
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tor end-point. The control problem is to asymptotically drive the system state
to implement the target impedance (6).

The desired dynamic for the piezo stage is considered as follows:

m̈s
¯̃x(t) + b̄s ˙̃x(t) + k̄sx̃(t) = −Fǫ (6)

where m̄s, b̄s and k̄s are the desired mass, viscous damping coefficient and
stiffness of piezo-actuator, respectively; x̃(t) = xs − xd is position error and
xd is desired trajectory. The control law for the piezo stage is obtained by
combining (6) and (1):

us(t) = H−1
F

{

−
ms

m̄s

[bs ˙̃x(t) + ksx̃(t) + Fǫ(t)]

+Fǫ(t) + bsẋs(t) + ksxs(t) +msẍd − Pest

}

(7)

To deal with the influence of parametric uncertainties, unmodeled dynamics
and PI identification error, estimation of perturbation term Pest is added to
the piezo stage model. In next section the procedure for estimation of Pest is
presented.

4.2. Perturbation estimation

Elmali and Olgac (1992, 1996) proposed a perturbation estimation scheme, em-
bedded in the traditional Sliding Mode Control (SMC) design. The main ad-
vantage of this methodology is that a priori knowledge of the upper-bounds
of perturbation is not required. The general class of nonli-near dynamics is
considered as:

x(n) = f(x) + △f(x) + [B(x) + △B(x)]u + d(t) (8)

where Xi = [xi, ẋi, ..., x
(n−1)
i ]T εRn, i = 1, 2, ...,m is the state subvector and xi,

i = 1, 2, ...,m are independent coordinates; △B(x) is perturbation of control
gain and d(t) is system disturbance vector. Perturbations and disturbance are
gathered into a variable named perturbation vector:

ψ(X, t)actual = △f(x) + △B(t)u+ d(t). (9)

If all the components in the dynamics show slower variations with respect
to the loop closure (or sampling) speed, ψ(X, t) can be estimated as:

ψ(X, t)estimated = x
(n)
calculated − f −Bu(t− δ) (10)

where δ is the control interval or sampling time in the digital controller. In
practice, sampling time is selected high enough to ensure u(t) = u(t − δ). As
shown in (10), the class of perturbation estimators is based on the simple in-
tuition that if all the states are available, the perturbation of the plant can be
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effectively estimated using the nominal model and one step delayed input sig-
nals. Additionally, in the absence of measurements of x(n), the approximation
used is

x(n) =
x(n−1)(t) − x(n−1)(t− δ)

δ
(11)

4.3. Sliding mode based impedance control for piezo stage using

perturbation estimation

A modified version of system (1) could be written as:

msẍs(t) + bsẋs(t) + ksxs(t) = HF (v(t)) + Pest(t) − P̃ (t) (12)

where P̃ (t) = Pest(t) − P (t) is the error signal between the system perturba-
tion and its estima-tion. Based on the perturbation estimation technique, an
estimation of the perturbation function given in (12) is obtained as:

Pest(t) = msẍs(t) + bsẋs(t) + ksxs(t) −HF (v(t − δ)). (13)

Substituting HF (v(t)) by ksHx(v(t)), using (4), one can obtain:

Pest(t) = msẍs(t) + bsẋs(t) + ksxs(t) − ksHx(v(t− δ)). (14)

Sliding surface can be defined as follows:

s(t) :=
1

m̄s

∫ t

0

Ie(t)dt (15)

where Ie is the impedance error, that is:

Ie : m̈s
˙̃x(t) + bs ˙̃x(t) + k̄sx̃(t) − (−Fe(t)). (16)

Theorem 1 For the system described by (5), if the control law is given by:

v(t)=us(t)=H
−1
F

{ms

m̄s

[bs ˙̃x(t) + ksx̃(t) + Fe(t)] + Fe(t) + bsẋs(t)

+ksxs(t) +msẍd − γsgn(S)− λS − Pest

}

(17)

where sgn(.) represents the sign function and γ and λ are the positive scalars,
then asymptotical tracking of the system is guaranteed.

Proof. For analyzing the stability of the proposed control scheme, a Lyapunov
function candidate is defined as:

V =
S2

2
(18)
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The derivative of V with respect to time can be obtained as:

V̇ = SṠ (19)

By substituting (16) in (15) one can obtain:

V̇ = SṠ = S

[

¨̃x(t) +
b̄s
m̄s

˙̃x(t) +
1

m̄s

(k̄sx̃(t) + Fe(t))

]

(20)

Utilizing (12) for substituting ¨̃x(t) = ẍs − ẍd in (20), yields:

V̇ =S

[

−ẍd +
b̄s
m̄s

˙̃x(t) +
1

m̄s

(k̄sx̃(t) + Fe(t))

]

+
1

ms

[−bsẋs − ksxs +HF (v(t)) + Pest − Fe − P̃ (t)] (21)

Substituting v(t) from (17) in (21) yields:

V̇ = SṠ = S = −
λ

ms

S2 −
1

ms

γ|S| −
P̃ (t)

ms

S (22)

If the gain γ is selected such that condition γ > |P̃ (t)| is satisfied, (22) leads to:

V̇ ≤ −
λ

ms

S2 ≤ 0. (23)

Equation (22) shows that time derivative of the positive definite Lyapunov
function V is negative definite. Thus, stability of the system is guaranteed.
Essentially, (23) states that the squared distance to the sliding surface, as mea-
sured by S2 decreases along all system trajectories.

Chattering phenomena is the main problem of sliding mode control and must
be eliminated for the controller to perform properly. For this purpose, controller
discontinuity can be smoothed out by using a superposition function sat(S/ϕ)
instead of sgn(S), where ϕ is boundary layer thickness. Therefore, control law
(17) can be rewritten as follows:

us(t) = H−1
F

{ms

m̄s

[bs ˙̃x(t) + ksx̃(t) + Fe(t)] + Fe(t) + bsẋs(t) + ksxs(t)

+msẍd − γsat(S/ϕ) − λS − Pest

}

(24)

To achieve a good tracking and chattering free control signal, the desired
impedance and controller parameters for the piezo stage are chosen as shown in
Table 1.

Notice that (16) requires acceleration measurement. To deal with this mea-
surement noise, accele-ration and velocity are estimated, by a linear observer,
introduced in the next section.
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Table 1. Piezo stage impedance parameters

m̄s 0.8 kg ms 2.17 kg

b̄s 5 N.s/m bs 1078 N.s/m

k̄s 1e5 N/m ks 3e5 N/m

λ 0.3 γ 250

ϕ 0.05

4.4. Velocity and acceleration observer

Consider the observable system (25) and (26) described in state space:

ẋ = Ax+Bu (25)

y = Cx (26)

where x ∈ Rn denotes the state of the system, y is the measured output, u is the
control input, B ∈ Rnxn, contains system parameters and C ∈ Rmxn is used to
select the m outputs (see Kailath, 2000). The state x of (25) can be estimated
by means of linear observers. A full order linear ob-server is designed as follows:

˙̂x = Ax̂+Bu+ L(y − ŷ) (27)

ŷ = Cx̂ (28)

where x̂, ŷ denote the estimated state and the estimated output, L ∈ Rn is the
observer gain vector that can be chosen such that the polynomial characteristic
of (A − LC) is Hurwitz. Substituting for the output vector, we obtain the
differential equation describing the observer error ė, which is given by:

ė+ (A− LC)e ˙̄= Āe (29)

To prove that the estimation error tends to zero asymptotically let us con-
sider (29) together with the following Lyapunov equation:

PĀ+ ĀTP = −Q

where P and Q are positive definite symmetric matrices, with the Lyapunov
candidate function v = 1

2e
TPe whose time derivative is:

V̇ = 2eTP ė = 2eTPĀe = eTPĀe+ eT ĀTPe = −eTQe ≤ −λminQ||e||2 (30)

From (30), it is obvious that the estimation error tends asymptotically to
zero. Considering the piezo-stage, xs is the measured output. In this manner,
with an appropriate choice of, x̂s → xs and ˙̂xs → ẋs at t→ ∞.
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5. Experimental setup

A PZT-driven nanopositioning stage with high resolution strain gage position
sensor was used to perform the experiments. The E500 Module includes E501
Piezo driver and E503 Strain gage amplifier to realize experimental data. A rigid
adjustable end effector is mounted on the stage. A load cell is used to measure
external force. A data acquisition controller (dSPACE 1104) board is used as
interface element between MATLAB Real Time Workshop and the equipment.
The con-trollers are developed in Simulink and implemented in real-time using
MATLAB Real Time Workshop and through Control Desk software. A Heater
is used to change the environment tem-perature between 25 and 60◦C. A T 40
sensor is also utilized for temperature monitoring (Fig. 7).

Figure 7. The experimental setup

Figure 8. The temperature variation

6. Experimental results

Environment temperature was increased from 31◦C to 45◦C and then reduced
to 41◦C in 75 seconds (Fig. 8).There is a space between the piezo stage and the
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load cell. Hence, when the alter-native input signal is applied, the piezo stage
contacts the load cell intermittently and generates an alternative force (Fig. 9).
In Fig. 10a, the tracking of the reference signal by the proposed controller is
shown for temperature of 45◦C. The tracking error is plotted in the same figure.
The tracking of the reference signal by the PID controller is also investigated
and the tracking error is calculated (Fig. 10b).The results show that via utilizing
the proposed robust controller, the tracking error decreases noticeably. Table 2
shows the measured performances of the PID and the proposed controllers in
tracking of the desired trajectory. Fig. 11 shows performance of the proposed
controller in higher frequency trajectory tracking.

Figure 9. The external load variation

Figure 10a. Tracking of the reference signal by the proposed controller
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Figure 10b. Tracking of the reference signal by the PID controller

Figure 11. Tracking of a higher frequency reference signal by the proposed
controller

Table 2. Performance of the PID and the proposed controllers

Controller emax(µm) RMS(µm)
PID 3.1 1.76

Proposed Controller 1.5 0.35

7. Conclusion

Hysteresis is the main drawback of using piezoelectric actuators in precision
positioning applica-tions. Moreover, environmental temperature and external
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load variations worsen also the accuracy of a micromanipulation system. In this
paper, the Prandtl-Ishlinskii model is used for the actuator hysteresis in feed-
forward scheme to cancel the hysteretic nonlinearity. A robust controller is also
utilized in a feedback manner to compensate for the thermal and external load
disturbance effects. By implementation the proposed controller, the required
tracking performance in micromanipulation is fulfilled.
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