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Abstract: We consider variational discretization of Neumann-
type elliptic optimal control problems with constraints on the con-
trol. In this approach the cost functional is approximated by a se-
quence of functionals, which are obtained by discretizing the state
equation with the help of linear finite elements. The control variable
is not discretized. Error bounds for control and state are obtained
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1. Introduction

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain with sufficiently smooth or convex,

polygonal boundary Γ := ∂Ω. In this note, we are interested in the following
control problem:

minw∈U J(w) = 1
2

∫

Ω
|G(Bw) − y0|

2 + α
2 ‖w‖2

U

subject to w ∈ Uad.
(1)

We suppose that α > 0 is given. Further, U := L2(Γ) denotes a Hilbert space
of controls which we identify with its dual, B : U → (H1(Ω))′ defined by

Bu(·) =

∫

Γ

uγ0(·) dΓ
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is the linear and continuous control operator, and Uad ⊆ U denotes the closed,
convex set of admissible controls. Furthermore, for given f ∈ (H1(Ω))′ the func-
tion G(f) denotes the unique weak solution y ∈ H1(Ω) to the elliptic boundary
value problem

a(y, v) = 〈f, v〉 ∀ v ∈ H1(Ω). (2)

Here, 〈·, ·〉 denotes the dual pairing of H1(Ω)′ and H1(Ω), the bilinear form a
is defined by

a(y, v) :=

∫

Ω

(

d
∑

i,j=1

aij(x)yxi
vxj

+

d
∑

i=1

bi(x)yxi
v + c(x)yv

)

dx,

where we assume that the coefficients ai,j , bi and c are sufficiently smooth and
chosen such that the form is H1-coercive with constant c1 > 0.

Now, it is not hard to prove that problem (1) admits a unique solution
u ∈ Uad. Moreover, there exists a function p ∈ H1(Ω) which, together with
y = G(Bu), satisfies

a(v, p) =

∫

Ω

(y − y0)v ∀v ∈ H1(Ω) (3)

(B∗p + αu, q − u)U ≥ 0 for all q ∈ Uad . (4)

A finite element analysis for general semilinear elliptic Neumann boundary
control problems on two-dimensional polygonal convex domains is provided by
Casas and Mateos (2008). Among other things they prove ‖u − uh‖L2(Γ) =
o(h)(h → 0) for a piecewise linear, continuous finite element approximation
uh of u, and, for cost functionals with quadratic structure in the control part,
‖u − uh‖L2(Γ) = O(h3/2−ǫ)(h → 0) for the variational discretization uh, where
in both cases u ∈ Uad denotes a solution to the corresponding optimal control
problem.

Here we provide results for two- and three-dimensional domains and provide
error estimates in L2(Γ) and L∞(Γ) for variational discretizations of problem
(1). We use a general proof technique which differs from that applied in Casas
and Mateos (2008). We concentrate on linear-quadratic optimal control prob-
lems since the essential nonlinearity from the point of view of optimization is
introduced through the constraint u ∈ Uad in terms of the orthogonal projection
associated with this constraint.

Let us comment on further approaches that tackle optimization problems
for PDEs with constrained boundary controls. In Casas, Mateos and Tröltzsch
(2005) a problem similar to that of Casas and Mateos (2008) is studied and
piecewise constant approximations for the control are investigated. In Casas
and Raymond (2007), the Dirichlet boundary control for semilinear elliptic con-
trol problems is considered for convex polygonal domains in two dimensions. In
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Vexler (2007) h2 convergence for superpositions of smooth Dirichlet boundary
control actions for linear-quadratic optimal control problems is proven. Finally,
Dirichlet boundary control for two- and three-dimensional smooth domains is
considered in Deckelnick, Günther and Hinze (2008), where also superconver-
gence properties of finite element approximations are exploited for achieving
improved error bounds on finite element meshes exhibiting certain mesh regu-
larity properties.

The rest of the paper is organized as follows: In Section 2 we collect basic
results on (1). In Section 3 we present the finite element analysis of problem
(1). Among other aspects we show

‖u − uh‖L2(Γ) ∼ ‖p − ph(u)‖L2(Γ) + ‖y − yh(u)‖

where uh denotes the unique solution to (6) and yh, ph denote finite element
approximations to the optimal state y and to the adjoint state p associated
to u, respectively. Furthermore, in Theorem 2 we prove the (to the author’s
knowledge new) uniform estimate

‖u − uh‖L∞(Γ) ≤ C
{

‖p− ph‖L∞(Γ) + γ(h)‖y − yh‖
}

,

where γ(h) = | lnh| for d = 2, and γ(h) = h−1/2 for d = 3. In Section 5 we
describe the numerical implementation of the semi-smooth Newton algorithm
for the problem class under consideration and present numerical results which
confirm our theoretical findings. Semi-smooth Newton methods for elliptic and
parabolic variational discrete control problems are investigated in Hinze, Vier-
ling (2008).

2. The continuous problem

Since problem (1) is convex, it admits a unique solution u ∈ Uad with unique
associated state y = G(Bu) and unique adjoint p. Crucial for the finite element
analysis is the regularity of the involved state, adjoint, and control. From here
onwards let us assume that Uad = {v ∈ L2(Γ); a ≤ v ≤ b a.e. in Γ}, where for
simplicity a < b denote constants (or sufficiently smooth, bounded functions,
which on the discrete level have to be suitably approximated). From (4) we
deduce that u satisfies

u = PUad

(

−
1

α
B∗p

)

, (5)

where B∗ denotes the adjoint of B, and in the present setting coincides with
the trace operator, and the action of the orthogonal projection PUad

: U → Uad

is given by

PUad
(f)(x) = max{a, min{f(x), b}}.
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Since max, min are Lipschitz continuous functions we may at best expect Lips-
chitz continuity of PUad

(f), regardless of how smooth the function f is. Thus, a
bootstrapping argument at best yields u ∈ W 1,∞(Γ) with corresponding state
y ∈ W 2,s(Ω) and adjoint p ∈ W 4,s(Ω) for all 1 ≤ s < ∞. In the case of a
convex polygonal domain both the regularity of y and p is further restricted to
y ∈ W 2,s0(Ω) for some d ≤ s0 < ∞, and p ∈ W 2,s(Ω) for some d ≤ s < ∞.

3. Finite element discretization and error analysis for (1)

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th
diam(T )

and vertices x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th, so
that element edges lying on the boundary are curved, see e.g. Bernardi (1989).
In addition, we assume that the triangulation is quasi-uniform in the sense that
there exists a constant κ > 0 (independent of h) such that each T ∈ Th is
contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define
the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}

with the appropriate modification for boundary elements.
In what follows it is convenient to introduce a discrete approximation of the

operator G. In fact, for a given function f ∈ H1(Ω)′ we denote by zh = Gh(f) ∈
Xh the solution of the discrete Neumann problem

a(zh, vh) = 〈f, vh〉 for all vh ∈ Xh.

Problem (1) is now approximated by the following sequence of control prob-
lems depending on the mesh parameter h:

min
u∈Uad

Jh(u) :=
1

2

∫

Ω

|Gh(Bu) − y0|
2 +

α

2
‖u‖2

U . (6)

Problem (6) represents a convex infinite-dimensional optimization problem
of a similar structure as problem (1). It admits a unique solution uh ∈ Uad with
corresponding state yh ∈ Xh. Furthermore, in accordance with problem (1),
there exists a unique function ph ∈ Xh satisfying

a(vh, ph) =

∫

Ω

(yh − y0)vh for all vh ∈ Xh, and (7)

(αuh + B∗ph, v − uh)U ≥ 0 for all v ∈ Uad. (8)

Moreover

uh = PUad

(

−
1

α
B∗ph

)

. (9)

We note that the control is not discretized in (6), which is reflected by the
appearance of the orthogonal projector PUad

in (9), compare Hinze (2005) and
Hinze et al. (2009) for a more detailed discussion of this discretization approach.

Next we prove a general error estimate in h.
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Theorem 1 Let u denote the solution of (1) with y = G(Bu), and uh the

solution to (6) with yh = Gh(Buh). Then

α‖u − uh‖
2
U + ‖y − yh‖

2 ≤ Cα‖p − ph‖2
L2(Γ) + ‖y − yh‖2, (10)

where yh, ph denote the unique solutions to a(yh, vh) = 〈Bu, vh〉, and a(vh, ph) =
∫

Ω(y − y0)vh for all vh ∈ Xh.

Proof. We use uh as test function in (4), u as test function in (7) and add the
resulting variational inequalities. This yields

α‖u − uh‖
2
U ≤ 〈B(uh − u), p − ph〉 =

= 〈B(uh − u), p − ph〉 + 〈B(uh − u), ph − ph〉 ≤

≤ ‖B∗(p − ph)‖U‖u − uh‖U + a(yh − yh, ph − ph) =

= ‖B∗(p − ph)‖U‖u − uh‖U +

∫

Ω

(y − yh)(yh − yh) ≤

≤ ‖B∗(p − ph)‖U‖u − uh‖U −
1

2
‖y − yh‖

2 +
1

2
‖y − yh‖2.

Since B∗ coincides with the trace operator, we obtain, with the help of Young’s
inequality

α‖u − uh‖
2
U + ‖y − yh‖

2 ≤ Cα‖p − ph‖2
L2(Γ) + ‖y − yh‖2.

This completes the proof.

Next we prove L∞ error estimates for the optimal controls.

Theorem 2 Let u denote the solution of (1) with y = G(Bu), and uh the

solution to (6) with yh = Gh(Buh). Then

‖u − uh‖L∞(Γ) ≤ C
{

‖p− ph‖L∞(Γ) + γ(h)‖y − yh‖
}

, (11)

where γ(h) = | lnh| for d = 2, and γ(h) = h−1/2 for d = 3.

Proof. With the help of (5), (9) we obtain

‖u − uh‖L∞(Γ) = ‖PUad
(−

1

α
B∗p) − PUad

(−
1

α
B∗ph)‖L∞(Γ) ≤

≤
1

α
‖p− ph‖L∞(Γ) ≤

1

α
‖p − ph‖L∞(Γ) +

1

α
‖ph − ph‖L∞(Γ) ≤

≤
1

α
‖p− ph‖L∞(Γ) + γ(h)‖ph − ph‖H1(Ω),

where γ(h) = | lnh| for d = 2, see Xu and Zou (1998) and γ(h) = h−1/2 for
d = 3. We proceed with estimating ‖ph − ph‖H1(Ω) according to

‖ph − ph‖
2
H1(Ω) ≤ Ca(ph − ph, ph − ph) ≤ C‖ph − ph‖‖y − yh‖.

This completes the proof.
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From the estimates (10) and (11) we deduce that the approximation quality
of the control is steered by the approximation quality of finite element solutions
yh to the state y, and by the finite element approximation ph of the adjoint p.

Let us consider some examples.

Example 1
1. Let us consider the situation of Casas and Mateos (2008), Section 5.6,

where Ω is a two-dimensional convex polygonal domain, i.e. d = 2. Further
let y0 ∈ L2(Ω). Then y, p ∈ H2(Ω), so that by Casas and Mateos (2008),
Theorem 4.1, we have ‖y − yh‖ ≤ Ch2 and ‖p − ph‖L2(Γ) ≤ h3/2. Thus,
(10) directly yields

‖u − uh‖L2(Γ) ≤ Ch3/2.

2. Let us consider a smooth, bounded two- or three-dimensional domain Ω
and let the approximation properties A1-A4 of Schatz (1998) be satisfied.
Bootstrapping yields at least y ∈ H2(Ω) and p ∈ H4(Ω) →֒ W 2,∞(Ω) for
d < 4. Thus we deduce from Schatz (1998), Theorem 2.2,

‖p − ph‖∞ ≤ Ch2− d
q | log h|‖p‖W 2,q for all d ≤ q ≤ ∞,

compare also Deckelnick and Hinze (2007), Lemma 3.4, and again ‖y −
yh‖ ≤ Ch2. Thus, (11) directly yields

‖u − uh‖L∞(Γ) ≤ C
{

h2− d
q | log h| + γ(h)h2

}

for all d ≤ q ≤ ∞.

We should note that when using finite element approximations defined over
partitions formed of simplexes one has to consider also an error induced by
boundary approximations. However, locally, for small enough gridsizes, the
smooth boundary may be parameterized as a graph over the faces of the
corresponding simplex. For smooth boundaries the difference of the areas
of the face and the corresponding graph is bounded by the square of the
gridsize, so that error estimates of the same quality as in this example also
hold for the accordingly transformed continuous solution, see Deckelnick,
Günther and Hinze (2008).

4. Semismooth Newton algorithm

To solve problem (6) numerically we apply a semi-smooth Newton algorithm to
the equation

G(u) := u − PUad
(−

1

α
B∗ph(u)) = 0 in U, (12)

where for given u ∈ U with associated discrete state yh(u) the function ph(u)
solves (7). It follows from (5) that this equation in our setting admits the unique
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solution uh ∈ Uad of problem (6). Moreover, it directly follows with the results of
Hintermüller, Ito and Kunisch (2003) and Ulbrich (2003) that G is semi-smooth
in the sense that

sup
M∈∂G(u+s)

‖G(u + s) − G(u) − Ms‖U = o(‖s‖U ) as ‖s‖U → 0,

where

∂G(u) :=

{

I + D(u)(
1

α
B∗p′h(u))

}

with D(u)(x) =











0, if − 1
αB∗ph(u)(x) /∈ [a, b]

∈ [0, 1], if − 1
αB∗ph(u)(x) ∈ {a, b}

1, if − 1
αB∗ph(u)(x) ∈ (a, b)

denotes the generalized differential. With g ≡ g(u) denoting the indicator func-
tion of the inactive set I(u) := {x ∈ Γ;− 1

αB∗ph(u)(x) ∈ (a, b)} we set

G′(u) := I +
1

α
gB∗p′h(u) ∈ ∂G(u).

It follows from the considerations related to (16) that G′(u) is bounded invert-
ible, since p′h(u) = S∗

hShB with Sh denoting the finite element solution operator.
Thus, B∗p′h(u) = B∗S∗

hShB is positive semi-definite on U .

We are now in the position to formulate

Algorithm 1 Semi-smooth Newton algorithm

Choose u ∈ U
While G(u) 6= 0 solve

G′(u)unew = G′(u)u − G(u) (13)

for unew and set u = unew.

We emphasize that this algorithm works in the infinite-dimensional space U
so that it is not obvious that this algorithm is numerically implementable. For
a related discussion we refer to Hinze (2005).

Using

β := (I − g)bounds ≡











a, if − 1
αB∗ph(u) < a

b, if − 1
αB∗ph(u) > b

0, else

a short calculation shows that the Newton equation (13) can be rewritten in the
form

unew = bounds on A(u) := Γ \ I(u), and (14)

(αgI + gB∗S∗
hShBg)unew = −gB∗(S∗

hy0 − S∗
hShBβ). (15)
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We solve the equation

(αgI + gB∗S∗
hShBg)unew = −gB∗(S∗

hy0 − S∗
hShBβ)

with a conjugate gradient method. This is feasible since for given u ∈ U the op-
erator E∗

I (αI +B∗S∗
hShB)EI is positive definite on L2(I(u)), where the function

EIf ∈ L2(Γ) denotes the extension-by-zero to Γ of functions f ∈ L2(I(u)), and
E∗

I denotes its adjoint whose action for s ∈ L2(Γ) is given by E∗
I s = (gs)|I(u)

.
Thus, formally solving (15),(14) corresponds to solving

E∗
I (αI + B∗S∗

hShB)EIu
new
I = −E∗

I B∗(S∗
hy0 − S∗

hShBβ) (16)

and then setting unew = unew
I on I(u), and unew = bounds on A(u), compare

also Hintermüller, Ito and Kunisch (2003), (4.7).

It is now clear from these considerations that the Newton iterates may de-
velop kinks or even jumps along the border of the active set, see the numerical
results of the next section. However, it follows from the definition of the active
set A(u) that its border consists of polygons, since we use continuous, piecewise
linear ansatz functions for the state. We note that this border, in general, con-
sists of piecewise polynomials of the same degree as that of the finite element
ansatz functions, if higher order finite elements are used, compare Hinze et al.
(2009). Therefore, Algorithm 1 is numerically implementable, since in every of
its iterations only a finite number of degrees of freedom has to be managed,
which in the present case of linear finite elements can not exceed 3nv + 2ne,
where nv denotes the number of finite element nodes, and ne the number of
finite element edges, see Hinze et al. (2009), Chapter 3 and Hinze (2005) for
details. Moreover, the main ingredient of the cg algorithm applied to solve the
Newton equation (16) consists in evaluating E∗

I (αI + B∗S∗
hShB)EIf for func-

tions f ∈ L2(I(u)). From the definitions of B and Sh it is then clear, which
actions have to be performed for this evaluation.

It is also clear, that only local convergence of the semi-smooth Newton algo-
rithm can be expected, where the convergence radius at the solution depends on
the penalization parameter α. For the numerical examples presented in the next
section and the considered values of α it is sufficient to use a cascadic approach,
where linear interpolations of numerical solutions on coarse grids are used as
starting values on the next, finer grid. Further details on the semi-smooth New-
ton methods applied to variationally discretized optimal control problems can
be found in Hinze and Vierling (2008), where, in particular, also time-dependent
problems are considered and globalization strategies are proposed.

5. Numerical experiments

We consider two numerical examples taken from Casas and Mateos (2008) and
compare the results of our numerical approach to the classical approach with
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piecewise linear, continuous ansatz functions for the controls taken there. For
this purpose we define the experimental order of convergence by

eoc =
log E(h1) − log E(h2)

log h1 − log h2
,

where E(h) denotes an error functional an h the finite element grid size. There
holds eoc ∼ γ if E(h) ∼ hγ .

In the examples investigated later an additional nonlinear function eu : Γ →
R appears, which necessitates the projection of nonlinear functions in the form

u = PUad
(−

1

α
(B∗ph + eu)).

For the integration over the boundary control with kinks, we divide the bound-
ary, additionally to the division by the FEM discretization at the positions of the
kinks. The kinks occur at prescribed points in eu and at the intersections with
the constraints. The latter are calculated with the Pegasus method (an improved
regula-falsi method), Dowell and Jarratt (1972), because of the nonlinearity in
eu.

5.1. Example 1

Taken from Casas and Mateos (2008), Section 7.1 (see also Casas, Mateos and
Tröltzsch, 2005), this example reads

min Ĵ(u) =
1

2

∫

Ω

(yu(x) − yΩ)2dx +
α

2

∫

Γ

u(x)2dx +

∫

Γ

eu(x)u(x)dx+

+

∫

Γ

ey(x)yu(x)dx

subject to u ∈ Uad =
{

u ∈ L2; 0 ≤ u(x) ≤ 1 a.e. x ∈ Γ
}

, where yu solves

−∆yu(x) + c(x)yu(x) = e1(x) in Ω,

∂νyu(x) + yu(x) = e2(x) + u(x) on Γ.

Here, Ω = (0, 1)2, α = 1, c(x) = 1 + x2
1 − x2

2, ey(x) = 1, yΩ(x) = x2
1 + x1x2,

e1(x) = −2 + (1 + x2
1 − x2

2)(1 + 2x2
1 + x1x2 − x2

2),

eu(x) =































−1 − x3
1 on Γ1

−1 − min

{

8(x2 − 0.5)2 + 0.58

1 − 16x2(x2 − y∗
1)(x2 − y∗

2)(x2 − 1)

}

on Γ2

−1 − x2
1 on Γ3

−1 + x2(1 − x2) on Γ4,
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with y∗
1 = 1

2 −
√

21
20 and y∗

2 = 1
2 +

√
21

20 . Further

e2(x) =



















1 − x1 + 2x2
1 − x3

1 on Γ1

7 + 2x2 − x2
2 − min

{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

−2 + 2x1 + x2
1 on Γ3

1 − x2 − x2
2 on Γ4

where Γ1 to Γ4 are the four edges of the unit square, numbered counterclockwise,
starting with the bottom edge. The adjoint equation is given by

−∆φ(x) + c(x)φ(x) = yu(x) − yΩ(x) in Ω

∂νφ(x) + φ(x) = ey(x) on Γ.

An easy calculation shows that the optimal solution is given by

ū(x) =



















x3
1 on Γ1

min
{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

x2
1 on Γ3

0 on Γ4,

with corresponding state ȳ(x) = 1+2x2
1 +x1x2 −x2

2 and adjoint state φ̄(x) = 1.
We note that in the numerical approach for this example (12) has to be

replaced by

G(u) = u − PUad
(−

1

α
(B∗ph + eu))

so that special attention has to be paid, caused by the nonlinearity of eu, when
evaluating PUad

(− 1
α (B∗ph(u) + eu)) for given u.

The errors and eocs are shown in Table 1 for the Casas-Mateos-ansatz and
the variational discretization, respectively. The eoc of the numerical experiments
of Casas and Mateos is calculated from tables of Casas and Mateos (2008). The
eoc of the numerical experiments of Casas and Mateos is 1.5 and about 1.0 for
the L2 and L∞ norm, respectively. The eoc is 2 for our approach. This is better
than expected by Example 1 (1), in Section 3. However, this may be caused
by the special regularity of the continuous solution and the domain. The latter
is polygonal, but forms the limit case in regularity theory for elliptic domains
with corners, so that also the estimate of Example 1 (2), in Section 3 may apply.
This would coincide with our numerical results. We further note that already
the errors on the coarsest mesh for h = 1 are smaller in our approach than those
for h = 2−4 or h = 2−6 in the conventional Casas-Mateos-ansatz.

The Newton iteration is terminated if ‖G(ui)‖/‖G(u0)‖ ≤ 10−5 and ‖ui −
ui−1‖/ max(‖ui‖, ‖ui−1‖) ≤ 10−5 holds. The inner cg iteration is terminated

if ‖r‖ ≤ 10−4

i min
{

1, ‖G(ui)‖/, ‖G(ui)‖/‖G(u0)‖
}

holds with r denoting the
current residuum of the Newton system.
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In Fig. 1 the optimal control, together with the error for h = 0.5 and the
finite element grid, is shown.

Table 1. Errors in u for the linear example

Casas and Mateos This paper Casas and Mateos This paper

h Eu
L2 EuL∞ Eu

L2 EuL∞ eocu
L2 eocuL∞ eocu

L2 eocuL∞

2−0 - - 6.67e-3 5.03e-3 - - - -

2−1 - - 2.27e-3 2.14e-3 - - 1.55 1.23

2−2 - - 6.28e-4 5.72e-4 - - 1.86 1.90

2−3 - - 1.62e-4 1.47e-4 - - 1.95 1.96

2−4 8.5e-3 4.1e-2 4.10e-5 3.73e-5 - - 1.98 1.98

2−5 3.0e-3 1.5e-2 1.03e-5 9.34e-6 1.5 1.5 1.99 2.00

2−6 1.1e-3 1.1e-2 2.58e-6 2.34e-6 1.4 0.4 2.00 2.00

2−7 3.7e-4 3.8e-3 6.44e-7 5.84e-7 1.6 1.5 2.00 2.00

2−8 1.4e-4 2.7e-3 1.61e-7 1.46e-7 1.4 0.5 2.00 2.00

2−9 - - 4.03e-8 3.65e-8 - - 2.00 2.00

2−10 - - 1.00e-8 9.09e-9 - - 2.01 2.01
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Figure 1. Optimal control u left, error in u right, both for h = 0.5.

5.2. Example 2

Taken from Casas and Mateos (2008), Section 7.2 (compare also the semilinear
example in Casas, Mateos and Tröltzsch, 2005), this example contains a semi-
linear state equation instead of a linear one. It reads

min Ĵ(u) =
1

2

∫

Ω

(yu(x) − yΩ)2dx +
α

2

∫

Γ

u(x)2dx +

∫

Γ

eu(x)u(x)dx+

+

∫

Γ

ey(x)yu(x)dx
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subject to u ∈ Uad =
{

u ∈ L2; 0 ≤ u(x) ≤ 1 a.e. x ∈ Γ
}

, where yu satisfies the
semilinear equation

−∆yu(x) + c(x)yu(x) = e1(x) in Ω

∂νyu(x) + yu(x) = e2(x) + u(x) − y(x)2 on Γ.

Here, Ω = (0, 1)2, α = 1, c(x) = x2
2 + x1x2, ey(x) = −3− 2x2

1 − 2x1x2, yΩ(x) =
1 + (x1 + x2)

2, e1(x) = −2 + (1 + x2
1 + x1x2)(x

2
2 + x1x2),

eu(x) =































1 − x3
1 on Γ1

1 − min

{

8(x2 − 0.5)2 + 0.58

1 − 16x2(x2 − y∗
1)(x2 − y∗

2)(x2 − 1)

}

on Γ2

1 − x2
1 on Γ3

1 + x2(1 − x2) on Γ4,

with y∗
1 = 1

2 −
√

21
20 and y∗

2 = 1
2 +

√
21

20 . Furthermore,

e2(x) =



















2 − x1 + 3x2
1 − x3

1 + x4
1 on Γ1

8 + 6x2 + x2
2 − min

{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

2 + 4x1 + 3x2
1 + 2x3

1 + x4
1 on Γ3

2 − x2 on Γ4,

The adjoint equation is given by

−∆φ(x) + c(x)φ(x) = yu(x) − yΩ(x) in Ω

∂νφ(x) + φ(x) = ey(x) − 2y(x)φ(x) on Γ.

Again a short calculation shows that

ū(x) =



















x3
1 on Γ1

min
{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

x2
1 on Γ3

0 on Γ4

is the optimal control with corresponding optimal state ȳ(x) = 1 + x2
1 + x1x2

and adjoint φ̄(x) = −1.
For the numerical solution of the present example again a semi-smooth New-

ton method is applied. Since we are dealing with nonlinear state equations, the
determination of unew in (15) has to be replaced by

(αgI + gB∗p′h(u)g)unew = −gB∗(ph(u) − p′h(u)(u − β)),

and unew = bounds on Ω \ I(u).

The numerical results are very similar to those of the previous example. This
is due to the fact that the nonlinearity in the state equation is monotone.
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The errors and eocs for the present example are shown in Table 2 for the
Casas-Mateos-ansatz and the variational discretization, respectively. The eoc of
the numerical experiments of Casas and Mateos is calculated again from their
reference. The eoc of the numerical experiments of Casas and Mateos is 1.5 and
about 1.0 for the L2 and L∞ norms, respectively. The eoc is 2 for our approach.
This again is better than expected by Example 1, 1, but the same arguments as
used in the previous example may justify also convergence order 2. We further
note that also for this example already the errors on the coarsest mesh for h = 1
are smaller in our approach than than those for h = 2−4 in the conventional
Casas-Mateos-ansatz.

The termination conditions are the same as in the previous example.
In Fig. 2 the optimal control, together with the error for h = 0.5 and the

finite element grid, is shown.

Table 2. Errors in u for the semilinear example

Casas and Mateos This paper Casas and Mateos This paper

h Eu
L2 EuL∞ Eu

L2 EuL∞ eocu
L2 eocuL∞ eocu

L2 eocuL∞

2−0 - - 1.13e-2 1.83e-2 - - - -

2−1 - - 4.72e-3 6.43e-3 - - 1.26 1.51

2−2 - - 1.33e-3 2.19e-3 - - 1.82 1.55

2−3 - - 3.45e-4 6.69e-4 - - 1.95 1.71

2−4 8.5e-3 4.1e-2 8.75e-5 1.89e-4 - - 1.98 1.82

2−5 3.0e-3 1.5e-2 2.20e-5 5.11e-5 1.5 1.5 1.99 1.89

2−6 1.1e-3 1.1e-2 5.50e-6 1.33e-5 1.4 0.4 2.00 1.94

2−7 3.8e-4 3.8e-3 1.38e-6 3.42e-6 1.5 1.5 2.00 1.96

2−8 1.4e-4 2.7e-3 3.44e-7 8.66e-7 1.4 0.5 2.00 1.98

2−9 - - 8.61e-8 2.18e-7 - - 2.00 1.99

2−10 - - 2.15e-8 5.47e-8 - - 2.00 1.99
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Figure 2. Optimal control u left, error in u right, both for h = 0.5
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