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Abstract: Elicitation of utilities is among the most time con-
suming tasks in decision analysis. We search for ways to shorten
this phase without compromising the quality of results. We use the
results from an empirical experiment with 104 participants. They
elicited 9 inner nodes from their one-dimensional utility function
over monetary gains and losses using three elicitation techniques.
A specific feature of the results is their interval character, as the
elicitators are fuzzy rational individuals. The data is used to con-
struct arctan-approximated and linearly interpolated utilities and
to compare the results. We form partial samples with 3, 4 and 5
nodes for each participant and each elicitation method, and again
interpolate/approximate the utilities. We introduce goodness-of-fit
and deterioration measures to analyze the decrease in quality of
the utility function due to reduced data nodes. The analysis, using
paired-sample tests, leads to the following conclusions: 1) arctan-
approximation is more adequate than linear interpolation over the
whole samples; 2) 5 inner nodes are sufficient to construct a sat-
isfactory arctan-approximation; 3) arctan-approximation and linear
interpolation are almost equal in quality over the partial samples,
but the local risk aversion of the linearly interpolated utility func-
tion is of poor quality unlike that of the arctan-approximated utility
function.
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1. Introduction

Utility theory (von Neumann, Morgenstern, 1947) has been applied to prob-
lems in industry, policy making, concurrent engineering and economics (French,
1993). It models risky alternatives as lotteries, i.e. sets of disjoint events, as-
sociated with a consequence (prize), and its probability. The preferences of a
decision maker (DM) are modeled by the utility function u(.), increasing in prize.
Expected utility is the quantitative criterion that rational decision analysis is
based on.

In most decision problems one has to construct a one-dimensional (1-D) u(.)
over continuous prizes. The common procedure is to elicit only several nodes,
and then approximate/interpolate the entire function. The first task may be ap-
proached by the methods of probability equivalence (PE), certainty equivalence
(CE) (Farquhar, 1984), lottery equivalence (LE) (McCord, De Neufville, 1986),
uncertain equivalence (UE) (Tenekedjiev et al., 2006), trade-off (TO) (Wakker,
Deneffe, 1996). They solve preferential equations via dichotomy, Press et al.
(1992). An ideal DM has infinite discriminating abilities and obeys the axioms
of rationality, therefore she/he elicits unique estimates (French, Insua, 2000).
Real DMs identify uncertainty intervals using triple dichotomy (Tenekedjiev et
al., 2004). Their preferences disobey some of the rationality axioms and are par-
tially non-transitive, and such DMs are called fuzzy rational (FRDM), Nikolova
et al. (2005). An analytical approximation of u(.) should adequately interpret
the typical risk attitude of the DM, represented by her/his local risk aversion
function r(.), Pratt (1964). Most analytical forms apply only for specific risk
attitude or prize range (Clemen, 1996; Keeney, Raiffa, 1993). Nikolova (2007)
presented an arctan form of 1-D u(.) of a FRDM. It applies over gains and
losses and its corresponding r(.) reflects the risk attitude of most DMs. Other
publications (e.g., Tenekedjiev et al., 2008) compare the arctan-approximation
with another analytical form, power approximation.

Here we report on a further investigation of the properties of arctan-approxi-
mation. We use the weighted least square method to estimate the unknown
parameters of the arctan-approximated utility function, as in Tenekedjiev et
al. (2008). It weighs the deviation of the model from the subjective estimate
in a given node by the width of the uncertainty intervals. Each elicitation
method solves a specific preference equation, but the solutions take the form
of uncertainty intervals for the FRDM. Some methods, like CE, UE and TO,
generate uncertainty intervals on the abscissa, x, i.e. on prizes. Other methods,
like PE and LE, generate uncertain intervals on the ordinate, u, i.e. utility. That
is why it is required that analytical forms of the utility function have analytical
inverses.

This paper considers two forms of utility function – arctan-approximated
and linearly interpolated. We focus on the possibility of constructing u(.) for
monotonic preferences using a reduced number of elicited nodes, which can sub-
stantially facilitate utility analysis. This is expected to be better than linear
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interpolation. We hypothesize that: 1) arctan-approximation represents better
the typical risk attitude of the DM and so is more adequate than linear interpo-
lation; 2) five inner nodes suffice to construct satisfactory arctan-approximation;
3) both the arctan-approximated and the linear interpolated utility functions
have roughly the same goodness-of-fit measures when constructed over the re-
duced samples, but the local risk aversion of the former is more precise. Also,
its quality is practically the same when the full number of nodes is used.

An empirical experiment was used to test these hypotheses, involving 104
volunteers. With three elicitation methods, CE, LE and UE, they elicited 9
inner nodes of their utility functions over monetary prizes in the interval from
-10,000 Bulgarian leva (BGN) to 30,000 BGN. We use weighted least squares
method in two modifications (depending on the type of elicited uncertainty
intervals), to estimate the parameters of 3 × 104 = 312 utility functions of
arctan type. All utility and local risk aversion functions were constructed. The
counterpart set of utility functions were linearly interpolated on the midpoints
of the uncertainty intervals of inner nodes. Similar procedures were performed
for samples containing 3, 4 or 5 inner nodes. The goodness-of-fit measures of
the model to the data were calculated. We introduced measures of deterioration
of the resulting function due to reduction in data points, and employ four tests
for paired samples (Bootstrap mean test, Bootstrap median test, sign test, and
sign rank test) to prove statistical significance of the differences in precision of
the arctan-approximation and linear interpolation.

In what follows, Section 2 gives an overview of the form in which FRDMs
elicit utility nodes, major concern being how to interpret the typical risk atti-
tude of the DM. Section 3 presents the content and structure of the empirical
study that provides evidence for the three hypotheses regarding the properties
of the arctan-approximation. Three appendices contain formal descriptions and
algorithms employed in the main text.

2. Constructing monotonic 1-D utility functions

Assume that X is a continuous 1-D set of prizes and an FRDM has monotoni-
cally increasing preferences over it (≻ stands for strict preference):

xi ≻ xj ⇔ xi > xj , for xi ∈ X, xj ∈ X. (1)

Then the most and the least preferred prizes xbest and xworst are, respec-
tively, the supremum and the infimum of X . The problem is to construct a
1-D utility function u(.) over the interval [xworst ; xbest ]. It is impossible to elicit
the utilities of all prizes in the domain, only a couple of nodes can be assessed
for subsequent interpolation/approximation. The utility elicitation techniques
require from the DMs to solve preference equations between prizes and/or lot-
teries. They need to change one parameter in this equation until the indifference
of options is reached. A general scheme of the equation and the characteristics
of the main elicitation techniques were outlined in Tenekedjiev et al. (2006).
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Assume that an FRDM elicited z − 2 inner nodes of u(.) with coordinates
(xul

, ul), for l = 2, 3, . . . , z − 1, where xul
and ul are, respectively, a utility

quantile and a utility quantile index. The end nodes are known: (xu1
, u1) =

(xworst , 0) and (xuz
, uz) = (xbest , 1).

Methods like PE and LE select several quantiles xul
(l = 2, 3, . . . , z− 1) and

elicit their corresponding quantile indices ûl. The degree of belief of DMs re-
garding the quantile index takes the form of (uncertainty) intervals ûl ∈ [ûd

l ; û
u
l ]

(l = 2, 3, . . . , z − 1). Then the utility function should be constructed on z > 1
number of nodes with the following characteristics:

{(xl; û
d
l ; û

u
l ) | l = 1, 2, . . . , z},

x1 < x2 < ... < xz ,

0 = ûd
1 ≤ ûd

2 ≤ ... ≤ ûd
z = 1, (2)

0 = ûu
1 ≤ ûu

2 ≤ ... ≤ ûu
z = 1,

ûd
l < ûu

l , for l = 2, 3, . . . , z − 1.

The quantile index ûl is a random variable, dependent on xul
, belonging

to the interval [ûd
l ; û

u
l ]. So, in a strictly increasing utility function, the bounds

need not only increase, but may also coincide.
Methods like CE and UE select utility quantile indices ul (l = 2, 3, . . . , z−1)

and elicit their corresponding quantiles x̂ul
. Again, the FRDM elicit uncertainty

intervals, here of the form x̂ul
∈ [x̂d

ul
; x̂u

ul
] (l = 2, 3, . . . , z − 1). Then the utility

function is constructed on z > 1 nodes with the following characteristics:

{(x̂d
ul

; x̂u
ul

; ul) | l = 1, 2, . . . , z},

x̂d
u1

≤ x̂d
u2

≤ ... ≤ x̂d
uz

,

x̂d
u1

= x̂u
u1

≤ x̂u
u2

≤ ... ≤ x̂u
uz

= x̂d
uz

, (3)

x̂d
ul

< x̂u
ul

, for l = 2, 3, . . . , z − 1,

0 = u1 < u2 < ... < uz = 1.

The quantile x̂ul
is a random variable, dependent on ul, belonging to the

interval [x̂d
ul

; x̂u
ul

]. So, in a strictly increasing utility function, the bounds need
not only increase, but may also coincide.

Once a set of elicited nodes is available, the utility function may be interpo-
lated or approximated. The selected method should precisely interpret the true
utility function and preserve the risk attitude of each DM. The typical risk atti-
tude is best described by the local risk aversion function r(x) = −u′′(x)/u′(x),
Pratt (1964). Empirical studies reveal that DMs are risk averse for gains and
small losses and their risk aversion decreases with the growth of gains. In the
same time they are risk prone for losses and small gains and their risk proneness
decreases with the growth of losses, French (1993).

Tenekedjiev et al. (2008) discuss in detail analytical approximation of the
utility function in the case of strictly increasing preferences. The procedures
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are summarized in Section A1.1 of Appendix 1. Analytical approximation is
appropriate if only few elicited nodes are available or if the uncertainty intervals
are too large. If the selected mathematical form describes correctly the risk
attitude of the FRDM, the analytical construction of the utility function filters
the elicitation errors.

Keeney and Raiffa (1993), a rich source of analytical forms, suggest that for
risk neutrality u(x) = x, for constant risk aversion u(x)∼

p
1 − e−x/R (R > 0)

and u(x)∼
p
−e−cx (c > 0) (∼

p
denoting proportionality). For decreasing risk

aversion u(x)∼
p

ln(x) and u(x)∼
p
(x + b)a (b > −x, a < 1). For constant risk

proneness u(x)∼
p

e−cx (c < 0), whereas for decreasing risk proneness u(x)∼
p

x2

and u(x)∼
p
(x + b)a (b > −x, a > 1). Trautmann and Weihs (2006) discuss

Harrington’s desirability function u(x)∼
p

e−e−b−ax

. This dependence generates

a function with a typical local risk aversion and is applicable to problems, where
consequences are gains and losses. It can also be applied in decision problems
under strict certainty.

Nikolova (2007) proposed a modified arctan-approximation of the utility
function (A1.9). It suggests that if the optimal approximated curve passes
through the uncertainty interval of the nodes then it is very likely that the
arctan-approximation would reduce the elicitation error, since it used correct
prior information for risk attitude. If the optimal approximated curve substan-
tially deviates from the uncertainty intervals, then the arctan-approximation
should be replaced by another approximation, as the risk attitude of that DM
is not typical.

Tenekedjiev et al. (2008) compare arctan-approximation with power approx-
imation (4), whose local risk aversion is as in (5):

u(x) =
(x − xd+x0)

a
− xa

0

(xu − xd+x0)
a − xa

0

, (4)

r(x) = −
u′′(x)

u′(x)
=

1 − a

x − xd + x0
. (5)

3. Empirical study

3.1. Experimental setup

The empirical experiment was reported in Tenekedjiev et al. (2008): 104 volun-
teers (university students, taking a quantitative decision analysis course) con-
structed their utility functions in the interval [-10000 BGN; 30000 BGN] using
CE, UE, and LE. The volunteers elicited nine utility quantiles with indices
0.1, 0.2, . . . , 0.9 using CE and UE. They also elicited the utilities of nine inner
prize values, -6000 BGN, -2000 BGN, 2000 BGN, 6000 BGN, 10000 BGN, 14000
BGN, 18000 BGN, 22000 BGN and 26000 BGN, using LE. Each participant was
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interviewed in three 2-hour sessions, one session per method, with 48h between
each session. The order of methods and elicited nodes was random for each
participant in order to avoid the anchoring effect (Tversky, Kahneman, 1974).
An example of data collected from a participant is shown in Table 1.

The data from the j-th DM can be grouped in 12 samples. Samples CE9,j,
UE9,j and LE9,j containing all the nine inner nodes, elicited respectively using
CE, UE and LE, are called whole samples. Samples CE3,j and UE3,j , consisting
of nodes with quantile indices 0.2, 0.5 and 0.8, and samples LE3,j that include
3 nodes with quantiles -2000 BGN, 10000 BGN and 22000 BGN, are called 3-

partial samples. Samples CE4,j and UE4,j, consisting of nodes with quantile
indices 0.2, 0.4, 0.6 and 0.8, and samples LE4,j of nodes with quantiles -2000
BGN, 6000 BGN, 14000 BGN and 22000 BGN, are called 4-partial samples.
Samples CE5,j and UE5,j of nodes with quantile indices 0.1, 0.3, 0.5, 0.7, 0.9,
and samples LE5,j of nodes with quantiles -6000 BGN, 2000 BGN, 10000 BGN,
18000 BGN and 26000 BGN, are called 5-partial samples. The 3, 4 and 5-partial
samples together shall be referred to as partial samples.

Table 1. Quantile and quantile index uncertainty intervals of inner nodes of the utility
function in the interval [−10000 BGN; 30000BGN] for DM No. 84, elicited using CE,
UE and LE. The shaded boxes indicate the values that the DM did not elicit

l 1 2 3 4 5 6 7 8 9 10 11

u 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1l

l

d

u
x̂ –10000 –7700 –6100 –5800 –4400 –2400 3000 3800 6300 8000 30000 

C
E

l

u

u
x̂ –10000 –6100 –4500 –4000 –2000 4000 5400 6000 8300 10200 30000 

l

d

u
x̂ –10000 –6400 –2000 –1600 –400 1000 2700 4400 6500 9900 30000 

U
E

l

u

u
x̂ –10000 –4000 4000 6000 2400 3800 5100 7200 8900 12100 30000 

–10000 –6000 –2000 x 2000 6000 10000 14000 18000 22000 26000 30000 l

d

lû 0 0.03 0.12 0.16 0.40 0.63 0.72 0.85 0.89 0.92 1

L
E

u

lû 0 0.09 0.20 0.28 0.56 0.81 0.88 0.95 0.97 0.98 1

Assume that the goodness-of-fit measure (A1.4) is

χ2
u(Itest , Ipar , form). (6)

It is calculated using sample Itest of type (2) and analytical dependence (A1.1) of
type form with parameters ~pIpar

opt,form = (pIpar

1,opt,form , pIpar

2,opt,form , . . . , pIpar

n,opt,form),
identified byoptimization on the sample Ipar of type (2). Similarly, the goodness-
of-fit measure (A1.8) is:

χ2
x(Itest , Ipar , form). (7)

It is calculated using sample Itest of type (3) and analytical dependence (A1.1) of
type form with parameters ~pIpar

opt,form = (pIpar

1,opt,form , pIpar

2,opt,form , . . . , pIpar

n,opt,form),
identified by optimization using the sample Ipar of type (3).
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For the arctan-approximated utility, form is arc, n = 2, pIpar

1,opt,arc = aIpar

opt ,

pIpar

2,opt,arc = xIpar

0,opt . For the utility linearly interpolated on the midpoints of the
uncertainty intervals in Ipar , form is lin, n = z − 2, where z is the number of
nodes in Ipar . For (6), pIpar

l−1,opt,lin = (ûd,Ipar

l + ûu,Ipar

l )/2, for l = 2, 3, . . . , z − 1,

whereas for (7), pIpar

l−1,opt,lin = (x̂d,Ipar

l + x̂u,Ipar

l )/2, for l = 2, 3, . . . , z − 1.

3.2. Linear interpolation versus arctan-approximation over the whole

samples

This section provides a qualitative proof of the first hypothesis, formulated in
the Introduction.

For each DM we can construct three utility functions using linear interpola-
tion on the midpoints of the uncertainty intervals in CE9 ,j , UE9 ,j and LE9 ,j .
The resulting graphics for j = 84 are shown in Fig. 1a, b, c (upper section).
The local risk aversion function of the linearly interpolated utilities may be
constructed using the procedures from section A1.2 of Appendix 1. The lower
sections of Fig. 1a, b, c depict the results. The rough shape of the local risk
aversion is a typical result from the differentiation of unsmoothed functions.
The reduction of the number of points makes the interpolation rather rough,
and its local risk aversion becomes practically useless (see Fig. 2a, b, c).

The data in CE9 ,84 , UE9 ,84 and LE9 ,84 are used to arctan-approximate u(.)
using analytical form (A1.9) with parameters minimizing (A1.4) and (A1.8).
The optimization is executed using MATLAB functions optparam u and opt-

param x. The resulting utility functions and their local risk aversion functions
for DM No. 84 are presented in Fig. 3. A visual comparison of Figs. 1 and 3
reveals that for the analyzed samples, the arctan-approximation adequately en-
capsulates the elicited nodes, and the corresponding local risk aversions are of
much higher quality than those of the linearly interpolated function. Similar
results were obtained for all the experiment participants.

We can conclude the following: 1) linear interpolation of u(.) does not ac-
count for the width of uncertainty intervals; 2) linearly interpolated local risk
aversion function is of no practical use; 3) arctan-approximation fits to the
elicited nodes and the average goodness-of-fit measures (6) and (7) are satisfac-
tory; 4) local risk aversion of the arctan-approximated u(.) is of much higher
quality than of the linearly interpolated u(.).

Thus, if the arctan-approximation fits well to the data, it should be preferred
over the linear interpolation. Otherwise, the risk attitude of the FRDM is not
typical and perhaps the best option is linear interpolation.

3.3. Arctan-approximation over the partial samples

This section provides quantitative proof of the second hypothesis from the In-
troduction. If there is an appropriate analytical form of u(.), then it can be
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Figure 1. Linearly interpolated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE, all on nine inner nodes. The
uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines.
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Figure 2. Linearly interpolated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE, all on four inner nodes. The
uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines.
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Figure 3. Arctan-approximated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE, all on nine inner nodes. The
uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines
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adequately constructed using a small number of data points. To test this propo-
sition, we estimated the parameters of the utility function over the partial sam-
ples. For example, the following optimal parameters and their corresponding
minimal values of the measures (A1.4) and (A1.8) were estimated for the data
in the partial samples:

a) for the 3-partial samples:

a
CE3,84

opt = 1.3e-4, x
CE3,84

0,opt = −2673, χ2
x(CE3 ,84 ,CE3 ,84 , arc) = 1.3,

a
UE3,84

opt = 2.5e-4, x
UE3,84

0,opt = 2555, χ2
x(UE3 ,84 ,UE3 ,84 , arc) = 0.043,

a
LE3,84

opt = 1.2e-4, x
LE3,84

0,opt = 4749, χ2
u(LE3 ,84 ,LE3 ,84 , arc) = 0.039;

b) for the 4-partial samples:

a
CE4,84

opt = 1.2e-4, x
CE4,84

0,opt = −2353, χ2
x(CE4 ,84 ,CE4 ,84 , arc) = 2.5,

a
UE4,84

opt = 2.4e-4, x
UE4,84

0,opt = 2412, χ2
x(UE4 ,84 ,UE4 ,84 , arc) = 0 .087 ,

a
LE4,84

opt = 1.1e-4, x
LE4,84

0,opt = 5450, χ2
u(LE4 ,84 ,LE4 ,84 , arc) = 0 .0058 ;

c) for the 5-partial samples:

a
CE5,84

opt = 1.9e-4, x
CE5,84

0,opt = −2229, χ2
x(CE5 ,84 ,CE5 ,84 , arc) = 4.4,

a
UE5,84

opt = 2.3e-4, x
UE5,84

0,opt = 1528, χ2
x(UE5 ,84 ,UE5 ,84 , arc) = 0.29,

a
LE5,84

opt = 1.5e-4, x
LE5,84

0,opt = 6304, χ2
u(LE5 ,84 ,LE5 ,84 , arc) = 0.28.

For all three methods, the resulting parameters slightly deviate from those
estimated using whole samples. The resulting utilities for the 3-partial and 5-
partial samples are depicted in Figs. 4 and 5. A dotted line presents the utility
function and the local risk aversion function. The latter are constructed using
CE9 ,j , UE9 ,j , and LE9 ,j . The figures show negligible deterioration of quality
due to the reduction of the number of nodes.

The measures (A1.4) and (A1.8) are calculated over the whole samples, with
parameters acquired from the partial samples in order to get a quantitative
estimate of the deterioration.

A possible absolute measure of deterioration due to the reduced number of
nodes is the difference between the calculated values of (A1.4) or (A1.8), and
their minimal values (i.e. the optimal parameters calculated using the whole
samples for r = 3, 4, 5; j = 1, 2, . . . , 104:

∆
CEr,j

abs = χ2
x(CE9 ,j ,CEr ,j , arc) − χ2

x (CE9 ,j ,CE9 ,j , arc),

∆
UEr,j

abs = χ2
x(UE9 ,j ,UEr ,j , arc) − χ2

x (UE9 ,j ,UE9 ,j , arc), (8)

∆
LEr,j

abs = χ2
u(LE9 ,j ,LEr ,j , arc) − χ2

u (LE9 ,j ,LE9 ,j , arc).
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Figure 4. Arctan-approximated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE, all on three and nine inner nodes.
The uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines.
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Figure 5. Arctan-approximated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE, all on five and nine inner nodes.
The uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines.
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A possible relative measure of deterioration is the absolute measure (8) di-
vided by the minimum value of (A1.4) or (A1.8), multiplied by 100 (in %) for
r = 3, 4, 5; j = 1, 2, . . . , 104:

∆
CEr,j

rel = 100∆
CEr,j

abs /χ2
x(CE9 ,j ,CE9 ,j , arc),

∆
UEr,j

rel = 100∆
UEr,j

abs /χ2
x(UE9 ,j ,UE9 ,j , arc), (9)

∆
LEr,j

rel = 100∆
LEr,j

abs /χ2
u(LE9 ,j ,LE9 ,j , arc).

The measures of deterioration (8) and (9) are calculated for all DMs. Ta-
bles 2, 3 and 4 present their mean (m), standard deviation (σ), median (x0.5),
interquartile range (x0.75−x0.25), and the goodness-of-fit measures with param-
eters, calculated over the partial samples, a nd tested over the whole sample.

If there is sufficient amount of data, a statistical test would reject a null
hypothesis that the deterioration due to reduction of the number of data points
is zero, therefore the test is useless for our purposes. Although deterioration of
the quality of approximation is statistically significant, it is negligible. Tables 2,
3 and 4 show that, for all methods, the increase of the number of nodes from 3
to 5 decreases the measures of deterioration. In the case of 5 nodes the highest
average relative difference (9) is 14% and the highest average absolute difference
(8) is 0.15, a bit more than 1/7 of an uncertainty interval. Thus, 5 nodes are
sufficient to construct feasible approximation of u(.) and r(.), although more
inner points would (insignificantly) increase the precision of the utility function.
When the number of the inner nodes is further reduced, the approximation
would not indicate whether it was successful or not. This is important, because
in the latter case the analytical approximation should be replaced by linear
interpolation.

Table 2. Comparison of arctan-approximation on the whole and partial samples
of CE. Rows contain mean, standard deviation, median and interquartile range for
10 samples of 104 goodness-of-fit and deterioration measures, corresponding to the
following columns, i.e. 1: χ2

x(CE9 ,j ,CE9 ,j , arc) (7); 2: χ2

x(CE9 ,j ,CE3 ,j , arc) (7); 3:

∆
CE3,j

abs (8); 4: ∆
CE3,j

rel (9); 5: χ2

x(CE9 ,j ,CE4 ,j , arc) (7); 6: ∆
CE4,j

abs (8); 7: ∆
CE4,j

rel (9);

8: χ2

x(CE9 ,j ,CE5 ,j , arc) (7); 9: ∆
CE5,j

abs (8); 10: ∆
CE5,j

rel (9).

1 2 3 4 5 6 7 8 9 10

m 1.9 2.3 0.36 24 2.3 0.36 22 2.1 0.16 9.5

1.81 2.15 0.517 31.2 2.21 0.671 28.6 1.96 0.294 11.2

x0.5
1.4 1.7 0.15 13 1.8 0.13 10 1.6 0.066 5.1

x0.75-x0.25
1.86 1.87 0.371 27.0 2.06 0.390 29.0 1.90 0.171 12.3
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Table 3. Comparison of arctan-approximation on the whole and partial samples of
UE. Rows contain mean, standard deviation, median and interquartile range for 10
samples of goodness-of-fit and deterioration measures, corresponding to the following

columns, i.e. 1: χ2

x(UE9 ,j ,UE9 ,j , arc) (7); 2: χ2

x(UE9 ,j ,UE3 ,j , arc) (7); 3: ∆
UE3,j

abs

(8); 4: ∆
UE3,j

rel (9); 5: χ2

x(UE9 ,j ,UE4 ,j , arc) (7); 6: ∆
UE4,j

abs (8); 7: ∆
UE4,j

rel (9); 8:

χ2

x(UE9 ,j ,UE5 ,j , arc) (7); 9: ∆
UE5,j

abs (8); 10: ∆
UE5,j

rel (9)

1 2 3 4 5 6 7 8 9 10 

m 2.4 2.8 0.48 25 2.8 0.41 18 2.5 0.15 8.0 

 1.92 2.53 1.04 32.4 2.53 0.992 23.8 2.05 0.293 9.57 

x0.5
1.9 2.4 0.15 9.9 2.4 0.088 6.2 2.1 0.054 3.8 

x0.75-x0.25
2.69 2.61 0.348 34.9 2.76 0.355 25.4 2.68 0.147 11.0 

Table 4. Comparison of arctan-approximation on the whole and the partial samples
of LE. Rows contain mean, standard deviation, median and interquartile range for 10
samples of goodness-of-fit and deterioration measures, corresponding to the following

columns, i.e. 1: χ2

u(LE9 ,j ,LE9 ,j , arc) (6); 2: χ2

u(LE9 ,j ,LE3 ,j , arc) (6); 3: ∆
LE3,j

abs

(8); 4: ∆
LE3,j

rel (9); 5: χ2

u(LE9 ,j , LE4 ,j , arc) (6); 6: ∆
LE4,j

abs (8); 7: ∆
LE4,j

rel (9); 8:

χ2

u(LE9 ,j ,LE5 ,j , arc) (6); 9: ∆
LE5,j

abs (8); 10: ∆
LE5,j

rel (9)

1 2 3 4 5 6 7 8 9 10 

m 0.78 1.1 0.23 34 0.89 0.11 18 0.86 0.08 14 

 0.705 0.873 0.336 37.3 0.774 0.164 22.6 0.747 0.100 14.0 

x0.5
0.54 0.75 0.093 19 0.62 0.052 9.9 0.66 0.051 8.9 

x0.75–x0.25
0.803 1.11 0.271 43.3 0.999 0.115 22.1 0.920 0.0944 18.3 

Similar results are obtained through additional goodness-of-fit measures of
the number of times when the approximated values of (A1.9) or (A1.12) are
outside their initial uncertainty intervals. These measures are hardly suitable
for optimization, since they are discrete variables, but they could be natural de-
terioration measures between the whole and the partial samples. The numerical
results do not provide additional insight on the problem of reducing the sample
size and are omitted.

Eliciting inner nodes is one of the most time-consuming tasks in decision
analysis, and so identification of the minimum required number of inner nodes
is of high practical importance.

3.4. Arctan-approximation versus linear interpolation over the par-

tial samples

This section provides quantitative proof for the third hypothesis from the In-
troduction.
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We compared linear interpolation and arctan-approximation in Section 3.2,
but only qualitatively. Although linear interpolation does not generate “errors”
in the elicited nodes, it does generate error if constructed over the partial sam-
ples with goodness-of-fit measures, estimated using the whole samples. The
utility functions for DM No. 84, linearly interpolated on the midpoints of the
uncertainty intervals of 3-partial and 5-partial CE, UE and LE samples and
their corresponding local risk aversion functions are shown in Figs. 6 and 7 with
a solid line. A dotted line represents the interpolated functions over the whole
sample. Visual comparison shows that even at five nodes, the local risk aversion
approximation is of poor quality.

An absolute measure of deterioration of linear interpolation compared to
arctan-approximation is the difference between the goodness-of-fit measures for
both forms for r = 3, 4, 5; j = 1, 2, . . . , 104:

∆
CEr,j

abs,lin = χ2
x(CE9 ,j ,CEr ,j , lin) − χ2

x (CE9 ,j ,CEr ,j , arc),

∆
UEr,j

abs,lin = χ2
x(UE9 ,j ,UEr ,j , lin) − χ2

x (UE9 ,j ,UEr ,j , arc), (10)

∆
LEr,j

abs,lin = χ2
u(LE9 ,j ,LEr ,j , lin) − χ2

u(LE9 ,j ,LEr ,j , arc),

The values of (10), like the values of its components, are calculated for all
DMs. The mean (m), standard deviation (σ), median (x0.5), as well as the
interquartile range (x0.75 − x0.25) of the absolute measures of deterioration on
the partial samples for all DMs are given in columns 3, 6 and 9 of Tables 5, 6
and 7.

We use the following paired sample statistical tests to prove the statisti-
cal significance of the differences in the goodness-of-fit measures of the arctan-
approximation and linear interpolation:

1) Bootstrap mean test to analyze whether the mean value of the difference
∆ of the two samples is zero. The null hypothesis is H0: E∆ = 0, and the
alternative hypothesis is H1: E∆ > 0.

Table 5. Comparison of linear interpolation and arctan-approximation over the partial
samples of CE. Rows contain mean, standard deviation, median and interquartile range
for nine samples of goodness-of-fit and deterioration measures, corresponding to the
following columns, i.e. 1: χ2

x(CE9 ,j ,CE3 ,j , arc) (7); 2: χ2

x(CE9 ,j ,CE3 ,j , lin) (7); 3:

∆
CE3,j

abs,lin (10); 4: χ2

x(CE9 ,j ,CE4 ,j , arc) (7); 5: χ2

x(CE9 ,j ,CE4 ,j , lin) (7); 6: ∆
CE4,j

abs,lin

(10); 7: χ2

x(CE9 ,j ,CE5 ,j , arc) (7); 8: χ2

x(CE9 ,j , CE5 ,j , lin) (7); 9: ∆
CE5,j

abs,lin (10)

1 2 3 4 5 6 7 8 9

m 2.3 5.3 3.0 2.3 5.0 2.7 2.1 0.53 -1.5 

 2.15 6.92 6.43 2.21 6.87 6.39 1.96 0.492 1.99 

x0.5
1.7 3.1 0.75 1.8 2.9 0.66 1.6 0.32 -1.4 

x0.75–x0.25
1.87 5.23 4.67 2.06 5.12 4.59 1.90 0.594 1.89 
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Figure 6. Linearly interpolated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE, all on 3 and 9 inner nodes. The
uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines.
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Figure 7. Linearly interpolated utility function (up) and local risk aversion function
(down) for DM No. 84 using: a) CE; b) UE; c) LE,all on 5 and 9 inner nodes. The
uncertainty intervals of the elicited nodes are depicted by horizontal/vertical lines.
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Table 6. Comparison of linear interpolation and arctan-approximation over the partial
samples of UE. Rows contain mean, standard deviation, median and interquartile range
for nine samples of goodness-of-fit and deterioration measures, corresponding to the
following columns, i.e. 1: χ2

x(UE9 ,j ,UE3 ,j , arc) (7); 2: χ2

x(UE9 ,j ,UE3 ,j , lin) (7); 3:

∆
UE3,j

abs,lin (10); 4: χ2

x(UE9 ,j ,UE4 ,j , arc) (7); 5: χ2

x(UE9 ,j ,UE4 ,j , lin) (7); 6: ∆
UE4,j

abs,lin

(10); 7: χ2

x(UE9 ,j ,UE5 ,j , arc) (7); 8: χ2

x(UE9 ,j ,UE5 ,j , lin) (7); 9: ∆
UE5,j

abs,lin (10)

1 2 3 4 5 6 7 8 9

m 2.8 3.6 0.81 2.8 3.4 0.59 2.5 0.62 -1.9 

 2.53 5.80 4.94 2.53 5.86 5.08 2.05 1.09 2.01 

x0.5
2.4 2.1 -0.090 2.4 1.8 -0.16 2.1 0.39 -1.3 

x0.75–x0.25
2.61 2.43 2.40 2.76 2.07 2.37 2.69 0.564 2.75 

Table 7. Comparison of linear interpolation and arctan-approximation over the partial
samples of LE. Rows contain mean, standard deviation, median and interquartile range
for nine samples of goodness-of-fit and deterioration measures, corresponding to the
following columns, i.e. 1: χ2

u(LE9 ,j ,LE3 ,j , arc) (6); 2: χ2

u(LE9 ,j ,LE3 ,j , lin) (6); 3:

∆
LE3,j

abs,lin (10); 4: χ2

u(LE9 ,j , LE4 ,j , arc) (6); 5: χ2

u(LE9 ,j ,LE4 ,j , lin) (6); 6: ∆
LE4,j

abs,lin

(10); 7: χ2

u(LE9 ,j ,LE5 ,j , arc) (6); 8: χ2

u(LE9 ,j ,LE5 ,j , lin) (6); 9: ∆
LE5,j

abs,lin (10);

1 2 3 4 5 6 7 8 9

m 1.0 0.78 -0.22 0.89 0.51 -0.38 0.86 0.34 -0.52 

 0.873 0.700 0.656 0.774 0.433 0.571 0.747 0.416 0.676 

x0.5
0.75 0.53 -0.11 0.62 0.37 -0.20 0.66 0.21 -0.29 

x0.75–x0.25
1.11 0.746 0.454 0.999 0.406 0.475 0.920 0.337 0.579 

2) Bootstrap median test to analyze whether the median of the difference
∆ of the two samples is zero. The null hypothesis is H0: ∆0.5 = 0, and the
alternative hypothesis is H1: ∆0.5 > 0 (detailed description of both Bootstrap
tests is given in Appendix 3).

3) sign test to analyze whether the median of the difference of the two
samples ∆ is zero. The null hypothesis is H0: ∆0.5=0, and the alternative
hypothesis is H1: ∆0.5 > 0. The value of pvalue,3 may be calculated using a
modification of the signtest function of the MATLAB Statistical Toolbox (The
MathWorks, 2006).

4) sign rank test to analyze whether the median of the difference of the two
samples ∆ is zero. The null hypothesis is H0: ∆0.5 = 0, whereas the alternative
hypothesis is H1: ∆0.5 > 0. The value of pvalue,4 may be calculated using a
modification of the signrank function of the MATLAB Statistical Toolbox (The
MathWorks, 2006).

The pvalue was calculated for each test and each elicitation method with
N=100,000 simulation cycles for the Bootstrap tests. The results are summa-
rized in Table 8. The pvalue, calculated by tests that analyzed whether the
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arctan-approximation was better than linear interpolation are in shaded boxes.
The tests that analyzed whether the linear interpolation is better than arctan-
approximation are given in white boxes. The tests that reject the null hypothesis
at a significance level α=0.001 are in normal font, whereas the tests that failed
to reject the null hypothesis are in bold. The results of Table 8 lead to the
following conclusions:

1) the advantage of the arctan-approximation is statistically significant ac-
cording to all tests for samples CE3 ,j and CE4 ,j ;

2) the advantage of the linear interpolation is statistically significant ac-
cording to all tests for the partial samples of LE (except for the sign test on
LE3 ,j ); such result could have been expected since LE generates a flatter utility
function;

3) the results obtained on the basis of samples UE3 ,j and UE4 ,j show that
the null hypothesis cannot be rejected, because, for all eight tests, pvalue > α =
0.001; moreover, the medians and the mean values point at different directions;

4) the analysis of the 5-partial samples of CE, UE and LE shows statisti-
cal significance in favor of linear interpolation; that might have been expected
because here, linear interpolation uses five parameters compared to only two of
the arctan-approximation.

These conclusions show that the third hypothesis does not contradict the
data.

Table 8. Values of pvalue of the four paired-sample tests over the partial samples.
Shaded pvalue indicate the tests of whether the arctan-approximation is better than
linear interpolation, whereas non-shaded ones - whether linear interpolation is bet-
ter than arctan-approximation. Normal font pvalue are for tests that rejected H0 at
α=0.001, whereas bold pvalue are for tests that fail to reject H0.

 CE UE LE CE UE LE CE UE LE 

 On 3 nodes On 4 nodes On 5 nodes 

pvalue,1 0 1.05 –2 5e–6 5e–6 4.65 –2 0 0 0 0 

pvalue,2 0 4.51 –2 0 0 1.19 –2 0 0 0 0 

pvalue,3 5.11 –6 1.41 –1 2.20 –3 1.20 –3 3.12 –2 6.62e–12 2.17e–14 2.26e–19 2.17e–14

pvalue,4 1.97 –7 3.01 –1 1.78e–5 5.91 –6 7.40 –2 1.05e–13 6.89e–15 3.50e–17 5.04e–16

 

4. Conclusions

This paper investigated the advantages of arctan-approximation over linear in-
terpolation of a 1-D utility function on the basis of empirical data. Initially, the
utility function was linearly interpolated on the midpoints of the uncertainty
intervals. This approach did not take into account the width of the uncertainty
intervals. Graphical results demonstrated that: 1) the constructed local risk
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aversion was too imprecise; 2) the reduction of the number of inner nodes from
9 to 4 additionally compromised the results.

The analytical approximation of the utility function using the arctan(.) form
(A1.9) qualitatively demonstrated that: 1) arctan-approximation was more ade-
quate than linear interpolation as it correctly represented the risk attitude of the
FRDM; 2) even if 4 inner nodes were used, arctan-approximation still correctly
encapsulated the local risk aversion of the FRDM.

Another step of the analysis was to arctan-approximate u(.) over partial
samples. Goodness-of-fit measures, as well as measures of deterioration were
identified, based on χ2. Even though the deterioration of quality was statisti-
cally significant, it was actually negligible. Thus, 5 nodes were assumed to be
sufficient to acquire feasible approximation of u(.) and r(.). Further reduction
of the number of elicited nodes is not recommended, because it is not possi-
ble to check whether the approximation was successful or not. A final step of
the analysis was to compare arctan-approximation and linear interpolation over
the partial samples. Four paired-sample tests were defined to prove the third
hypothesis.

As a result of the study, we propose to elicit five inner nodes using a pre-
liminarily selected elicitation method as a first step in constructing the utility
function. Then u(.) may be arctan-approximated on these nodes. If the later
does not fit well to the data, then it should be replaced by linear interpolation
on the midpoints of the node uncertainty intervals.

All calculation and visualization procedures in this study were performed
using original MATLAB program functions available free of charge upon request
from the authors. Results reported in the paper shall facilitate further utility
analysis, as it can be based on a short elicitation phase, followed by calculation
procedures performed by program functions. If the FRDM has typical risk
attitude, then such a utility analysis would apply, it will be less time consuming,
and the results will be less influenced by elicitation errors. As the reported
results differ depending on the elicitation method, it is necessary to continue
research by collecting elicitation results via other methods, such as TO or the
modification of UE – the chaining UE.
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Appendix 1. Analytical approximation of a utility function

Equation (A1.1) represents analytical dependence approximating utility of an
FRDM:

u = u(x, ~p), (A1.1)
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where ~p = (p1, p2, . . . , pn) is an n-dimensional vector of unknown parameters
(from an n-dimensional set Π), defining the form of u(.). (A1.1) must be strictly
increasing, which implies

u(xi, ~p) > u(xj , ~p) ⇔ xi > xj , for xi ∈ [xworst ; xbest ],

xj ∈ [xworst ; xbest ] and ~p ∈ Π. (A1.2)

The end nodes should be error-free, thus

u(xworst , ~p) = 0, u(xbest , ~p) = 1, for ~p ∈ Π. (A1.3)

If the estimated nodes are of the form (2), then the unknown parameters
of (A1.1) may be identified using a weighted least square method (Press et al.,
1992). Deviation of the model from the best subjective point estimate in a given
node is weighted by the width of the uncertainty interval.

Each ûl is a random variable, dependent on xul
. The difference from the

classical regression analysis is that we measure the confidence interval [ûd
l ; û

u
l ]

with confidence level approaching 1, rather than several realizations of the de-
pendent variable. The distribution of ûl is unknown, but it is assumed to be
of the same type for all l = 2, 3, ..., z − 1. Then, for each symmetrical distribu-
tion, the result of the measurement of the dependent variable may be treated
as if the average measured value (ûd

l + ûu
l )/2 with standard deviation propor-

tional to (ûu
l − ûd

l ) were obtained. This is a good approximation even when the
distribution of ûl is asymmetric, but unimodal.

The goodness-of-fit measure of (A1.1) if the data are of type (2) is:

χ2
u =

z−1
∑

l=2

(

u(xl, ~p) −
(

ûd
l + ûu

l

)

/2

ûu
l − ûd

l

)2

=

z−1
∑

l=2

(

2u(xl, ~p) − ûd
l − ûu

l

2ûu
l − 2ûd

l

)2

. (A1.4)

The optimal parameters ~popt may be identified by n-dimensional minimiza-
tion of χ2

u over ~p.
Since (2) contains random data, ~popt is also random. So, u = u(x, ~popt ) is

a random function.
From (A1.2) it follows that there exists an inverse function of (A1.1):

x = x(u, ~p) = u−1(x, ~p). (A1.5)

The function (A1.5), similarly to (A1.1), would be strictly increasing and
fixed at its ends:

x(ui, ~p) > x(uj , ~p) ⇔ ui > uj, for ui ∈ [0; 1], uj ∈ [0; 1] and ~p ∈ Π,
(A1.6)

x(0, ~p) = xworst , x(1, ~p) = xbest , for ~p ∈ Π. (A1.7)

If the elicited nodes are of the form (3), then the unknown parameters of
(A1.1) may be identified using a weighted least squares method.
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Each x̂ul
is a random variable, dependent on ul. The difference from the

classical regression analysis is that we measure a confidence interval [x̂d
ul

; x̂u
ul

]
with confidence level approaching 1, rather than several realizations of the de-
pendent variable. The distribution of x̂ul

is unknown, but it is assumed to be of
the same type for all l = 2, 3, ..., z− 1. Then, for each symmetrical distribution,
the result of the measurement of the dependent variable may be treated as if
the average measured value (x̂d

ul
+ x̂u

ul
)/2 were obtained, with standard devia-

tion proportional to (x̂u
ul

− x̂d
ul

). This is a good approximation even when the
distribution of x̂ul

is asymmetric, but unimodal.
A possible goodness-of-fit measure of (A1.1) if the data is of type (3) is

χ2
x =

z−1
∑

l=2

(

x(ul, ~p) −
(

x̂d
ul

+ x̂u
ul

)

/2

x̂u
ul

− x̂d
ul

)2

=

z−1
∑

l=2

(

2x(ul, ~p) − x̂d
ul

− x̂u
ul

2x̂u
ul

− 2x̂d
ul

)2

(A1.8)

The optimal parameters ~popt may be found using n-dimensional minimiza-
tion of χ2

x on ~p. This task can be much easier if the inverse function (A1.5)
of (A1.1) is analytical. Otherwise, each calculation of (A1.8) would require
numerical solving of z − 2 nonlinear algebraic equations with a single unknown.

Since (3) contains random data, ~popt is also random, and x = u−1(x, ~popt )
is a random function.

Nikolova (2007) proposed an analytical dependence (A1.9) that obeys (A1.2)
and (A1.3):

u(x) =
arctan[a(x − x0)] − arctan[a(x1 − x0)]

arctan[a(xz − x0)] − arctan[a(x1 − x0)]
. (A1.9)

In (A1.9), the vector of unknown parameters is a two-dimensional ~p =
(a, x0), and the two-dimensional set Π is defined as:

Π = {(a, x0/a ∈ (0,∞) ∧ x0 ∈ (−∞,∞)}. (A1.10)

The local risk aversion function that corresponds to the utility (A1.9) is

r(x) = −
u′′(x)

u′(x)
=

2a2(x − x0)

1 + a2(x − x0)2
. (A1.11)

After substituting (A1.9) in (A1.4), χ2
u transforms into a function of a and

x0.
The utility function (A1.9) has an analytical inverse:

x(u) =
tg{u × arctan[a(xz − xo)] + (1 − u) arctan[a(x1 − xo)]}

a
+x0. (A1.12)

After substituting (A1.12) in (A1.8), χ2
x transforms into a function of a and

x0.
The analytical approximation (A1.9) shall be referred to as arctan-approxi-

mation.
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Appendix 2. Local risk aversion of the linearly interpolated

utility function

If several elicited nodes of the form (2) or (3) are available, the utility function
may be linearly interpolated on the midpoints of the uncertainty intervals. It is
necessary to construct the local risk aversion function of the linearly interpolated
utility. The left and right bound of r(x) may be calculated for each inner node
(xl, ul), for l = 2, 3, . . . , z− 1, using approximation of the derivatives with finite
differences:

r(x−

l ) = −2

(

ul+1 − ul

xl+1 − xl
−

ul − ul−1

xl − xl−1

)

xl − xl−1

(xl+1 − xl−1) (ul − ul−1)
,

for l = 2, 3, . . . , z − 1, (A2.1)

r(x+
l ) = −2

(

ul+1 − ul

xl+1 − xl
−

ul − ul−1

xl − xl−1

)

xl+1 − xl

(xl+1 − xl−1) (ul+1 − ul)
,

for l = 2, 3, . . . , z − 1. (A2.2)

Since x−

l and x+
l are equal, then direct application of (A2.1) and (A2.2)

leads to vertical sections in r(x). The vertical sections should be replaced by
their midpoints in order to represent risk aversion as a function:

r(xl) =
r(x−

l ) + r(x+
l )

2
, for l = 2, 3, . . . , z − 1. (A2.3)

The derivatives of the first and the last nodes may be estimated respectively
as left and right derivatives:

r(x1) = r(x−

2 ), (A2.4)

r(xz) = r(x+
z−1). (A2.5)

The function r(x) may be linearly interpolated on the nodes calculated via
(A2.3), (A2.4) and (A2.5).

Appendix 3. Bootstrap mean and median tests

The Bootstrap mean test analyzes whether the mean value of the difference ∆
of two paired samples is zero. The null hypothesis is H0: the mean value of ∆
is zero, and the alternative hypothesis is H1: the mean value of ∆ is positive. If
the null hypothesis is true, then the distribution of ∆ is symmetrical around its
mean. Then each synthetic sample of n realizations of ∆ may be doubled to a
synthetic sample of 2n realizations by adding all values symmetrical to the initial
ones with respect to the mean (i.e. zero). After generating N synthetic samples,
N synthetic estimates of the mean value of ∆ may be calculated and doubled
to a 2N number of synthetic estimates by adding estimates symmetrical to the
initial ones with respect to the mean (i.e. with respect to zero). The pvalue is the
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number of synthetic estimates of the mean value of ∆, exceeding the observed
mean divided by 2N (Efron, Tibshirani, 1993).

The Bootstrap median test analyzes whether the median of the difference
∆ of the two samples is zero. It is the same as the Bootstrap mean test, but
it uses the median as a test statistic. Assume that {ai|i = 1, 2, . . . , n} and
{bi|i = 1, 2, . . . , n} are two paired samples, such that the mean of the first
sample is lower than that of the second. Also assume that N is the number of
Bootstrap replicas. Let r be a discrete random variable that takes the integer
values 1, 2, 3, . . . , 2n, with equal probabilities (2n)−1. The following algorithms
are elaborated to calculate pvalue of the Bootstrap mean and the median tests.

Algorithm A3.1. Calculation of pvalue of a Bootstrap mean test

1. Form a sample of differences between the pairs of values ai and bi: {∆i|i =
1, 2, . . . , 2n}, where ∆i = bi − ai (for i = 1, 2, . . . , n), and ∆i+n = ai − bi

(for i = 1, 2, . . . , n);

2. Calculate the mean m(∆) = 1
2n

∑2n
i=1 ∆i of the sample of differences

{∆i|i = 1, 2, . . . , 2n};
3. Put j = 0;
4. Put j = j + 1;
5. Form a synthetic sample of differences {∆s,j

i |i = 1, 2, . . . , 2n}:

(a) Put i = 0;

(b) Put i = i + 1;

(c) Generate a random realization ri of r;

(d) Put ∆s,j
i = ∆ri

;

(e) If i < 2n, then go to step 5.b.

6. Calculate means of the j-th synthetic sample ms
j(∆

s) = 1
2n

∑2n
i=1 ∆s,j

i and
put ms

j+N (∆s) = −ms
j(∆

s) ;
7. If j < N , then go to step 4.
8. Calculate pvalue,1 of the Bootstrap mean test as follows:

pvalue,1 =

2N
∑

j = 1
ms

j(∆s) > m(∆)

1
2N .

Algorithm A3.2. Calculation of pvalue of a Bootstrap median test

1. Form a sample of differences between the pairs of values ai and bi: {∆i|i =
1, 2, . . . , 2n}, where ∆i = bi − ai (for i = 1, 2, . . . , n), and ∆i+n = ai − bi

(for i = 1, 2, . . . , n);
2. Sort the elements {∆i|i = 1, 2, . . . , 2n} in ascending order such that ∆1 ≤

∆2 ≤ . . . ≤ ∆2n;
3. Calculate the median ∆0.5(∆) = ∆n+∆n+1

2 of the sorted sample of differ-
ences {∆i|i = 1, 2, . . . , 2n}
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4. Put j = 0;
5. Put j = j + 1;
6. Form a sorted synthetic sample of differences {∆s,j

i |i = 1, 2, . . . , 2n}:

(a) Put i = 0;

(b) Put i = i + 1;

(c) Generate a random realization ri of r;

(d) Put ∆s,j
i = ∆ri

;

(e) If i < 2n, then go to step 6.b;

(f) Sort {∆s,j
i |i = 1, 2, . . . , 2n} in ascending order such that ∆s,j

1 ≤

∆s,j
2 ≤ . . . ≤ ∆s,j

2n .

7. Calculate the median of the j-th synthetic sample ∆s
0.5,j(∆

s) =
∆s,j

n +∆s,j

n+1

2
and put ∆s

0.5,j+N (∆s) = −∆s
0.5,j(∆

s);
8. If j < N , then go to step 5;
9. Calculate pvalue,2 of the Bootstrap median test as follows:

pvalue,2 =

2N
∑

j = 1
∆s

0.5,j(∆
s) > ∆0.5(∆)

1
2N .


