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Abstract: In this paper, nonlinear multi parameter binary dif-
ference equation system (MPBDS) and optimal piecewise process are
analyzed. Since such difference equation system is over-determined,
a theorem similar to Frobenius’s theorem is proved on Galois field.
An illustrative example, which can be solved by applying terminal
control problem is given. Then, terminal control problem is exam-
ined and it is shown that the principle of optimality is satisfied.
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1. Introduction

The use of nonlinear multi parameter binary difference equation system in se-
quential machines and coding theory, the command of technical processes with
the help of computer, modeling of objects and the imitation processes, designs
of contemporary evaluation systems, makes out of it an attractive subject for
research.

2. The unique solution condition

One of the domains of finite system theory where very little is known is the
nonlinear multi parameter binary difference equation system theory. In general,
such difference equation system is defined as follows (Gayshun, 1983):

ξvs(c) = Fv(c, s(c), x(c)) v = 1, 2, ..., k (1)

s(c0) = s0

where c = (c1, c2, ..., ck) ∈ Gd = {c | c ∈ Zk, c0
1 ≤ c1 ≤ cL1

1 , ..., c0
k ≤ ck ≤

cLk

k , ci ∈ Z} is point in Zk, determining position; Li, i = 1, 2, ..., k, where k
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is a positive integer, is the duration of the stage i of this process. Here, Z is
the set of integers, for s(c) ∈ S, x(c) ∈ X ; S = [GF (2)]m, X = [GF (2)]r are
state and input index (alphabet) respectively; s(c) and x(c) are defined over
the set Zk as an m and r dimensional state and input vectors at the point
c. c0 = (c0

1, c
0
2, ..., c

0
k) is the initial position vector of the system and s0 is the

initial state vector of the system. cLi = (cLi

1 , cLi

2 , ..., cLi

k ) is the point to which
the system moves after the stage i− 1. ξvs(c) is translation operator defined as
follows (Gayshun, 1983; Burden, Faires, 2001):

ξvs(c) = s(c + ev); ev = (0, ..., 0,
v

1, 0, ..., 0) , v = 1, 2, ..., k .

Characteristic Boolean vector functions, Fv(·) = {Fv1
(·), Fv2

(·), ..., Fvm
(·)},

where (·) denotes (c, s(c), x(c)), are defined over the set Zk×[GF (2)]m×[GF (2)]r

where GF (2) is a Galois field (Anderson, 2004).
If the system (1) defines a nonlinear MPBDS then optimal piecewise process

represented by this system is characterized by the pseudo Boolean functional
(Musayev, Alp, 2000; Yablonsky, 1989) given by:

J(x) = ϕ(s(cL)) (2)

which we use as an objective functional in our problem. Here L = L1 + L2 +
... + Lk is the time duration of this process.

Now we show that the system of the translating functions is an over-deter-
mined system so we define a piecewise curve as follows.

Let c0 = (c0
1, c

0
2, ..., c

0
k), c1 = (c1

1, c
1
2, ..., c

1
k), ..., cL = (cL

1 , cL
2 , ..., cL

k ) be points
in Zk.

If the following conditions are satisfied

a) ci+1
v ≥ ci

v , v = 1, 2, ..., k; i = 0, 1, ..., L− 1

b)
∑k

v=1(c
i+1
v − ci

v) = 1, i = 0, 1, ..., L − 1
then we say the curve from c0 to cL is a piecewise curve (Gayshun, 1983).

We analyze the behaviour of the system of translating functions in detail
on two-dimensional space for simplicity. Consider the case where L = 5 and
Fig. 1. According to the definition of the set Gd, the piecewise path, on which
the system moves from the initial point c0 to the point cL5 is composed of a
right move or an upper move to the point where the system is in any stage. So,
there are a lot of paths starting at point c0 and ending at point cL5 .

Now we determine the state of the system at point cL1 . Since k = 2, ev is
either e1 = (1, 0) or e2 = (0, 1). From the definition of ξvs(c),

s(cL1) = ξ1s(c
0) = s(c0 + e1) = s((c0

1, c
0
2) + (1, 0)) = F1(c

0, s(c0), x(c0)).

Similarly, the state of the system at point cL2 is determined by

s(cL2) = ξ2s(c
L1) = s(cL1+e2) = s((cL1

1 , cL1

2 )+(0, 1)) = F2(c
L1 , s(cL1), x(cL1)),
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Figure 1. A representative path on Gd for system (1) (dotted line)

the state at point cL3 is determined by

s(cL3) = ξ1s(c
L2) = s(cL2+e1) = s((cL2

1 , cL2

2 )+(1, 0)) = F1(c
L2 , s(cL2), x(cL2)),

the state at point cL4 is determined by

s(cL4) = ξ1s(c
L3) = s(cL3+e1) = s((cL3

1 , cL3

2 )+(1, 0)) = F1(c
L3 , s(cL3), x(cL3)),

and finally the state at point cL5 is determined by

s(cL5) = ξ2s(c
L4) = s(cL4+e2) = s((cL4

1 , cL4

2 )+(0, 1)) = F2(c
L4 , s(cL4), x(cL4)).

As it can be seen from Fig. 1, after any point there is a number of equations
for the subsequent state of the system instead of a unique equation. In other
words, the subsequent state of the system at point c0 may be either s(cL1) (to
the right of the point c0) or s(cL∗

1 ) (up from the point c0). So, the system of
equations contains both of them as follows:

s(cL1) = ξ1s(c
0) = F1(c

0, s(c0), x(c0))

s(cL∗

1 ) = ξ2s(c
0) = F2(c

0, s(c0), x(c0)).

Many equations for the subsequent state on every stage cause the existence
of many solutions of the system (1). Therefore, the sequence of the states of
the system is not unique from c0 to cL5 . So, for every control x(c), system (1)
is an over-determined system (Scheid, 1988). Then, for existence of a solution
of the problem with system (1) the conditions for a unique solution have to be
established.
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Let c0, c be in Zk, K a piecewise curve connecting c0 and c, sK(c) a solution
of (1) at the point c along the piecewise curve K. The necessary and sufficient
condition for a nonlinear multi parameter finite difference equation system to
have a unique solution is that the solution sK(c) be independent of the piecewise
curve K.

We can state this in the following theorem.

Theorem 1 The necessary and sufficient condition for the existence of a unique
solution for the difference equation system defined in (1) with initial value
s(c0) = s0, is that for every fixed x(c) and (c, s) ∈ Zk× [GF (2)]m the following
equality holds

Fv(c+eµ, Fµ(c, s(c), x(c)), x(c+eµ)) = Fµ(c+ev, Fv(c, s(c), x(c)), x(c+ev)) (3)

(v, µ = 1, 2, ..., k).

Proof. (Necessity) Since ξvs(c) is the translation operator we have

ξvs(c) = s(c + ev).

Apply the operator ξµ to both sides of the above equality and get

ξµξvs(c) = ξµs(c + ev) = s(c + ev + eµ). (4)

Similarly, we get

ξvξµs(c) = s(c + eµ + ev). (5)

Since the sum operation is commutative we obtain

s(c + ev + eµ) = s(c + eµ + ev). (6)

(4), (5) and (6) imply

ξµξvs(c) = ξvξµs(c). (7)

Because ξvs(c) = Fv(c, s(c), x(c)) we get

ξµξvs(c) = ξvs(c + eµ)

= Fv(c + eµ, s(c + eµ), x(c + eµ))

= Fv(c + eµ, Fµ(c, s(c), x(c)), x(c + eµ)).

In other words, we obtain

ξµξvs(c) = Fv(c + eµ, Fµ(c, s(c), x(c)), x(c + eµ)). (8)

By similar computations we get

ξvξµs(c) = Fµ(c + ev, Fv(c, s(c), x(c)), x(c + ev)). (9)
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Therefore by (7), (8) and (9) we obtain

Fv(c + eµ, Fµ(c, s(c), x(c)), x(c + eµ)) = Fµ(c + ev, Fv(c, s(c), x(c)), x(c + ev))

(v, µ = 1, 2, ..., k).

This finishes the proof of necessity.

(Sufficiency) Let (F 0
v (c, ·))(s) = s, (F r

v (c, ·))(s)=Fv(c, Fv(c, ..., Fv(c, s, x), ...))︸ ︷︷ ︸
r times

,

(F1(c
1, ·)⊗F2(c

2, ·)⊗ ...⊗Fm(cm, ·))(s) = F1(c
1, F2(c

2, ..., Fm(cm, s, x), ...)) and
K(c1, c2, ..., cL), be the piecewise curve connecting the points (c1, c2, ..., cL).
Here the symbol ⊗ denotes modulo 2 multiplication on Galois field. Over this
curve we write:

π(s) = ( Π
K(c1,...,cL)

⊗ F∆l1
1 (l, x(l), ·)...F∆lk

k (l, x(l), ·))(s)

= (
L−1

Π
i=1

⊗ F
c

i+1

1
−ci

1

1 (ci, x(ci), ·)...F
c

i+1

k
−ci

k

k (ci, x(ci), ·))(s).

We can see that the value of π(s) is not only dependent on the initial and
terminal point of K(c1, c2, ..., cL) but also on the points ci(1 < i < L).

To make the value of π(s) dependent only on the initial and terminal point
of the piecewise curve K(c1, c2, ..., cL) it suffices to have (3). For π(s) we write:

π(s) = Π
(c1,cL)

⊗ F∆l1
1 (l, x(l), ·)...F∆lk

k (l, x(l), ·))(s).

Let (c0, s0) ∈ Zk× [GF (2)]m and consider the function s(c) = s(c, c0, s0, x(c)).
We have

s(c, c0, s0, x(c)) = Π
(c0,c)

⊗ F∆c1

1 (c, x(c), ·)...F∆ck

k (c, x(c), ·))(s0).

If we evaluate ξvs(c, c0, s0, x(c)) then we get

ξvs(c, c
0, s0, x(c)) = (Fv(c, ·) ⊗ s(c, c0, ·))(s0) = Fv(c, s(c, c0, s0, x(c)))

which means that s(c) is the unique solution for the equation system (1).

Now, we can give a suitable illustrative example for optimal control problem
which will be analyzed a little later in this paper.

Example 1 (MPBDS-aided modeling of behaviour of multi dimensional adder)

The following expression is often effectively calculated for the analysis of dis-
crete description processes by the aid of finite objects which are over-determined
and the solution of the some practical problems of the theory of encoders,
latticed-sequential machines and automatons:

J(cL
1 , cL

2 , ..., cL
k ) =

cL

1 −1∑

v1=0

...

cL

k
−1∑

vk=0

k∑

i=1

xi(v1, v2, ..., vk). (10)
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Here the components of the vector x = (x1, x2, ..., xk) are defined over the set
{0, 1}. All calculations on the right-hand side of (10) are made on GF(2).

One of the methods for the effective calculation of the sums in (10) is the
MPBDS-aided model. For this purpose, we formulate the elements of the set
X = {x = (x1, x2, ..., xk)|xi ∈ GF (2)} with the aid of binary coding as follows:

x(c0) = (0, 0, ..., 0)

...

x(cL) = (1, 1, ..., 1).

Considering the concept of the piecewise curve, we associate any vector x =
(x1, x2, ..., xk) with any point of k-dimensional lattice. Then we get x(c) =
(x1(c), x2(c), ..., xk(c)) on the k-dimensional lattice.

Now, let

s(c1, c2, ..., ck) =

c1−1∑

v1=0

...

ck−1∑

vk=0

k∑

i=1

xi(v1, v2, ..., vk). (11)

Consequently, as it can be seen from (11), we get the following difference equa-
tions on the field GF(2):

s(c1, c2, ..., cv−1, cv + 1, cv+1, ..., ck) =

= s(c1, c2, ..., cv, ..., ck) ⊕ xv(c1, c2, ..., cv, ..., ck), v = 1, 2, ..., k, (12)

s(0, 0, ..., 0) = 0. (13)

Thus, the vector s(c1, c2, ..., ck) in the expressions (12) and (13) is the generalized
state of MPBDS, which models the behaviour of k-dimensional adder and the
vector x(c) = (x1(c), x2(c), ..., xk(c)) ∈ [GF (2)]k is also control.

Application of the criteria of optimality and putting the restrictions for the
control x(c) is needed for getting a desired behaviour of a given system.

Furthermore, terminal control problem is derived for the k-dimensional bi-
nary adder as follows:

J(x) = ϕ(s(cL)) → min, (14)

s(c1, c2, ..., cv−1, cv + 1, cv+1, ..., ck) =

= s(c1, c2, ..., cv, ..., ck) ⊕ xv(c1, c2, ..., cv, ..., ck), v = 1, 2, ..., k, (15)

s(0, 0, ..., 0) = 0, (16)

x(c) ∈ X̂. (17)

3. Principle of optimality

Definition 1 If for every control x(c) the system (1) has a unique solution,
then we say that the control x(c) is an admissible control.
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Denote the set of admissible control vector functions by X̂, acting from Ĝd

= Gd\{c
L} into [GF (2)]r where i.e. x(c) = (x1(c), x2(c), ..., xr(c)).

Now for nonlinear MPBDS we can analyze the following terminal control
problem.

In order for a given nonlinear MPBDS to go from s0 to s∗(cL) in L steps a

control x(c) ∈ X̂ must exist such that the functional in (2) has a minimal value:

ξvs(c) = Fv(c, s(c), x(c)) , c ∈ Gd, v = 1, 2, ..., k

s(c0) = s0

x(c) ∈ X̂, c ∈ Ĝd

J(x) = ϕ(s(cL)) → min .

Here the translating functions are Boolean and the function, which charac-
terizes the process is pseudo Boolean. Therefore, the pseudo Boolean expres-
sions of the translating functions must be obtained. These expressions can be
obtained by the operations given in Hacıyev (Hacı) (2007). After this step, the
problem becomes

ξvs(c) = F̂v(c, s(c), x(c)) , c ∈ Gd, v = 1, 2, ..., k (18)

s(c0) = s0

x(c) ∈ X̂, c ∈ Ĝd (19)

J(x) = ϕ(s(cL)) → min . (20)

Here F̂v(·) (v = 1, 2, ...k) denotes the pseudo Boolean expression of the
Boolean vector function Fv(·)(v = 1, 2, ...k).

Now we show that the principle of optimality (Boltyanskii, 1978) is satisfied
for the terminal control problem, which we have considered. Therefore, we
formulate the problem (18)-(20) as an optimal problem:

ξvs(c) = F̂v(c, s(c), x(c)) , c ∈ Gd(σ), v = 1, 2, ..., k (21)

s(σ) = χ

x(c) ∈ X̂, c ∈ Gd(σ) (22)

J(x) = ϕ(s(cL)) → min (23)

where χ ∈ S = [GF (2)]m, σ ∈ Gd, Gd(σ) = {c | σ1 ≤ c1 ≤ cL1

1 , ..., σk ≤ ck ≤
cLk

k }. If we substitute σ = c0 and χ = s0 into the problem (21)-(23), we obtain
the first problem we stated above. If the conditions for the existence of a unique
solution are satisfied, then for the given initial condition s(σ) = χ and given
x(c)(c ∈ Gd(σ)) we find a unique s(c). In other words, the functional (23) is
the function of the parameters χ and x(c)(c ∈ Gd(σ)):

J(x) = J(χ, x(Gd(σ))). (24)
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Here, x(Gd(σ)) where c ∈ Gd(σ) denotes the range of the control x(c) :

x(Gd(σ)) = {x(c) | c ∈ Gd(σ)}.

From the exact solution conditions of the system (18) we find that the control
process in (18)-(20) can be analyzed in the set Gd(σ) and moreover in

Gd1
(σ) = {c | c0

1 ≤ c1 ≤ σ1, ..., c
0
k ≤ ck < σk}. (25)

Definition 2 We say that the control x(c)(c ∈ Gd(σ)) which minimizes the
functional (23) in the problem (21)-(23) is optimal control with respect to the
initial pair (σ, χ) on the region Gd(σ).

Theorem 2 (Principle of Optimality) Assume that x0(c) is an optimal con-
trol with respect to the initial pair (c0, s0) on the region Gd and s0(c) is appro-
priate optimal trajectory. Then x0(c) is optimal with respect to the initial pair
(σ, s0(σ)) on the region Gd(σ) for every σ ∈ Gd.

Proof. Assume the contrary. Then there exist x(c)(c ∈ Gd(σ)) such that we
have

J(χ, x(Gd(σ))) < J(χ, x0(Gd(σ))). (26)

We choose a new control process x̃(c)(c ∈ Gd) as follows:

x̃(c) =

{
x0(c) , for c ∈ Gd1

(σ)
x(c) , for c ∈ Gd(σ).

(27)

As it can be seen, (27) is an admissible control process such that

J(s0, x̃(Gd)) = J(s0, x̃(Gd1
(σ) ∪ Gd(σ))). (28)

According to the condition, s0(σ) = χ. Thus we have

J(s0, x̃(Gd1
(σ) ∪ Gd(σ))) = J(s0(σ), x̃(Gd(σ))) = J(χ, x(Gd(σ)))

< J(χ, x0(Gd(σ))) = J(s0(σ), x0(Gd(σ))) = J(s0, x0(Gd)), (29)

and by using (28) and (29) we can obtain

J(s0, x̃(Gd)) < J(s0, x0(Gd)). (30)

The inequality (30) is contradicting the hypothesis that the control x0(c)(c ∈
Gd) is optimal. This finishes the proof of the theorem.

4. Conclusion

It is shown that nonlinear multi parameter binary difference equation system is
over-determined. A theorem, which ensures existence of a solution for nonlinear
multi parameter binary difference equation system is proved. This theorem
similar to Frobenius’s theorem is needed for existence of the optimal control
problem solution. It is shown that the principle of optimality is provided for
terminal control problem.
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