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Abstract: Flexible querying is all about providing users with
more intuitive and efficient means of interaction with information
or document bases, so that retrieving the items they are interested
in becomes easier and more pleasant. In this process three steps
may be identified as crucial in determining the overall result: un-
derstanding the user’s request, understanding the content of what is
available, and matching between the two. In this paper we present
an integrated soft computing framework to tackle all three steps by
incorporating fuzzy relational knowledge stored in modified onto-
logical structures, a modified agglomerative clustering approach to
knowledge based information processing, a detailed profile modeling
methodology, and a novel approach to handling of large and sparse
transitive relations.
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1. Introduction

Information retrieval is a field of study that received augmented attention back
in the 1970s, when collections of textual documents first started to appear. At
that time pioneering works such as Rocchio (1971) or Salton (1971) applied a
closed world concept to model information space and thus relied on statistical
analysis approaches to provide for efficient indexing and searching in documents.
This approach reasonably soon reached an upper bound of performance, reduc-
ing the attention that information retrieval received, with efforts reported in
the annual TREC (Text Retrieval) conferences being one of the few exceptions;
developments in the broader area of information retrieval are best reviewed and
summarized in Baeza-Yates and Ribeiro-Neto (1999).

With information retrieval reaching its limits, flexible querying emerged, as
an attempt to provide for different, more intuitive means and approaches to
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querying. Flexible querying goes beyond pre-existing information retrieval ap-
proaches in that it acknowledges additional issues that need to be tackled. For
example, flexible querying considers the imperfect way in which user queries are
formed, whereas in conventional information retrieval a “good” query was taken
for granted, see FQAS, the Flexible Query Answering Systems Series. (Flexible
querying is sometimes considered to be associated strictly with database query-
ing. In this work the term is used in its more general sense and is associated
with general purpose information retrieval.)

Naturally, it was not long before it became apparent that soft computing,
with its inherent ability to model uncertainty and real life information, is a
suitable tool for the field of flexible querying. For example, Dubois and Prade
(1997) already discussed the utilization of fuzzy sets in order to model the user
query, thus providing the user with more descriptive power for the expression of
queries. A wide range of works since then have also discussed the utilization of
fuzzy sets to model the user query (Bordogna and Pasi, 2002), and some have
even discussed practical implementation issues (Callens et al., 2003).

Still, it is quite clear that soft computing remains a very useful tool towards
extending even further the state of the art in flexible querying. More recent
works in the field discuss the utilization of generic fuzzy sets (de Calmes, Prade
and Sedes, 2007), possibility theory (Matthé et al., 2005) and fuzzy bags (Ro-
cacher and Bosc, 2005) in the matching process, as well as in the representation
of the user query (Buche et al., 2006). All of these works focus solely on the rep-
resentation of the query (and possibly the index) and the matching between the
two, still relying on a more conventional approach to other processes involved in
flexible querying, such as understanding the true meaning of the query and/or
of the documents; this will be in part the focus of this work.

Another new era was signaled with the emergence of the knowledge based
approach to information processing. More than anything else, it was the devel-
opments in the field of the semantic web, with its very structured, standardized
and detailed representation of human knowledge, that lead to new hopes for
enhanced and more intuitive information processing and, why not, understand-
ing, via automated methodologies (Berners-Lee and Fischetti, 1999). In this
approach, algorithms are expected to exploit knowledge stored in ontologies in
order to process data in the same way as humans do.

Even in this direction the necessity for fuzziness is evident. For example,
Bulskov, Knappe and Andreasen (2002) discuss a conceptual querying approach
that is based on crisp ontologies and utilize path distances to define concept
similarities; the approach is equivalent to a fuzzy ontology approach, in which
all degrees are defined to be equal. In such an approach the distance between
“animal” and “cat” may originally be one hop, but the enhancement of the
ontology with the addition of the term “mammal” would change the distance
to two hops, thus also altering the calculated similarity between the two terms.
Of course, this is counter-intuitive, indicating that meaningful similarities need
to be defined independently from graph based metrics, thus making fuzziness in
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ontologies a necessity for flexible ontology based querying. Sanchez and Yamanoi
(2006) and Baziz et al. (2007) provide literature reviews of preliminary works
towards the incorporation of fuzziness into conceptual querying.

In this work, partially building on previous works, we provide a complete
soft computing framework for flexible querying; the proposed framework greatly
depends on knowledge stored in fuzzy ontological relations. The main difference
of the proposed framework with respect to most other applications of soft com-
puting in flexible querying is that the application of fuzziness is not limited to
the representation of the user query and the matching mechanism, as for exam-
ple in Calegari and Sanchez (2007). The framework applies soft computing to
define and detect context, which it then uses in understanding the meaning of
the user query, understanding the content of the available documents, relating
user preferences to the user query and personalizing the results of the retrieval
process.

The structure of the remaining of the paper is as follows: In Section 2 we dis-
cuss knowledge representation in ontologies and the inclusion of fuzzy degrees.
Section 3 focuses on size and time considerations related to the utilization of
large ontological relations in practical applications and Section 4 provides a
quantified modeling of context. Based on these, Section 5 comes to present an
integrated and uniform approach to the handling of user query understanding,
content understanding and personalized query-content matching. Finally, Sec-
tion 6 discusses the implementation of the presented framework and compares
it to other approaches, while Section 7 lists our concluding remarks.

2. Fuzzy relational knowledge and ontologies

With semantics being one of the current “hot” topics of research, ontological
information tends to be considered as a “must have” for knowledge based sys-
tems. Still, the breadth and practical reach of these systems is often limited
due to the crisp and inflexible information, typically conveyed by ontological
relations. One issue that has not yet been fully exploited is that of the inclusion
of degrees in ontologies, so that human knowledge about the real world can be
modeled in a more intuitive manner.

In general, an ontology O may be modeled mathematically as follows:

O = {S, {Ri}}, i = 1 . . .m (1)

Ri := S × S → {0, 1}, i = 1 . . .m (2)

where O is the ontology, S the set of semantic concepts it describes and Ri

the i-th semantic relation among the concepts out of a total of m supported
semantic relations. The formal definition of ontologies of course also supports
an inference layer, but herein we omit it for the sake of simplicity as it is not
relevant to this work. Although any type of relation may be contained in an
ontology, the two main categories found are taxonomic (i.e. ordering) and com-
patibility (i.e. symmetric) relations; in this work we focus on ordering relations,
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although the presented framework can also be applied without modifications to
compatibility relations as well as their combinations.

It is well understood that relations among real life concepts are most often
a matter of degree, and are therefore best modeled using fuzzy relations. On-
tological taxonomies, on the other hand, are crisp in principle. Thus, they fail
to fully describe real life information, and are limited to α-cuts of the desired
relations. This is a very important drawback that renders such relations insuf-
ficient for the services that an intelligent information processing system aims to
offer. In this work we move beyond the conventional crisp taxonomies typically
contained in ontologies and propose the extension of ontological relations with
the inclusion of fuzzy degrees, thus allowing them to implement more realistic
representations of real life information. Incorporating this approach in the on-
tological field would mean that the mathematical modeling of ontologies would
have to be extended as follows:

O = {S, {Ri}}, i = 1 . . .m (3)

Ri := S × S → [0, 1], i = 1 . . .m. (4)

Although simple in conception, this extension is not directly supported by
current standards (at least pending the results of the latest standardization
efforts of the W3C). In Semantic Web languages, such as RDF and OWL, binary
relations between two individuals are represented by means of object properties.
An object property is characterized by a domain and a range but it cannot have
its own properties such as the severity, strength or relevance of the relation.
This, consequently, means that fuzziness cannot be incorporated in RDF or
OWL in a seamless way. In order to deal with this constraint we utilize an
ontology design pattern known as reification (Mylonas and Wallace, 2006). The
basic idea of this pattern is that an object property that needs to have its own
properties is represented as a class. Then, the instances of this property become
instances of the class (see W3C, RDF Reification).

3. Size and time considerations

A known issue related to the practical use of ontologies in general purpose
applications is that of the complexity related to their size and the scalability
issues emerging from that. Existing practical applications of ontologies are
typically based on simple ontological representations that in most cases have
been developed by few people or even a single person over a very small period
of time. As a result, although the methodologies have proven their worth in
such limited cases, they cannot be generalized to treat a general case, as, for
example, the general purpose analysis of web content. For such an application a
detailed and complete (to a reasonable degree) representation of generic human
knowledge would be required. The practical utilization of an ontology of such
a scale would require at least the following two distinct scalability issues to be
tackled:
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1. scalability with regards to the memory size needed to load and the time
needed to access the ontological information

2. scalability with regards to the processing time required to consider all the
information in the ontology.

3.1. Size considerations

Clearly, algorithmic exploitation of the information that is conveyed by the
ontological relations cannot be based on direct access of the XML representation
structure, when the size of the ontology and the complexity of the application
are considerably augmented; the reduced speed of XML based operations alone
would be enough to prohibit any thought for such applications. Therefore, in
order to practically consider the utilization of large, general purpose ontologies
we need to first define a suitable model to be used for their representation in
computer memory during semantic operations.

Focusing on the (fuzzy or crisp) binary relations included in ontologies, which
are the main focus of this work, we can easily see that in order for such infor-
mation to be readily available for practical utilization all entries referred to the
same semantic relation have to be extracted from the RDF or OWL document
and stored as an n× n relation, n being the count of semantic concepts in the
ontology, i.e. the cardinality of S; this n×n relation is in any case a very sparse
one, as not every concept of the real world is related to every other concept.

The conventional modeling for sparse n × n relations is that of linked lists
for sparse matrices, which augments access time from O(1) to O(n). Although
the storage requirements are much smaller, the representation model remains
insufficient for practical general purpose applications, where complex operations
utilizing a binary relation have to be performed before the system response is
determined, and number n is large.

The representation model proposed in order to overcome these limitations is
as follows: a binary relation is represented using two sorted vectors. The first
vector is sorted according to row index i, and in case of identical row positions,
column position j is utilized, and vice versa for the second vector.

Following this approach, the two vectors that correspond to the sample
sparse relation in Fig. 1 are listed below: [(1,2), (1,5), (1,6), (2,1), (2,4), (2,5),
(3,2), (4,4), (4,6), (5,1), (5,4)] [(2,1), (5,1), (1,2), (3,2), (2,4), (4,4), (5,4), (1,5),
(2,5), (1,6), (4,6)] This representation model preserves the storage merits of the
classical sparse matrix implementation with the linked lists. Moreover, access
time for a specific element, row or column has a computational complexity of
O(log n), when utilizing a divide and conquer approach. Moving a step fur-
ther, we utilize AVL trees for the representation of each of the two vectors
(Adelson-Yelskii and Landis, 1962). In this way, not only access but also in-
sertion, deletion and update times are limited to O(log n), making incremental
operations on the ontological relations feasible.

An additional consideration related to size scalability is that of information
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Figure 1. A sample sparse relation.
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Figure 2. The AVL trees that correspond to the sparse relation in Fig. 1.

dispersion. The existence of numerous semantic relations in the definition of
an ontology results in meaningful and potentially useful information being dis-
persed among them, and therefore no single relation on its own suffices for a
complex and ambitious task such as generic content analysis and querying. On
the other hand, the utilization of a methodology that considers multiple seman-
tic relations leads to increased memory (and time) requirements that can, in
turn, render the methodology practically inapplicable.

In order to overcome this barrier we introduce the notion of knowledge view.
We define a view of the relational knowledge included in an ontology as a new
single relation that is suitable for a specific task, computed via some combination
of the originally available relations. Views have the advantage of being “ready
to use” for a specific task, but do not maintain the full extent of semantic
information conveyed by the original relations and thus cannot replace them
in ontological representations. Quite the contrary, given the original semantic
relations in an ontology, a different view can be developed every time a new
task is to be tackled. In a general mathematical formulation a knowledge view
T is seen as

T =
⋃

Rk
i , i = 1 . . .m, k ∈ {−1, 0, 1}, (5)

where k = 0 indicates that Ri does not participate in the view in question,
k = 1 that it participates “as is”, while k = −1 indicates that Ri participates
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in the view after being inverted. A typical knowledge view, which we will be
using later in this work for the tasks of query processing, document analysis
and information retrieval, is:

T = Pa−1 ∪ Sp ∪ Sb ∪ Ex ∪ Pr−1 ∪ In ∪ Lo−1 (6)

where the considered semantic relations are Pa for part, Sp for specialization,
Sb for subarea, Ex for example, Pr for property, In for instrument and Lo for
location.

Degrees in these relations have an intuitive meaning; for the part relation,
for example, the degree indicates how extensive or important the part is with
respect to the whole, making Pa(s1, s2) = 0.1 meaningful if s1 is the “body”
and s2 is the “finger”, while Pa(s1, s2) = 1 could only hold if s1 = s2; the same
goes for all other relations as well.

3.2. Time considerations

Although this approach permits us to load into memory information from con-
siderably larger (as far as count of concepts is concerned) ontological relations,
an important computational issue remains: that of recursion. Conventional con-
tent based reasoning methodologies have an inherent recursive nature, which
makes them inapplicable for cases where large transitive paths may be found
in relations. Clearly, the consideration of large ontologies for the automated
analysis and querying of generic content, which is the focus of this work, falls
into this category.

In order to overcome this problem, in this work we develop and utilize
methodologies that are based on the transitivity of fuzzy ontological relations.
Taking advantage of this property we may alleviate the need for recursion, thus
making the practical exploitation of the information contained in the relations
feasible.

The transitive property of binary relations, due to its physical meaning, is
closely related to the study of graphs. In that framework, transitive closure of
a relation is equivalent to the detection of the pairs of vertices that are either
directly connected or connected via some path. Thus, the majority of existing
literature on transitive closure algorithms has focused mainly on the cases of
undirected crisp graphs (Seidel, 1995) and crisp graphs (Baker, 1962; Warren,
1975).

Computationally enhanced transitive closure methodologies found in the lit-
erature, such as Lee (2001), De Meyer, Naessens and De Baets (2004), cannot be
used in our case as their application is limited to the case of max−min transitiv-
ity, which is not compatible with the semantics of ontological relations; sup−t
transitivity is required, with t being an Archimedean norm. The computation of
the transitive closure for relations such as the ones considered herein using the
conventional approach requires several relation compositions (Warshall, 1962;
Dunn, 1974) and is not practically applicable for the case of relations of the
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Figure 3. The main concept behind ITU and ITC algorithms

size discussed herein. What is worse, given the long computation times for the
transitive closure, an incremental trial and error approach to the development
of the ontology would not be possible.

A solution to this is the exploitation of the sparse nature of the relations
in order to reduce the computational complexity of the closure operation. As
seen in Fig. 3, when a new element is inserted into the originally transitive
relation T , only three additional operations need to be performed in order to
maintain transitivity, rather than a complete relation composition; this is the
main concept of the ITU (Incremental Transitive Update) algorithm. In the
following, the algorithm is formalized, with parameters T , i and j standing for
the originally transitive relation and the source and destination, respectively, of
the new element that has been added to the relation.

Algorithm ITU:

Parameters: T i j

Output: T

1. Identify the fuzzy set A of ancestors of entity i in relation T . Degrees in
A are determined as A(s) = T (s, i), s ∈ S.

2. Identify the fuzzy set D of descendants of entity j in relation T . Degrees
in D are determined as D(s) = T (j, s), s ∈ S.

3. For each element s appearing in A assign

T (s, j)← sup(T (s, j), A(s) ∧t T (i, j)). (7)

4. For each element s appearing in D assign

T (i, s)← sup(T (i, s), T (i, j) ∧t D(s)). (8)

5. For each element s1 appearing in A and s2 appearing in D assign

T (s1, s2)← sup(T (s1, s2), A(s1) ∧t T (i, j) ∧t D(s2)). (9)
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In the above notation ∧t indicates a fuzzy intersection, where the t norm is
used instead of min. When the algorithm terminates we have T being equal to
the transitive closure of the original T fuzzy binary relation.

If relation T is reflexive, then T (i, i) = 1 and T (j, j) = 1 and thus A(i) = 1
and D(j) = 1. In this case, the above process can be simplified by omitting
steps (3) and (4), as they are included in step (5).

This can easily be extended to compute the transitive closure of any fuzzy
binary relation, thus producing the ITC (Incremental Transitive Closure) algo-
rithm

Algorithm ITC:

Parameters: T
Output: T ′

1. Create an empty binary relation T ′.
2. For each non zero element T (i, j) in the initial relation T

(a) Assign

T ′(i, j)← sup(T ′(i, j), T (i, j)). (10)

(b) Run the incremental update algorithm with parameters T ′, i, j:

T ′ ← ITU(T ′, i, j). (11)

When the algorithm terminates, we have T ′ being equal to the transitive closure
of the original fuzzy binary relation T .

4. The notion of context

In general, the term “context”, for many the holy grail of semantic processing,
refers to whatever is common among a set of elements. In this work, where the
elements are semantic entities, queries and documents, the term “context” may
refer to the common meaning of a set of entities, or to the overall topic of a
query or document, respectively.

A query, as well as a document, will be represented in this work by its
mapping to semantic entities. Therefore, the context of a query is again defined
via the semantic entities that are related to it. The fact that relation T described
in Section 3 is (almost) an ordering relation allows us to use it in order to define,
extract and use the context of a query, or of a set of semantic entities in general.
Relying on the semantics of the relation T , we define the context K(s) of a
semantic entity s ∈ S as the set of its ancestors in relation T :

K(s) =
∑

a/T (a, s), a ∈ S (12)

This set also includes the semantic entity s in question.
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Assuming that a set of entities S′ ⊂ S is crisp, i.e. all considered entities
belong to the set with degree one, the context of the group, which is again
a set of semantic entities, can be defined simply as the set of their common
descendants

K(S′) =
⋂

K(si), si ∈ S′. (13)

Obviously, as more entities are considered, the context becomes narrower, i.e.
it contains less entities and to smaller degrees. When the definition of context
is extended to the case of fuzzy sets of semantic entities, this inequality must
still hold. Moreover, we demand that the following are satisfied as well:

• S′′(s) = 0→ K(S′′) = K(S′′ − {s}), i.e. no narrowing of context.

• S′′(s) = 1→ K(S′′) ⊆ K(s), i.e. full narrowing of context.

• K(S′′) decreases monotonically with respect to S′′(s),

where S′′ is a fuzzy set of entities (i.e. a set similar to S′, in which each element
si is accompanied by a degree of membership in the set). Taking these into
consideration, we demand that, when S′′ is fuzzy, the “considered” context
K(s) of s, i.e. the entity context when taking its degree of participation in the
set into account, becomes low when the degrees of taxonomy are low and the
degree of participation S′′(s) is high. Therefore:

cp(K(s))
.
= cp(K(s)) ∩ (S′′(s) · S) (14)

where cp is an involutive fuzzy complement, and ∩ and ∪ correspond to a t-norm
and a t-conorm, which are dual, with respect to cp. By applying de Morgan’s
law, we obtain:

K(s)
.
= K(s) ∪ cp(S′′(s)). (15)

Then the context of the set is easily calculated as follows:

K(S′′) =
⋂

K(si), si ∈ S′′. (16)

Considering the semantics of the relation T and the process of context deter-
mination, it is easy to realize that when the entities in a set are highly related to
a common meaning, the context will have high degrees of membership for the en-
tities that represent this common meaning. Therefore, the quantity h(K(S′′)),
where h(·) symbolizes the height of a fuzzy set, may be used as a measure of
the semantic correlation of entities in the set S′′. We will refer to this measure
as intensity of the context.

5. Flexible querying

Flexible querying is a term coined for and originally associated with database
querying. In that scope, it refers to the alleviation of the rigidity of traditional
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database querying by providing users with more user friendly and human intu-
itive approaches to querying. Since then, the term has exceeded the boundaries
of database querying and is more generally utilized to describe the offering of
more intuitive querying tools in all aspects of information retrieval (see, for
example, Bordogna and Pasi, 2002). The same approach is used herein, with
flexible querying referring the the development of more intuitive ways to perform
free text searches in open- or closed-world collections of documents.

5.1. Definitions

Given a set of available elements D̃, an information retrieval system (IRS) un-
dertakes the tasks of organizing the elements, using a suitable modeling, and
controling/facilitating access to them. It is also involved in the handling of the
interaction with end users, the extraction of information concerning their desires
and the recall of elements P̃ ⊆ D̃ suiting these desires. In order for all these
to be realized, three main tasks need to be supported, namely understanding of
element content, understanding of user desire, and matching between the two.
These correspond to the components of document indexing, query processing
and matching mechanism of an IRS, as is seen in Fig. 4.

Through the indexing, each element d̃ of set D̃ is associated with its modeled
representation d ∈ D, with d =

∑

si/wi, s ∈ S, thus generating relation I, the
index of the system. In the above notation wi is the degree, to which entity si

participates in fuzzy set d, i.e. the degree, to which it is associated to document
d̃, and D is the space in which documents are modeled by the IRS:

f1
.
= I : D̃ × S → [0, 1]. (17)

In a similar manner, query processing associates the user query q̃ to its
modeled representation q ∈ Q, with q =

∑

si/wi, s ∈ S,

f2 : Q̃× S → [0, 1] (18)

where Q̃ is the space, in which user queries are expressed, and Q the space, in
which they are modeled by the system.

Finally, the matching mechanism uses the modeled expressions of both user
query and available elements in order to provide users with a suitable system
response,

f3 : Q×D → [0, 1]. (19)

In all the above we have assumed the general case, in which indexing, query
processing and matching are all a matter of degree.

Obviously, the efficiency and effectiveness of the IRS it tied to the calcula-
tion and meaningfulness of f1, f2 and f3. In this section we explain how we
exploit the models and methodology presented in Sections 2 and 3 in order to
incorporate knowledge, semantics and reasoning under uncertainty in the defi-
nition and calculation of the functions that constitute the backbone of the IRS.
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element representation
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Figure 4. The structure of an information retrieval system

5.2. Query disambiguation

In Section 4, although never stated directly, it was implied that the mapping of
the terms provided by the user in a textual query to the corresponding semantic
entities is one-to-one, error free and trivial. This can be true for some cases, but
in the general case there are important issues one needs to consider as for exam-
ple that distinct semantic entities may have common textual descriptions. As a
simple example, let us consider the case of term “element”; at least two distinct
semantic entities correspond to it: “element1”, which is related to chemistry,
and “element2”, which is related to XML.

Let us now suppose that a query containing the term “element” is given by
a user. If the remaining terms of the query are related to chemistry, then it is
quite safe to suppose that the user is referring to semantic entity “element1”
rather than to semantic entity “element2”. This implies that the context of the
query can be used to facilitate the process of semantic entity determination.
However, the estimation of the query context, as defined in Section 4, cannot be
performed before the mapping of the query to semantic entities is completed.
Therefore, query interpretation needs to take place simultaneously with context
detection. We propose the following method:

Let the textual query q̃ contain the terms

q̃ = {t1, t2, . . . , tnq
}. (20)
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Also for each term ti let

Si = {si1, si2, . . . , sini
} (21)

be the set of semantic entities that may be expressed via ti in a text. Then, the
count of distinct combinations of semantic entities that may be used to model
the user query is

|Sq| =
∏

ni, i = 1 . . . nq (22)

where

Sq = S1 × S2 × . . .× Snq
. (23)

For each of these alternatives we calculate the context using the methodology
developed in Section 4. The combination that produces the context with the
greater intensity is the one that is selected as the valid modeling for the user
query,

qselected = {q ∈ Sq : h(K(q)) = max(h(K(qi))), qi ∈ Sq (24)

where h is the intensity function defined earlier.
This algorithm, proposed for query disambiguation, i.e. for the implementa-

tion of f2 as defined in the beginning of this section, is exhaustive. Still, this is
not an important drawback that may lead to scalability concerns as:

• queries do not contain large numbers of terms,

• the terms for which more than one semantic entity may be chosen are rare
and

• the number of distinct semantic entities that may have a common textual
description is not large.

An approach, different in implementation but similar in concept (i.e. based
on the abstract notion of context) appears in Baziz, Boughanem and Aussenac-
Gilles (2005), where once the words have been extracted from the text, the best
semantic network to model them is selected; in this network similarity measure
values between connected nodes weigh the links.

5.3. Document analysis

The mapping of the terms found in a textual document to semantic entities
may be performed using an approach similar to the one presented above for
query disambiguation, by limiting each time the scope of the context to a single
paragraph or sentence. The index can also be populated via other automated
methodologies, as for example automatic audio transcription, video analysis and
object detection and so on, thus also providing fuzziness based on the certainty
or degree to which entities are detected.
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Still, the true role of the document indexing component is to “comprehend”
the contents of a document in order to provide an indexing that accurately
and fully carries the meaning of its contents. The approach utilized in this
work for this analysis of the document is to extract the topics associated with
the document. This is achieved based on the definition of context provided in
Section 4; this definition of context has the requirement that the input fuzzy
set of semantic entities is normal, and therefore we also demand that the index
is normal for each document, i.e.:

∀d̃ ∈ D̃∃s ∈ S : I(d̃, s) = 1. (25)

Based on the index, and the knowledge contained in the considered knowl-
edge view T , we aim to detect the degree, to which a given document d ∈ D is
related to a topic/thematic category tc ∈ TC, with TC ⊆ S. We will refer to
this degree as RTC(tc, d). In other words, we aim to calculate the relation:

RTC : TC ×D → [0, 1]. (26)

In order to simplify some of the formulas to follow, we shall use this notation
interchangeably with

STC(d̃) : TC → [0, 1] (27)

with STC(d̃) being the fuzzy set of thematic categories that are related to doc-
ument d̃ and

STC(c) : TC → [0, 1] (28)

with STC(c) being the fuzzy set of thematic categories that are related to fuzzy
set c.

In designing an algorithm that is able to calculate this relation, in a mean-
ingful manner, a series of issues need to be tackled:

1. A semantic entity may be related to multiple, unrelated thematic cate-
gories.

2. A document may be related to multiple, unrelated thematic categories.

3. The semantic index may have been created in an automated manner.
Thus, existence of random, and therefore misleading semantic entities can-
not be excluded.

4. Semantic relations are always a matter of degree. Therefore, correlation
between a document and a thematic category is also a matter of degree.

According to issue 1, it is necessary for the algorithm to be able to determine,
which thematic categories are indeed related to a given document. In order for
this task to be performed in a meaningful manner, the common meaning of
the remaining entities that index the given document needs to be considered as
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well. On the other hand, when a document is related to more than one thematic
categories, as issue 2 points out, we should not expect all the terms that index
it to be related to each one of the thematic categories in question; quite the
contrary, we should expect most entities to be related to just one of them.
Therefore, a clustering of semantic entities, based on their common meaning,
needs to be applied. In this process, entities that are misleading will probably
not be found similar with other entities that index a document. Therefore, the
cardinality of the clusters may be used to tackle issue 3. Finally, issue 4 is easily
solved by allowing the overall algorithm to be fuzzy.

As far as the clustering of the semantic entities is concerned, agglomerative
methods are more flexible than their partitioning counterparts, in that they do
not need the number of clusters as an input (Theodoridis and Koutroumbas,
1998). Their generic structure is as follows:

1. Turn all considered elements into singletons, i.e. into independent clusters
of one element.

2. Compute all cluster-to-cluster distances.

3. If a termination criterion is met, i.e. the smallest computed distance is
larger than a given threshold then terminate.

4. Merge the two clusters for which the smallest distance has been computed.

5. If a termination criterion is met, i.e. the number of remaining clusters is
equal to a given termination threshold, then terminate.

6. Continue at step 1.

Herein we follow an agglomerative approach to cluster the crisp (we ignore
degrees) set of semantic entities that index a document, using the context to
define both cluster distance and termination criteria. Still, the agglomerative
approach is less robust in other ways:

• It only creates crisp clusterings, i.e. it does not support degrees of mem-
bership in their output.

• It only creates partitions, i.e. it does not allow for overlapping among the
detected clusters.

Both of the above are great disadvantages for the problem at hand, as they
are not compatible with the task semantics: in real life, a semantic entity may
be related to a topic to a degree other than 1 or 0, and may also be related to
more than one distinct topics. In order to overcome such problems, we describe
in the following a method for fuzzyfication of the partitioning we have produced
via the original agglomerative clustering. In this way the cluster cardinalities
will be corrected, so that they may be used for the meaningful extraction of
thematic categories.

Each cluster c is described by the crisp set of semantic entities Sc that belong
to it. Using those, we may create a fuzzy classifier, i.e. a function Cc that will
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measure the degree of correlation of a semantic entity s with the cluster c,

Cc : S → [0, 1]. (29)

Obviously, a semantic entity should be considered correlated with c, if it is
related to the common meaning of the semantic entities in Sc. Therefore, the
quantity

C1(c, s) = h(K(Sc ∪ {s})) (30)

is a meaningful measure of correlation, where h is again the intensity function
defined earlier. Of course, not all clusters are equally compact; we may measure
cluster compactness using the similarity among the entities a cluster contains,
i.e. using the intensity of the cluster context. Therefore, the aforementioned
correlation measure needs to be adjusted, to the characteristics of the cluster in
question:

C2(c, s) =
C1(c, s)

h(K(c))
. (31)

It is easy to see that this measure has the following properties:

• C2(c, s) = 1 if the semantics of s imply it should belong to c. For example
C2(c, s) = 1, ∀s ∈ Sc

• C2(c, s) = 0 if the semantics of s imply it should not belong to c.
• C2(c, s) ∈ (0, 1) if s is neither totally related, nor totally unrelated to c.

These are the very same properties that we desire for the fuzzy classifier of
the cluster, and therefore:

Cc(s)
.
= C2(c, s). (32)

Using such classifiers, we may expand the detected crisp partitions, so as to
include more semantic entities, as follows: partition c is replaced by cluster

c′ =
∑

s/Cc(s), s ∈ I(d). (33)

Obviously c′ ⊇ c. Having computed the fuzzy clustering of the semantic entities
that index a document, we are now ready to perform the actual extraction of
the thematic categories that are related to it.

We have defined the context of a set of semantic entities as a fuzzy set
of semantic entities itself; this contains the entities that describe the common
meaning of the original set. The thematic categories that are contained in the
context of a cluster of semantic entities are obviously thematic categories that
are related to it and to the whole document. Based on this concept, the following
steps lead to the thematic categorization of documents:



Ontologies and soft computing in flexible querying 497

First of all, the process of fuzzy hierarchical clustering has been based on
a crisp set, thus ignoring fuzziness in the index. In order to incorporate this
information in the results of the clustering process, we adjust the degrees of
membership for clusters as follows:

c′′(s) = c′(s) ∧t I(d̃, s). (34)

The semantic nature of this operation demands that an Archimedean t-norm be
used.

From each one of those clusters, we may extract the corresponding thematic
categories. Obviously, thematic categories that are not contained in the context
of c′′ cannot be selected as being related to it. Therefore

STC(c′′) ⊆ S′

TC(c′′)
.
= w(K(c′′) ∩ TC) (35)

where w is a weak modifier. Modifiers, which are also met in the literature, like
linguistic hedges, are used (in this work) to adjust mathematically computed
values so as to match their semantically anticipated counterparts.

In the case that the semantic entities that index the document d̃ are all
clustered in a unique cluster c′′, STC(d̃) = S′

TC(c′′) would be a meaningful
approach. On the other hand, when more than one clusters are detected, then
cluster cardinalities have to be considered as well. Clusters of extremely low
cardinality probably only contain misleading entities, and therefore need to be
ignored in the estimation of STC(d). On the contrary, clusters of high cardinality
almost certainly correspond to the distinct topics d̃ is related to, and need to
be considered in the estimation of STC(d̃). The notion of “high cardinality” is
modeled with the use of a large fuzzy number L. L(·) is the truth value of the
proposition “the cardinality of a is high”.

The set of thematic categories that correspond to a document is computed
from the remaining clusters, after adjusting membership degrees according to
scalar cardinalities, as follows:

STC(d̃)
.
=

⋃

STC(c′′), c′′ ∈ G (36)

with

STC(c′′) = S′

TC(c′′) · L(|c′′|) (37)

where a fuzzy co-norm (not necessarily max) is used for the calculation of the
sum, G is the set of fuzzy clusters with adjusted membership degrees and |c′′|
the scalar cardinality of c′′.

It is easy to see that RTC(d̃, tc) will be high if a cluster c′′, whose context
contains tc, is detected in the indexing of the document, and additionally, the
cardinality of c is high (i.e. the cluster is most probably not composed of mis-
leading entities) and the degree of membership of tc in the context of c′′ is
high.
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5.4. Personalized information retrieval

To this day, out of the components we have identified in IRSs it is the process of
matching between the query and the index that has received the most attention,
while query and document analysis have been relatively neglected. The reason
behind this is that in the IRSs based mainly on the processing of terms not much
intelligence could be incorporated in indexing and query analysis, thus making
the task of matching the most important one in the process of information
retrieval.

On the other hand, in the approach presented in this work both the query
analysis and document indexing steps have been performed in an intelligent,
context aware, knowledge based approach that in addition to degrees of asso-
ciation also took under consideration sources of uncertainty such as ambiguity
in querying and misleading terms in documents. Moreover, queries and docu-
ments are both modeled as fuzzy sets on S, which facilitates their association.
Therefore, a simple and straightforward approach to the design of the matching
mechanism could be sufficient.

Still, this step does offer one additional opportunity to enhance the effective-
ness and flexibility of the overall approach. This refers to the ability to modify
matching process in accordance to the user profile, in order to also incorporate
personalization in the overall process of information retrieval.

A simple representation for the user profile that also allows for degrees of
preference is that of a fuzzy set defined on the set of semantic entities S. Un-
fortunately, as explained below, it is easy to see that such an approach is not
adequate.

First of all, let us consider the (not rare) case in which a user has various
preferences. When the user poses a query that is related to one of them, then
that preference should be used to drive the selection of relevant documents.
Usage of preferences that are unrelated to the specific query may only be viewed
as addition of noise, as any proximity between selected documents and these
preferences is clearly coincidental, in the given context. In order to limit this
inter–preference noise, we need to be able to identify which preferences are
indeed somewhat related to the considered user query, and to what extent.
Therefore, each preference needs to be stored separately; a single fuzzy set is
not sufficient for the representation of user preferences.

Let us now consider the case in which we can infer (for example by monitoring
and later analyzing user actions or simply through a questionnaire), that the
user is not interested in documents of a specific subject. In such a case, in
addition to preferences, special care must be taken for the representation of
dislikes.

When applying the above in designing a user preference data model, we need
to keep in mind that a user is interested in each subject to some degree. There-
fore, interests (and dislikes) need to be characterized by a degree of intensity.
Moreover, the process of mining the interests is not free of uncertainty itself,
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and therefore, mined interests also need to be accompanied by a degree of con-
fidence. This leads to the use of two distinct, seemingly independent degrees,
for each preference.

Still, it is easy to see that an intense interest will probably be mined with
a greater degree of confidence, than one that is not as intense. It is this obser-
vation that allows us to suppose that the degree of confidence and the degree
of intensity are not independent. In other words, although two distinct degrees
are related to each interest, an intensity degree and a confidence degree, a single
degree is sufficient for their representation.

In compliance with the principles presented above, we use the following
formal representation of user preferences P in a user profile:

P = {U+, U−} (38)

where U+ refers to the set of interests and U− refers to the dislikes,

U− =
∑

si/u−

i , i ∈ Nn (39)

where u−

i is the degree of participation of entity si in U−,

U+ = {U+
i }, i ∈ Nk (40)

where k is the count of distinct positive interests that are contained in the user
profile, and

U+
i =

∑

sj/u+
ij, i ∈ Nk, j ∈ Nn (41)

where u+
ij is the degree of participation of entity sj in U+

i .
It is easy to see that this definition allows for the overlapping of interests and

dislikes. Moreover, it allows for the participation of the same semantic entity in
different interests, and to different degrees.

The utilization of two distinct sets to model user desires is also found in bipo-
lar queries (Dubois and Prade, 2008; Zadrożny and Kacprzyk, 2006); contrary
to here, where the two sets are utilized to model different types of preference
(i.e. positive and negative), in bipolar querying the two sets are used to model
different levels of desire (i.e. required elements and preferred elements).

Based on the definition of context, as provided in Section 4, we may detect
the fuzzy set UK =

∑

U+
i /ki of interests that are related to the query context

as follows:
Obviously, in the case that no context can be detected in the query, we

would like the whole set of user preferences to be selected. More formally, when
h(K(q)) approaches zero, UK approaches U+. If, on the other hand, the query
context is intense, preferences that do not intersect with the context should
not be considered, thus eliminating inter – preference noise. The remaining
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preferences are considered in proportion to the intensity of their intersection
with the context.

A simple formula that complies with the above guidelines is the following:

ki =
h(U+

i ∩K(q))

hq

∨ c(hq) (42)

where hq = h(K(q)) is the intensity of the query context.
Negative preferences that are out of context do not add noise, and conse-

quently do not have to be filtered with the use of the query context. Therefore,
the context adapted user preferences are:

PK = {UK , U−}. (43)

Within a specific query context we may demand, as a minimum consistency
criterion, that the context adapted user preferences do not contain both positive
and negative preferences for the same semantic entities. As we have not imposed
such a criterion in the process of constructing or expanding the profile, it is
possible that PK is not in accordance with this criterion.

In order to specify the optimal way of altering PK , so as to make it com-
patible with our consistency criterion, we start, once again, by identifying some
necessary conditions. First of all, interests are generally extracted with greater
confidence than dislikes; the users themselves may be more aware of their dis-
likes than their interests, but the latter are easier to detect than the former
when relying solely on automated methodologies that do not include polling the
user. Therefore, interests should be treated more favorably.

Obviously, if only interests correspond to a specific semantic entity, then their
degrees must not be altered. Likewise, if only a dislike corresponds to a specific
semantic entity, then its degree must not be altered. In general, the degrees of
interests should increase monotonically with respect to their original value, and
decrease monotonically with respect to the original value of the corresponding
dislike, and vice versa. These conditions are not particularly strict as there are
infinite compliant implementations; we choose a simple linear approach:

A degree of favor a ∈ [0, 1] is defined. It indicates the degree to which
interests are favored, with respect to dislikes. When a = 1 there is no distinc-
tion, while, as a approaches 0, dislikes are completely ignored. The decision on
whether interests or dislikes dominate a semantic entity si, is based on the sign
of the expression

max
j

(kju
+
ji − au−

i ). (44)

If kju
+
ji − au−

i is positive for at least one j, then the negative preference

cannot dominate, i.e û−

i = 0; by û−

i we denote the intensity of the negative
preference after the adjustment for consistency. Likewise, if maxj(kju

+
ji−au−

i ) <

0 ∀j, then û+
i = 0 ∀j.
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The adjusting of dominating values is performed using the following formu-
las:

û+
ji = u+

ji −
au−

i

kj

(45)

û−

i = u−

i −
maxj(kju

+
ij)

a
. (46)

The above approach produces a valid (i.e. consistent) context adapted user
profile; this profile may only be used in the process of matching the query, for
which it was calculated.

This brings us up to the actual matching between the query model q and
the index I (or the thematic categorization RTC), while considering the context
adapted user profile. This is accomplished as a two step process: first matching
is performed directly without considering user preferences by combining matches
for each term si ∈ q

Dq =
⋂

i

Dqi
(47)

Dqi
=

∑

d̃/I(d̃, si). (48)

Then interests and dislikes are used in order to adjust degrees for each se-
lected document. For each interest U+

i degrees may be augmented:

Dq(d̃)← (Dq(d̃))1+h(K(d∩U
+
i

)) (49)

while dislikes may reduce them:

Dq(d̃)← (Dq(d̃))
1

1+h(K(d∩U−)) . (50)

6. Discussion and implementations

Comparing this work to other in the literature is not easy. For the querying
part the main reason for this is that, as is evident from the description of our
framework in the previous sections, the acquired results are greatly dependent
on the contents and completeness of the considered ontology. This does not only
make any comparative study difficult when a complete ontology is not readily
available (clearly the development of such an ontology is not an easy task either)
but also it renders it meaningless when comparing with any methodology that is
not ontology-based; better results can always be acquired not only by enhancing
the methodology, but also by merely by properly altering the ontology. When it
comes to the second part, i.e. personalized information retrieval, this is hindered
by the subjectivity issues of personalization. Still, a qualitative comparative
study is possible and such a discussion follows.

As has already been explained in the literature, querying based on terms
rather than concepts is hindered by a number of difficulties. Therefore, concept
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based querying is typically deemed as superior. It would of course be misleading
to ignore the fact that quite successful term based information retrieval method-
ologies have been developed and reported. One thing that the most effective
of these approaches have in common is that they are based on the successful
statistical analysis of the whole document base, or of an indicative sample of
it, thus limiting their application to closed-world or closed-world-like situations.
The approach presented herein overcomes this problem, as the knowledge, upon
which its operation is based, does not come from the analysis of the documents
themselves but from an independently developed ontology. As a consequence,
the system can be fully developed when no documents are available and then
successfully applied to any document or document collection, provided of course
that the associated ontology has been developed correctly and sufficiently.

On the other hand, our approach lacks with respect to conventional informa-
tion retrieval approaches in exactly that: the fact that the knowledge required
for its operation is not generated automatically but rather through a painful and
extremely time consuming manual process. Each relation element (except for
those that can be inferred from the transitive nature of the considered relations)
has to be provided manually by a human.

As has already been mentioned, one characteristic of our approach is that all
of the presented methodologies are based on a common fuzzy ontological frame-
work. Therefore, the first step in any implementation of our approach is the
implementation of the fuzzy ontological framework. This has been accomplished
in three distinct steps:

• A framework has been developed to support the modeling of fuzzy sets
and fuzzy relations, as well as the implementation of fuzzy operators and
operations.
• Reification was utilized to allow for fuzziness to be incorporated in the

definition of ontologies.

• The two aforementioned components were integrated via the development
of OWL input and output interfaces for the fuzzy framework.

For the first and last steps the JavaTM environment was utilized; the second
step is inherently supported by RDF vocabulary.

The fuzzy relational library that we developed (Wallace, no date), in ad-
dition to the support for the other methodologies presented in this work, also
provides the means to evaluate the theoretically examined properties of the time
and space reduction methodologies. Indeed, experiments indicate that double
precision fuzzy binary relations between as many as 70000 elements can easily
be loaded into memory (impossible when considering conventional array repre-
sentation) and the transitive closure of such a relation can be achieved within
seconds (an operation that when attempted on the same computer, using the
proposed sparse representation model but the conventional transitive closure
algorithm took longer than 120 hours to complete).
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The document analysis methodology has also been implemented and tested
as a stand alone tool. The practical application of this tool is demonstrated in
Fig. 5, where it is applied towards the analysis and automatic thematic catego-
rization of a document. This application was evaluated in the framework of the
FAETHON project, where it was proven that automated text analysis based on
fuzzy relational information can provide for effective thematic categorizations.
The main limitation identified was the poor performance of the module match-
ing terms to concepts (a problem also augmented by the fact that a portion of
the considered documents was in Greek) which led to the development of the
disambiguation methodology.

Figure 5. The stand-alone implementation of the document analysis tool.

The reification component was developed and incorporated in the overall
framework in the context of the EDRASIS project, which develops a tool for
flexible querying of business operational documents; this system also contains
the personalized querying component. The complete platform of the project has
been implemented, integrated and successfully tested, while at the current stage
the preliminary ontology that was used for testing is being further populated in
order to allow for application in less controlled document collections.

Future systems are also planned to use the complete framework presented
herein, as for example the SAIL system which aims to automatically process
educational document bases in order to locate documents related to a learner’s
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request; in that context automated document analysis is essential as the fact
that the users are not field experts who can properly formulate queries describing
their needs is at the very heart of the problem addressed.

7. Conclusions

This work has been based to some extent on previous works, both by the au-
thor and others. What is new in this paper is that for the first time distinct
approaches and methodologies have been brought together in order to provide
a complete and integrated soft computing framework for flexible querying; in-
tegrated in the sense that all are founded on a common fuzzy ontological basis,
which allows for the same definitions, methodologies and algorithms to be reused
throughout the retrieval process.

New elements incorporated in the presented framework include:

• the incorporation of the previously proposed fuzzy relational knowledge
representation model in ontologies via reification,

• the notion of knowledge views,

• the context aware methodology for query disambiguation and document
indexing,

• the notion of inter-preference noise and a user profile model that overcomes
it,

• the algorithm to contextualize user profiles,

• the modified matching mechanism that considers user preferences, as well
as

• the consideration of all steps of the retrieval process as individual appli-
cations of a common overall framework.

The result is a framework that allows for human knowledge to be incorpo-
rated into ontologies in a seamless way without the loss of descriptive power
and then to be exploited in order to detect context and use it to drive the var-
ious steps of information retrieval. As a result, more intuitive queries may be
supported and more meaningful results may be provided to users.

As far as future work is concerned, although the algorithmic and model-
ing aspects of the presented framework have all been tested via application,
much room for further improvement still exists. A first concern is how well all
presented components work together in a practical setting, as the concurrent
consideration of an abundance of different contexts (the context of the query,
the context of the document and the context of the user) needs to be investi-
gated practically. Also, the utilization of different fuzzy norms and co-norms in
the transitive closure of knowledge views, as well as in the different information
processing methods of the framework, needs to be examined as different norms
may have lead to more semantically relevant results.
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Finally, this discussion would not be complete if we did not underline that
every aspect of the presented framework is based on the existence of a proper
ontology with detailed and meaningful fuzzy relations defined between the var-
ious semantic entities. The development of a detailed domain ontology is a
very painful and time consuming process; the development of a detailed domain
ontology including semantically aligned degrees for each included relation is ob-
viously a much more difficult task, and therefore the extent to which we are able
to develop such relations provides the practical boundaries of the applicability
of the presented framework.

Also, the careful reader may have noticed that querying in the proposed
framework is performed solely through the considered ontology, which implies
that terms and words not included in the ontology (proper names are good
candidates for this) cannot be retrieved. This is clearly a limitation on the
application of the presented approach to conceptual querying, intended to be
utilized as a complement to and not instead of other general purpose infor-
mation retrieval techniques. The integration of the two approaches into one
methodology inheriting all merits and overcoming all drawbacks is also a part
of our future work.
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