
Control and Cybernetics

vol. 38 (2009) No. 2

Attribute-oriented defuzzification of fuzzy database tuples

with categorical entries∗

by

Rafal A. Angryk

Department of Computer Science
Montana State University

Bozeman, MT 59717-3880, USA
e-mail: angryk@cs.montana.edu

Abstract: We are investigating the ability to data mine fuzzy
tuples, which are often utilized to represent uncertainty about the
registered information. We discuss different aspects of fuzzy data-
bases and comment on practical advantages of the model we uti-
lized in our research. Motivated by a well known technique called
Attribute-Oriented Induction, which has been developed for summa-
rization of ordinary relational databases, we propose a new heuristic
algorithm, allowing attribute-oriented defuzzification of fuzzy data-
base tuples to the form acceptable for many regular (i.e. atomic
values based) data mining algorithms. Significant advantages of our
approach to defuzzification of fuzzy database tuples include: (1) its
intuitive character of fuzzy tuples’ interpretation, (2) a unique ca-
pability of incorporating background knowledge, implicitly stored in
the fuzzy database models in the form of fuzzy similarity relation,
directly into the imprecise data interpretation process, (3) trans-
formation of fuzzy tuples to a format easy to process by regular
data mining algorithms, and (4) a good scalability for time-efficient
treatment of large datasets containing non-atomic, categorical data
entries.

Keywords: defuzzification of fuzzy tuples, non-atomic cate-
gorical data entries, attribute-oriented induction, fuzzy databases,
fuzzy similarity relation.

1. Introduction

There has been a very dynamic growth of data mining research during the last
decade (Kantardzic and Zurada, 2005) leading to increased number of data
mining algorithms and real-life applications. Many data analysis techniques

∗Submitted: April 2008; Accepted: March 2009.

420 R.A. ANGRYK

are being actively investigated with a focus on creating new and faster algo-
rithms entirely devoted to time-efficient mining of massive data repositories.
This change of research focus, from an accurate reality modeling and an intu-
itive querying to the fast large-scale data analysis, carries significant importance
for all researchers working in areas related to fuzzy databases. Successful fu-
ture of unconventional database models becomes more and more dependent on
the development of consistent, easy to understand, and scalable mechanisms for
mining the data such databases are capable of storing and processing. In future
decades, providing effective mechanisms of imprecise data representation may
be not enough to make the database models successful if no algorithms allowing
for fast analysis of such data are available.

In this work we will address the challenge of transferring the fuzzy tuples
(i.e. defuzzifying them) to forms acceptable for many regular (i.e. atomic val-
ues based) data mining algorithms. We decided to put our efforts into this
task when we observed that non-atomic, categorical data entries, that can be
so conveniently modeled in fuzzy databases, appear in large number of real-life
database systems, ranging from multiple online surveys about customers’ pref-
erences (e.g. mark types of food you like, in order of your preference), to reports
from medical examinations (e.g. identify areas of pain, describe its severity).

At the very beginning, we want to clarify a few important aspects of our
work. First of all, we want to emphasize that our goal was not to develop a
new technique for retrieving precise information about individual fuzzy tuples
but instead—we focused on an algorithm allowing for a fast discovery of general
trends in the entire data set. We also want to point out that our algorithm has
been designed for defuzzification of fuzzy tuples containing categorical data, and
extending it to the form allowing interpretation of continuous numeric values
will require some modifications.

Secondly, it needs to be noted that the term “defuzzification”, when used
in this paper, should be interpreted in a much broader context than typically
used in the fuzzy sets community (i.e. transformation of a single fuzzy set to a
singleton). In this paper we will present a heuristics enabling us to transfer a
set of fuzzy database tuples to the collection containing only atomic entries (i.e.
singletons), that can be then easily interpreted by many regular data mining
algorithms. These singletons, however, are intended for a discovery of general
trends in the massive set of fuzzy data, not for a retrieval of precise information
about an individual fuzzy tuple.

Finally, we want to accentuate that the point of this paper is not to argue
about the statistical accuracy of the approach that has been used, but rather
to show that a defuzzification of non-atomic data stored in fuzzy databases is
practically achievable, and to raise awareness in the fuzzy database community
about the lack of algorithms that can quickly transfer data stored in large fuzzy
databases to a form that can be easily analyzed with popular data mining
software (e.g. Weka, 2009).

Defuzzification of fuzzy database tuples 421

In the next section, we present an overview of the extended fuzzy relational
database model and briefly comment on these aspects of the model, which we
consider important from data mining practitioners’ perspective. We also give a
brief review of research conducted on attribute-oriented induction—a technique
which has motivated our approach to fuzzy databases defuzzification. In Sec-
tion 3, we propose a new heuristic algorithm to interpret fuzzy tuples and then
present some experimental results we obtained, when examining behavior of our
algorithm. Finally, in Section 4, we summarize the things we learned from our
investigation.

2. Related works and motivation

2.1. Extended fuzzy relational database model

In this work we are focusing on the extended fuzzy relational database model,
with the shape of database tables matching an example presented in Table 1.
Following early fuzzy database models (Buckles and Petry, 1982, 1983; Petry,
1996), we will start with allowing each of the descriptive attributes to store more
than just an atomic descriptor. In other words, for each actual attribute entry,
denoted as aij (where j is an index of the attribute, and i is the number of the
tuple in the fuzzy database table), we let aij = {dj : dj ∈ Dj, 0 ≤ |aij | ≤ |Dj |}
(i.e. we extend an atomic entry requirement: aij = {dj : dj ∈ Dj , |aij | ≤ 1}
coming from Codd’s, 1970, First Normal Form), where Dj denotes the do-
main of the jth attribute (denoted as Aj), and dj is its singleton element.
Now, following Prade and Testemale (1984), we further extend the attribute
characterization to the format allowing to store information about the possibil-
ity of each entered value occurrence (i.e. we extend each acceptable attribute
entry to fuzzy subset of this attribute domain): aij = {(dj |µij(dj)) : dj ∈
Dj , µij(dj) 7→ (0, 1], 0 ≤ |aij | ≤ |Dj|}. In the example presented in Table 1,
Nickname123 = {Ivan|1.0,Big|0.6} means that there is a possibility equal to 1.0
that the person identified using number 123 is called Ivan, and a possibility
equal 0.6 that he is referred to as Big. This notation has been used in the
past (Buckles and Petry, 1982, 1983; Petry, 1996; Prade and Testemale, 1984;
Baldwin and Zhou, 1984; Raju and Majumdar, 1988; Shenoi and Melton, 1989;
Zemankova-Leech and Kandel, 1984; Rundensteiner, Hawkes and Bandler, 1989;
Zadeh, 1970; Medina, Pons and Vila, 1994) to reflect an imprecision of the reg-
istered attribute value(s). Non-atomic entries to the fuzzy attribute (i.e. the
dj |µij(dj) pairs) can be interpreted (Urrutia et al., 2006) either as inconsis-
tent—i.e. logical XOR (only one value is correct, but we were not sure which
one, so both values were entered), or in a truly multi-valued manner, that is,
as a conjunction of terms (where only the merger of entered values is relevant,
e.g. bird that is covered in white and black feathers), or as a disjunction (where
all possible combinations are acceptable, e.g. bird that may be all black, or all
brown, or even carry both colors). In our algorithm we assume disjunctive in-

422 R.A. ANGRYK

terpretation of non-atomic data entries. For example, the suspect with Id=123
(Table 1) is a citizen of three different countries: Ukraine, Belarus and USA
(and may be also considered as a member of a small group of suspects who take
advantage of multiple citizenships).

Table 1. Fuzzy database table containing human trafficking suspects

Id Nickname Country of

citizenship

Country of

operation

Suspicion of

involvment

123 {Ivan|1.0, Big|0.6} {Ukraine|0.8,

Belarus|0.9,

USA|0.6}

{USA|1.0} 0.6

245 {Rookie|1.0} {USA|1.0} {USA|0.8,

Colombia|0.3}

0.8

987 {Boss|1.0} {Colombia|0.9,

Venezuela|0.8,

Spain|0.4}

{Colombia|1.0 0.1

To make sure our fuzzy database model reflects extended fuzzy database
capabilities, we included two additional properties often discussed in the liter-
ature on fuzzy databases (Buckles and Petry, 1982, 1983; Petry, 1996; Prade
and Testemale, 1984; Baldwin and Zhou, 1984; Raju and Majumdar, 1988;
Shenoi and Melton, 1989; Zemankova-Leech and Kandel, 1984; Rundensteiner,
Hawkes and Bandler, 1989). First, to make sure that our model is compatible
with works presented in Prade and Testemale (1984), Baldwin and Zhou (1984),
Raju and Majumdar (1988), we added an attribute with membership function
χR(ti) 7→ (0, 1] to each fuzzy database table. Function χR(ti) reflects the degree
to which a given fuzzy tuple ti belongs to a particular fuzzy database relation
(the relation is denoted by index R). It is used to model uncertainty (Prade and
Testemale, 1984; Medina, Pons and Vila, 1994) about the belonging of an indi-
vidual tuple to the particular database table. For example, the last column in
Table 1 shows that χHumanTraffickingSuspect(t123) = 0.6, which can be interpreted
as 60% degree of suspicion/possibility that someone using nicknames Ivan and
Big is involved in the business of trading human beings. It needs to be men-
tioned that this attribute has a slightly different role than the other attributes.
Whereas the focus of the remaining attributes (we will call them descriptive) is
on characterization of the registered entity per se (and fuzzy sets are used to
reflect imprecision of this description), the last attribute characterizes strength
of (or uncertainty about, Prade and Testemale, 1984; Medina, Pons and Vila,
1994) the entity membership (i.e. relevance) to the particular database table.

Moreover, as in Buckles and Petry (1982, 1983), Petry (1996), Shenoi and
Melton (1989), Zemankova-Leech and Kandel (1984), Rundensteiner, Hawkes
and Bandler (1989), we let each of the descriptive domains have a pre-specified

Defuzzification of fuzzy database tuples 423

binary fuzzy relation, which extends a crisp equivalence relation regularly used
in ordinary databases. Some of the early works on fuzzy databases (Buckles and
Petry, 1982, 1983; Petry, 1996) used Zadeh’s fuzzy similarity relation (Zadeh,
1970), whereas more recent models (Shenoi and Melton, 1989; Rundensteiner,
Hawkes and Bandler, 1989) seemed to prefer using fuzzy proximity (Shenoi and
Melton, 1989) or resemblance (Rundensteiner, Hawkes and Bandler, 1989) re-
lations (which both behave in a similar manner). Being mostly interested in
practicality and scalability of our model, when used for analysis of large repos-
itories containing categorical (i.e. non-continuous) data entries, we decided to
make a compromise and employ a technique which quickly transforms proxim-
ity and resemblance relations to the format identical with the Zadeh’s similarity
relation. However, before explaining our transformation formally, we would like
to comment briefly on crucial differences between the above-mentioned fuzzy
relations. All these fuzzy relations are reflexive and symmetric (Angryk, 2006),
but what distinguishes Zadeh’s similarity relation from the other two is its max-
min transitivity. This is a very important property from the perspective of our
algorithm, as it leads to nested character of fuzzy similarity classes (where the
classes from the higher level of abstraction contain one or more classes from the
lower level), which speeds up significantly real-life data comparisons. Moreover,
there are means of transferring a fuzzy proximity relation to the fuzzy similarity
relation, which have been shown in Shenoi and Melton (1989).

For instance, let us consider Table 2, which represents a fuzzy proximity
relation specified for the domain Country. The table can be transformed to
the max-min transitive fuzzy similarity relation (the results of the transfor-
mation are presented in Table 3) using Tamura’s proximity chains (Tamura,
Higuchi and Tanaka, 1971). For instance, despite the fact that the proxim-
ity degree between the concepts Lithuania and Spain is 0.2 (presented in Ta-
ble 2), our similarity degree, derived from this proximity table using Tamura’s
sequences, is 0.4 (Table 2). The result was obtained using the sequence (chain)
of the original proximity degrees (Table 2): ProxCountry(Lithuania, Belarus) =
0.7 ∧ ProxCountry(Belarus, Ukraine) = 0.7 ∧ ProxCountry(Ukraine, Spain) = 0.4,
we generated Tamura’s chain of proximities (i.e. fuzzy conjunction based on
operator MIN) with the weakest link equal to 0.4, obtaining the result of
SimCountry(Lithuania, Spain) = 0.4, as presented in Table 3.

More formally (Shenoi and Melton, 1989), if ProxDj
is a proximity relation,

specified by experts for domain Dj (e.g. Table 2), then given an α ∈ [0, 1], two
values from this domain dk, dl ∈ Dj are said to be α-proximate if, and only if,
ProxDj

(dk, dl) ≥ α. We will say that these two attribute values are α-similar if,
and only if, we can find a set of domain elements d1, d2, . . . , dm ∈ Dj , such that

a sequence of ProxDj
(dk, d1)∧

⋂m−1
i=1 ProxDj

(di, di+1)∧ProxDj
(dm, dl) ≥ α (i.e.

fuzzy conjunction of α-proximities) can be derived. We derived such sequence
for the pair Lithuania and Spain above, and the entire similarity relation for
our example is presented in Table 3.

424 R.A. ANGRYK

Table 2. Proximity relation for domain Country, with non-convex 0.4-proximity
classes marked in grey

Lithuania Belarus Ukraine Spain Portugal Canada USA Colombia Venezuela

Lithuania 1.0 0.7 0.6 0.2 0.1 0.0 0.0 0.0 0.0

Belarus 0.7 1.0 0.7 0.3 0.2 0.0 0.0 0.0 0.0

Ukraine 0.6 0.7 1.0 0.4 0.4 0.0 0.0 0.0 0.0

Spain 0.2 0.3 0.4 1.0 0.7 0.0 0.0 0.0 0.0

Portugal 0.1 0.2 0.4 0.7 1.0 0.0 0.0 0.0 0.0

Canada 0.0 0.0 0.0 0.0 0.0 1.0 0.7 0.3 0.2

USA 0.0 0.0 0.0 0.0 0.0 0.7 1.0 0.4 0.2

Colombia 0.0 0.0 0.0 0.0 0.0 0.3 0.4 1.0 0.7

Venezuela 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.7 1.0

Table 3. Similarity relation for domain Country, derived from Table 2

Lithuania Belarus Ukraine Spain Portugal Canada USA Colombia Venezuela

Lithuania 1.0 0.7 0.7 0.4 0.4 0.0 0.0 0.0 0.0

Belarus 0.7 1.0 0.7 0.4 0.4 0.0 0.0 0.0 0.0

Ukraine 0.7 0.7 1.0 0.4 0.4 0.0 0.0 0.0 0.0

Spain 0.4 0.4 0.4 1.0 0.7 0.0 0.0 0.0 0.0

Portugal 0.4 0.4 0.4 0.7 1.0 0.0 0.0 0.0 0.0

Canada 0.0 0.0 0.0 0.0 0.0 1.0 0.7 0.4 0.4

USA 0.0 0.0 0.0 0.0 0.0 0.7 1.0 0.4 0.4

Colombia 0.0 0.0 0.0 0.0 0.0 0.4 0.4 1.0 0.7

Venezuela 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.7 1.0

Now, the disjoint classes of attribute values, which are considered to be
equivalent at a specific α-level, can be extracted from each proximity relation.
The α-similarity classes (also referred to as equivalence classes, or α-cuts on
similarity relation, Zadeh, 1970) are marked in Table 3 with different shadings
for different values of α. The transformation, which converts the original prox-
imity table to a fuzzy similarity relation, has tremendous practical use. The
practical advantage of the proximity-based approach comes from the lack of
necessity to worry about the max-min transitivity when defining the proximity

Defuzzification of fuzzy database tuples 425

degrees. This makes proximity tables much easier for human experts to de-
fine. In practice however, non-convex α-proximity classes (e.g. see 0.4-cuts on
proximity relation in Table 2) are hard to interpret and sometimes can generate
significant computational costs during data processing. Using sequences of over-
lapping α-proximate classes, we can now dynamically generate fuzzy similarity
relations that exclusively characterize similarities between only these attribute
values, which were actually entered into the particular fuzzy database table.
They will have a nested character (as marked by shadings in Table 3, and also
shown as groupings in Fig. 1), which significantly speeds up processing of large
data sets. Obviously, the transitive property (Zadeh, 1970; Tamura, Higuchi and
Tanaka, 1971) of Zadeh’s similarity relation carries some limitations, especially
for data containing continuous values without clearly separated clusters, and
therefore the transformation of proximity relation to similarity relation should
be executed with caution (we recommend paying special attention to distribu-
tion of data values, especially in cases where the actual data does not show
well-separated clusters). It seems useful to also mention here that although the
proximity tables are usually defined by human experts, we can also automat-
ically extract similarity relations using data-driven techniques. For instance,
a Hierarchical Agglomerative Clustering (HAC) algorithm (Han and Kamber,
2006), commonly used to generate hierarchies of non-overlapping (at individual
levels) clusters, provides a structure which maintains all properties of Zadeh’s
partition tree. Speaking about dendrograms, we recommend review of recent
literature on some interesting attempts to flatten these structures (Chuang and
Chien, 2002, 2004; Wall, Richter and Angryk, 2005), to make them more human-
friendly and also more practical to use when processing large data sets. It is a
well known fact that usually expert-specified partition trees have bushier (and
therefore more flat) character, in contrast to HAC-derived hierarchies of clusters,
which generate very tall, binary trees.

The existence of a fuzzy similarity relation for each descriptive attribute
Aj of a fuzzy database table allows us to extract a partition tree (identical
to that presented by Zadeh, 1970, representing disjoint equivalence classes on
individual α levels (see Fig. 1). From the propagation of shadings in Table 3,
we can observe that the equivalence classes are separated (at individual level of
partition tree) and have a nested character (Zadeh, 1970)—i.e. values joined into
a single similarity class at one level of partition tree can never be separated at the
higher levels of abstraction. This is very useful in practice—clearly separated
equivalence classes are easier to interpret, and the trees are far more time-
efficient to traverse (Angryk and Petry, 2005, 2007).

Utilization of Zadeh’s partition trees (where the classes from the higher level
of abstraction nest one or more classes from the lower level), also called concept
hierarchies, has proven to be very useful in many data cube-related operations
implemented in data warehouses (e.g. roll-up, drill-down commands, Han and
Kamber, 2006). We will talk a little bit more about use of concept hierarchies
in data mining applications in the next section (2.2).

426 R.A. ANGRYK

S
p
a

in
C

a
n

a
d

a

U
kr

a
in

e
B
e
la
r
u
s

P
o

rt
u

g
a
l

SIMILARITY DEGREE

U
S

A

C
a
n

a
d
a

C
a
n

a
d
a

S
p

a
in

C
a

n
a

d
a

U

kr
a

in
e

L
it

h
u

a
n
ia

P
o

rt
u
g

a
l

L
it

h
u

a
n

ia

L
it

h
u
a

n
ia

U
kr

a
in

e
B
e
la
r
u
s

S
p

a
in

U
S
A

U
S
A

U
S

A

P
o

rt
u

g
a
l

L
it

h
u

a
n

ia
U

kr
a

in
e

B
e
la
r
u
s

S
p

a
in

P
o

rt
u

g
a
l

B
e
la
r
u
s

ABSTRACTION LEVEL h
=
0

h
=
1

h
=
2

h
=
3

C
o
lo

m
b

ia
V

en
ez

u
el

a

C
o

lo
m

b
ia

C
o

lo
m

b
ia

C
o
lo

m
b

ia

V
en

ez
u

el
a

V
en

ez
u

el
a

V
en

ez
u

el
a

F
ig

u
re

1
.

D
is

jo
in

t
α
-e

q
u
iv

a
le

n
ce

cl
a
ss

es
o
n

m
u
lt
ip

le
le

v
el

s
o
f
P
a
rt

it
io

n
T
re

e
fo

r
S
im

il
a
ri

ty
R

el
a
ti
o
n

fr
o
m

T
a
b
le

3

Defuzzification of fuzzy database tuples 427

Before going further with our presentation, we would like to introduce a
formal notation that we are going to use when referring to partition trees.
A partition tree (example presented in Fig. 1), defined for a single domain
in fuzzy database model, can be interpreted as a set of interconnected or-
dered pairs (i.e. domain’s abstraction levels) denoted as Gj , such that Gj =
{

(Dh
j , αh) : 0 ≤ h < Hj , αh ∈ [0, 1]

}

, where Dh
j denotes domain of categorical

attribute Aj on hth abstraction level, with
∣

∣Dh
j

∣

∣ >
∣

∣Dh+1
j

∣

∣ (the granularity in-
crease property is caused by the self-nested character of equivalence classes on
different levels of the partition tree), and αh > αh+1 (the similarity decrease
property is caused by the abstraction increase within the tree). In our def-

inition, Dh
j =

{

dh
j1, d

h
j2, . . . , d

h

j|Dh
j |

}

is the set of equivalence classes defined

for the hth abstraction level, where dh
jm denotes the mth node (i.e. equivalence

class) at the hth level of the partition tree Gj . For instance, a set of equiv-
alence classes at α1=0.7 level in Fig. 1 (denoted as set of D1

Country) consists

of four nodes: {d1
1 = {Belarus, Lithuania, Ukraine}, d1

2 = {Spain, Portugal},
d1
3 = {Canada, USA}, d1

4 = {Colombia, Venezuela}}. In this context, we
can narrow our definition of fuzzy descriptive attribute to the form: aij =
{(d0

jm|µij(d
0
jm)) : d0

jm ∈ D0
j , µij(d

0
jm) 7→ (0, 1]}.

To summarize this section, we want to point out three important features
our fuzzy database can register: (1) imprecision of the entity description (re-
flected by the fuzziness of information entered into its descriptive attributes),
(2) similarity of the observed characteristics (preserved in domain-specific sim-
ilarity relations specified for the descriptive attributes), and (3) relevance of
the registered entity to the particular topic/relation (reflected by the degree of
uncertainty, denoted by us with χR(ti) symbol and stored in the last attribute
of fuzzy database table).

2.2. Attribute-oriented induction

Data generalization is a process of grouping of data, enabling transformation
of similar entries, stored originally in a database at the low (primitive) level,
into more abstract conceptual representations. This process is a fundamental
element of Attribute-Oriented Induction (AOI) (Han and Kamber, 2006; Han,
Cai and Cercone, 1992 and 1993) – a descriptive database mining technique,
allowing compression of the original data set into a generalized relation, which
provides a concise summary of the massive set of original data. Process of
gradual data summarization is also used widely in data warehouses, where data
cubes are often generalized (using roll-up operations, Han and Kamber, 2006)
to abstraction levels preferred by the data analysts.

AOI progressively transforms the original, massive set of data (i.e. initial
relation) into a concise form at the higher abstraction level, called a generalized
relation. Generalization of database tuples is performed on an attribute-by-

428 R.A. ANGRYK

attribute basis, applying a separate concept hierarchy for each of the generalized
attributes included in the relation of task-relevant data. Each concept hierarchy
represents background knowledge about the attribute domain, allowing gradual
aggregation of attribute values stored in the original database tuples.

The concept hierarchies, which are necessary to permit gradual, similarity-
based, aggregation of attribute values, are usually built bottom-up, progressively
increasing the abstraction of the generalization concepts at each new level. Cre-
ation of new concept levels in generalization hierarchies is accompanied by an
increase of the concept abstraction (i.e. our h in Fig. 1) and the decrease of num-
ber of concepts, which mirrors the αh > αh+1 and

∣

∣Dh
j

∣

∣ >
∣

∣Dh+1
j

∣

∣ properties of
Zadeh’s (1970) partition trees.

A brief example of AOI (Han and Kamber, 2006) is presented in Tables 4
and 5. Assume we have retrieved a data table from the university database
(depicted in Table 4). This table is our initial relation and can be extracted
from the original database using a regular relational database query.

Table 4. Example of initial relation (Han and Kambler, 2006)

Name Gender Major Birth Place Birth Date Gpa

J.Smith M CS Vancouver, BC 08/12/’88 3.67

S.McSon M EE Montreal, QE 07/28/’85 3.71

L.Node F Physics Seattle, WA 03/25/’98 3.93

… … … … … …

Table 5. Example of generalized relation (Han and Kambler, 2006)

Gender Major Birth Region Age Range Gpa Count

M Engineering Canada 20-25 V. good 2

F Science USA 25-30 Excellent 1

… … … … … …

By utilizing AOI we are able to compress the retrieved data into a more
general form, as illustrated in Table 5. This table is the output of an AOI algo-
rithm (i.e. a generalized relation), where some or all attributes are generalized
and counts (or other representations of tuples aggregation) are accumulated.

Table 5 represents general characterization of the students’ population. At
the achieved level of abstraction we did not preserve names of individual stu-
dents and many other details were abandoned. Nevertheless, the performed
AOI generated a concise summary, which has useful and informative character

Defuzzification of fuzzy database tuples 429

and is also much faster to process by many data mining algorithms (due to its
reduced size). The table might be used to quickly learn which majors are the
most popular among students, how many students are females, where they come
from, etc. A new attribute Count was added to the generalized relation. It al-
lows preservation of information about proportions among the tuples originally
stored in the university database.

Before going further with our investigation, we want to point out an obvious
connection between attributes Count in the generalized relation (Table 5) and
Suspicion of involvement in our fuzzy database example (Table 1). Whereas all
tuples in the regular databases completely belong to the data table, the χR(ti)
function represents a degree of this belonging in fuzzy databases. In such a
case, it seems to be natural that adding a fuzzy tuple ti to the output table
should cause increase of Count attribute not necessarily by 1, but rather by an
appropriate value of χR(ti).

Depending on the approach and the intention of data analysts, generaliza-
tion of collected data can be treated either as a final step of data mining (e.g.
summary-tables are presented to decision makers, allowing them to interpret
overall information, Angryk and Petry, 2007; Han, Cai and Cercone, 1992) or
as an introduction to further knowledge extraction (e.g. extraction of abstract
association rules directly from the generalized data, Angryk and Petry, 2007;
Han, Cai and Cercone, 1993). For readers interested in alternative approaches
to summarization of databases, we would also like to recommend the works of
Kacprzyk and Zadrozny (2005), and Yager and Petry (2006).

3. Attribute-oriented defuzzification of fuzzy tuples

In this work, our goal is to precisely interpret fuzzy tuples (i.e. to defuzzify
them). The AOI concept of using <generalized tuple in 1NF, count of original
data tuples> pair provided us with motivation for our work on attribute-oriented
defuzzification. Our goal, however, is not necessarily to generalize a fuzzy tuple,
but rather to transfer it into a collection of tuple fractions of the following for-
mat: <list of descriptive attributes in 1NF, its vote>. In other words, we want
to specialize (i.e. defuzzify) the fuzzy tuple into a collection of tuples containing
only atomic values (i.e. equivalence classes at the 0th abstraction level), followed
by a number (i.e. vote) reflecting its importance. We used the term vote here,
just to distinguish it from the count, mentioned above, although essentially they
play almost the same role (i.e. preservation of original proportions among the
data entries). Being the result of aggregation of multiple tuples, the term count
always represents a natural number (count ∈ I

+), whereas in our defuzzifica-
tion approach we will allow the vote to reflect a fraction of one, imprecise tuple
(vote ∈ R

+).
Although we are not interested in generalization of fuzzy data, we still want

to transfer our fuzzy data tables (e.g. Table 1) into the forms compatible with
Han’s generalized data tables (e.g. Table 5). The AOI output tables are in the

430 R.A. ANGRYK

1NF (Codd, 1970) and therefore can be easily analyzed by many popular data
mining algorithms (Kantardzic and Zurada, 2005; Weka 3, no date; Angryk,
2006; Han and Kamber, 2006).

Having background knowledge available in the form of fuzzy similarity rela-
tions, we were also naturally interested in making sure that our defuzzification
mechanism takes advantage of this information. The fuzzy similarity relations
provide us with useful and important knowledge of experts that needs to be
utilized in data mining applications, as it may allow for more accurate interpre-
tation of imprecise data.

Before going further with our investigation, we would like to emphasize that
our approach is intended for mining general patterns in large repositories of
imprecise data (e.g. discovery of countries that may be involved in human traf-
ficking), and should not be used as a “precise” querying technique (e.g. trying to
decide if the suspect named Ivan comes from Ukraine or Belarus). We are not
proposing here a solution for precise interpretation of individual fuzzy tuples,
but rather focusing on discovery of general knowledge, despite the fact that the
gathered data set contains imprecision.

3.1. On fuzzy tuple defuzzification

Before presenting implementation details of our algorithm (Table 8), we would
like to discuss it using an example. Let us look at the last tuple of the fuzzy
database table presented in Table 1. What is (or are, if the person has multiple
citizenships) the citizenship of the suspect identified via Id=987 (i.e. the Boss),
who (as not-confirmed reports say) had been using passports from{Colombia|0.9,
Venezuela|0.8,Spain|0.4}? And, even more importantly, how crucial is he for our
investigation purposes in context of all the data we gathered?

The latter question seems to be easier to answer than the former one. Clearly,
the degree of belongingness, denoted in section 2.1 via χR(ti) 7→ (0, 1] and placed
in the last column of Table 1, should have direct influence on the importance of
the fuzzy tuple in the generated 1NF output table. In ordinary databases, each
tuple fully belongs to the data table in which it is stored (we can say: ∀ ti ∈ R

χR(ti) = 1), so the Count of the generalized tuple is incremented by 1, each
time a new tuple is added to the generalized tuple. In the case of the fuzzy
databases, however, the importance (belongingness) of each tuple is explicitly
denoted using the membership function χR(ti). Therefore, all fractions of a
fuzzy tuple ti, which are generated by our defuzzification algorithm, need to be
weighted using its χR(ti) value at the end of the defuzzification process. This
can be easily achieved by multiplying a vote of each fraction of a defuzzified
tuple by its χR(ti) value before adding it to the output relation. Moreover, it
seems reasonable to expect that imprecision of the entries stored in individual
descriptive attributes would also have some influence on the importance (i.e.
vote) of the particular fuzzy tuple, when compared with other (maybe less
imprecise and more relevant) tuples, stored in our data table.

Defuzzification of fuzzy database tuples 431

We will discuss these topics in detail shortly, but now let us go back to the
earlier question. How can we map (i.e. defuzzify) a descriptive attribute entry,
represented by the fuzzy set {Colombia|0.9,Venezuela|0.8,Spain|0.4}, into an
atomic form? This question opens a broad range of interesting possibilities.

We could simply use MAX operator to defuzzify the {Colombia|0.9,Venezue-
la|0.8,Spain|0.4} entry, with rationale that we want to follow the most possible
option (i.e. we transform original imprecise entry into atomic one, choosing the
one with maximal possibility of occurrence, in our case: {Colombia}, and dis-
regarding information about the possibility of its occurrence). Usage of MAX
operator is very effective computationally (i.e. fast), however, it causes a com-
plete removal of the whole imprecision, which we wanted to be able to register
in the first place.

Another approach is to try to split the vote equally among all descriptors
inserted by the user. We could say that 1

3 of the fuzzy tuple vote (assume for
now that we talk about a tuple with only one fuzzy attribute) should be assigned
to reflect atomic value Colombia, 1

3 to Venezuela, and 1
3 to Spain. We split the

original tuple evenly and transfer it to three 1NF tuples, each carrying one-
third of the vote. This technique ensures that the information about all entered
descriptors is reflected in the output table. The approach seems to be more
reasonable than the earlier one; however its disadvantages are still significant.
It does not take into consideration important real-life information, stored in our
imprecise attribute and reflected not only by the number of inserted descriptors
(d0

jm’s), but also by (1) the information about possibility of their occurrence in

the given aij (reflected via µij(d
0
jm)’s, which have been entered by the user),

and (2) the similarity of the entered d0
jm’s (reflected by the similarity relation

Gj defined by domain experts). The expert knowledge, reflected in similarity
relation contains important information that may help us with interpretation of
imprecise information (e.g. the knowledge that countries Belarus and Ukraine
are more similar to each other than to the USA, changes the way we are looking
at the citizenship of Ivan in Table 1, making us think that the suspect may be
of Eastern European origin).

It is important to emphasize that we want to reflect in the output table the
original proportions between all pieces of information, which we managed to
save in our fuzzy data table.

Han and Kamber (2006), Han, Cai and Cercone (1992, 1993) used Count
to make sure all original relations between the database tuples are preserved at
the AOI output. Our task is more complex, since we need to assure that our
output table maintains information about: (1) relevance of a fuzzy tuple (i.e. its
uncertainty), reflected explicitly by χR(ti), and (2) its imprecision, reflected by
the number of entered categorical values (d0

jm’s) and their degrees of possibility

(µij(d
0
jm)’s), stored in its descriptive attributes. We plan to achieve this by

making sure each descriptive attribute of a fuzzy tuple maintains equal weight of
unity during all internal (i.e. attribute-specific) steps of the tuple defuzzification.

432 R.A. ANGRYK

This even representation of tuple descriptive attributes is maintained until the
final step of defuzzification, when the importance (i.e. relevance) of all the tuple
fractions can be weighted using its (i.e. tuple-specific) χR(ti)value, right before
adding it to the other tuples in the output (i.e. defuzzified) data table.

This rationale suggests a natural order of the defuzzification process. First,
we want to defuzzify all (one after another) descriptive attributes of the fuzzy
tuple, then weight its all fractions using the original χR(ti) value. We will refer
to the first phase as an attribute-specific part of defuzzification, since it needs to
be performed on all descriptive attributes, which are fuzzy. The second phase
applies to all fractions of the tuple and uses its original χR(ti) value; therefore
we named it a tuple-specific step of defuzzification.

In attribute-specific phase, we transfer our original fuzzy set

aij = {Colombia|0.9,Venezuela|0.8,Spain|0.4}

to the format where individual possibility values (denoted as µij(d
0
jm)) are nor-

malized based on the total of their original values (i.e.
∑

d0
jm∈aij

µij(d
0
jm)). Our

normalized entry could have the following form:

anij = {(d0
jm|µn

ij(d
0
jm)) : d0

jm ∈ aij , µ
n
ij(d

0
jm) =

µij(d
0
jm)

∑

d0
jm∈aij

µij(d
0
jm)

},

and we could treat our new µn
ij ’s as fractions of the attribute-specific vote:

∑

d0
jm∈aij

µn
ij(d

0
jm) = 1 (this is the reason why we normalized our µn

ij(d
0
jm) by the

sum of related µij(d
0
jm)’s).

Thus, in our example, first we need to add all original µij’s (i.e.
∑

d0
jm∈aij

µij(d
0
jm)

= 0.9 + 0.8 + 0.4 = 2.1) to obtain a normalizing divisor, then we can normalize
individual µij ’s so they would reflect attribute-specific distribution of the tuple
vote. We can now transform our fuzzy attribute aij value into three fractions:
Colombia – with 0.9

2.1 = 0.43 of the attribute-specific vote (i.e. µn
ij(Colombia)),

Venezuela with 0.8
2.1 = 0.38 of the vote, and the last descriptor Spain with 0.4

2.1 =
0.19 of the vote. This distribution reflects better the possibility values entered
by the user than the even (into one-thirds) split of the attribute-specific vote.

This solution, however, still does not reflect all information we have about
the attribute domain, which may be especially useful when interpreting highly
imprecise attribute entries (i.e. when more than two descriptors were entered
into a fuzzy set aij). The current distribution of possibilities (µn

ij ’s) reflects
only information about the imprecision the user wanted to register when insert-
ing multiple descriptors, but does not carry any information from the expert

Defuzzification of fuzzy database tuples 433

knowledge we have about these values (i.e. that the countries Colombia and
Venezuela are much more similar to each other than to Spain, and therefore we
should probably pay more attention to the first two descriptors).

To incorporate background knowledge, we propose further modifications to
the distribution of our attribute-specific vote fractions. Our goal is to make
sure that these fractions also reflect the similarity of the inserted descriptors
(d0

jm’s). Using the partition tree (e.g. Fig. 1), we can distinguish from the set
of the originally inserted values these concepts which are more similar to each
other than to the remaining attribute values and adjust distribution of imprecise
tuple fractions in such a way that they match more accurately the background
knowledge provided by experts. We call the descriptors, which are more similar
to each other than to other inserted values, the subsets of resemblance (e.g.
Colombia, Venezuela} from the above example). We can use them as a basis
for calculating a more intuitive distribution of the vote fractions in the case of
highly imprecise entries (i.e. when we have the number of descriptors bigger than
two). An important aspect of our approach is the extraction of the subsets of
resemblance at the lowest possible abstraction level of their common occurrence,
since the nested character of equivalence classes in partition trees guarantees
that above this level they are going to co-occur regularly.

Our heuristic algorithm for incorporation of fuzzy similarity relation into
defuzzification of imprecise attributes is quite straightforward and we present
it formally later (Table 8). For now, assume that you are given (1) a set of
domain values inserted as a description of a particular entity attribute (e.g. in
our case: {Colombia, Venezuela, Spain}), and (2) a tree-like structure reflecting
a partition tree for the particular attribute (e.g. Fig. 1). Using these inputs, we
want to extract a table, which includes (1) the list of all subsets of resemblance
occurring in the given fuzzy tuple, and (2) the highest degree of similarity (i.e. α-
level in the partition tree) of their common occurrence (see Table 6). The reason
that we decided to use only the highest value of α is caused by the repetitive
occurrences of the same subsets at the multiple levels of the partition tree. This
could result in unbalancing the original dependencies among inserted values,
skewing significantly the results of our similarity-based defuzzification toward
subsets of resemblance occurring at the very low levels of partition trees. Now,
we can use the highest degrees of similarity (shown in Table 6) to intuitively
distribute fractions of the original tuple.

Our algorithm uses depth-first recursive traversal of a partition tree when
searching for subsets of resemblance. The partition tree is searched starting from
its root and, if any subset of descriptors characterizing the given fuzzy tuple
attribute occurs at the particular node of the partition tree, we store the values
that were recognized as α–similar and the adequate degree of similarity (α). This
degree may get its value updated as the attribute values continue to co-occur
in the common equivalence classes, when we continue to traverse appropriate
subtrees of the partition tree. We present an example of such a search for subsets
of resemblance in a descriptive attribute containing the earlier mentioned values

434 R.A. ANGRYK

{Colombia, Venezuela, Spain} in Fig. 2. Numbers on the edges in the tree
represent the order in which the partition tree was traversed and individual
subsets of resemblance were discovered (or updated). Subsets of resemblance
generated for this example are presented in Table 6.

Table 6. Subsets of resemblance for the analyzed example

Subsets of resemblance at their highest similarity levels COMMENTS

{Colombia, Venezuela, Spain} | 0.0 STORED

{Spain} | 0.4 STORED

{Spain } | 0.4 0.7 UPDATED

{Spain } | 0.7 1.0 UPDATED

{Colombia, Venezuela} | 0.4 STORED

{Colombia, Venezuela} | 0.4 0.7 UPDATED

{Colombia} | 1.0 STORED

{Venezuela} | 1.0 STORED

After extracting the subsets of resemblance, we apply a simple summarization
of their α values as a measure reflecting both the frequency of occurrence of the
individual attribute values in the α-similarity classes, as well as the abstraction
level of these occurrences. Since the country of Spain was found only twice in the
subsets of resemblance, we assigned it a grade 1.0 (i.e. 1.0+0.0). The remaining
descriptors were graded as follows: Colombia|(1.0 + 0.7 + 0.0) = Colombia|1.7,
Venezuela|(1.0 + 0.7 + 0.0) = Venezuela|1.7.

In the next step, we add all generated grades (1.0 + 1.7 + 1.7 = 4.4) to nor-
malize the output grades assigned to each of the participating attribute values in
exactly the same way we did earlier: Spain|1.0

4.4 = 0.227, Colombia| 1.7
4.4 = 0.386,

Venezuela|1.7
4.4 = 0.386. Since this fuzzy set is derived from a similarity relation,

we denote it as asij and describe it as a collection of pairs: (d0
jm|µs

ij(d
0
jm))

such that d0
jm ∈ aij , µ

s
ij(d

0
jm) 7→ (0, 1], where

∑

d0
jm∈aij

µs
ij(d

0
jm) = 1 (again!)

and the individual µs
ij ’s reflect distribution of relevant equivalence classes in the

pre-specified fuzzy similarity relation.
It is important to realize that this similarity-based defuzzification mechanism

shows its advantage only when more than two descriptors have been entered into
a fuzzy attribute. Since the fuzzy similarity relation is symmetric, there is no
point in trying to use this mechanism to defuzzify fuzzy set aij that consists
of only two elements – it will always generate µs

ij(d
0
jm) = 0.5 for both of the

descriptors. Nevertheless, we strongly believe that the similarity-based defuzzi-
fication shows its advantages when we need to deal with highly imprecise data
entries, as it allows us to incorporate knowledge of experts into interpretation

Defuzzification of fuzzy database tuples 435

F
ig

u
re

2
.

S
u
b
se

ts
o
f
re

se
m

b
la

n
ce

ex
tr

a
ct

ed
fr

o
m

th
e

p
a
rt

it
io

n
tr

ee
o
f
F
ig

.
1

436 R.A. ANGRYK

of such data. Instead of treating all categorical values identically, we can take
advantage of existing background knowledge about the similarity of the entered
values.

Now, we are left with the task of linking the knowledge from the user (who
entered the descriptors and possibilities of their occurrences), and from the
expert (who developed similarity table characterizing relations between these
descriptors). Distribution of memberships, normalized using the user’s obser-
vation, suggested: Colombia|0.43 of the attribute-specific vote, Venezuela|0.38,
and Spain|0.19, while our similarity-based algorithm generated: Colombia|0.386,
Venezuela|0.386, and Spain|0.227.

Since both sets of results sum their membership values to unity (each), we
can quickly merge them using the following formula: ∀ d0

jm ∈ aij update the

pair (d0
jm|µij(d

0
jm)) with µij(d

0
jm) =

µn
ij(d0

jm)+µs
ij(d0

jm)

2 . Now, the distribution of

µij ’s ads up to unity (
∑

d0
jm∈aij

µij(d
0
jm) = 1) and it incorporates both sources

of knowledge (i.e. the user and the experts): Colombia|0.43+0.386
2 = 0.408,

Venezuela|0.38+0.386
2 = 0.383, and Spain|0.19+0.227

2 = 0.209. Obviously, this
average-based method of merging our partial results is quite simplified. For
purposes of preliminary investigation, we decided to treat both sides (i.e. the
user, who entered the data, and the expert, who developed the similarity table)
equally. A more sophisticated approach (e.g. weighted average) may be a better
fit in some real-life applications.

In this way we can maintain the desired property of all descriptive attributes
maintaining even weight (i.e. 1) during attribute-specific steps of our defuzzifi-
cation process. Moreover, the current distribution of membership values reflects
all information stored in our descriptive attribute. That is: (1) the number of
entered descriptors (reflecting user’s doubt about the observed characteristics),
(2) possibility of their occurrence (reflecting user’s conviction about some of the
descriptors being more accurate than others), and finally (3) the background
knowledge about the investigated domain (reflected in the form of fuzzy similar-
ity relation). This leads to the new distribution of the fuzzy attribute fractions,
which more accurately reflects real-life dependencies than a linear weighting
approach.

This attribute-specific normalization of membership values (µij ’s) can be
repeated for all descriptive attributes which contain fuzzy entries. If we assume
that a fuzzy tuple ti consists of N descriptive (and fuzzy) attributes ai1, ai2, . . .,
aiN , followed by an additional attribute, denoted as ai(N+1), which contains its
χR(ti) value, we can defuzzify ti by generating the cross product of all descrip-
tors stored in ti’s descriptive attributes (i.e. {d0

1m : d0
1m ∈ ai1} × {d0

2m : d0
2m ∈

ai2} × . . . × {d0
Nm : d0

Nm ∈ aiN}), and then weighting each of the 1NF tuples
(i.e. fractions of the fuzzy tuple ti), generated by our cross product operation,
by the result of multiplication of the related µij(d

0
jm)’s and the original χR(ti)

value. This weight represents the vote of the given ti ’s fraction.

Defuzzification of fuzzy database tuples 437

In other words, by defuzzification of a fuzzy tuple ti, we mean decomposition
of ti’s descriptive attributes (represented using fuzzy sets) into a collection of
tuples (i.e. fractions of the fuzzy tuple) with their descriptive attributes con-
taining only atomic entries (i.e. d0

jm’s that were originally entered into the fuzzy
tuple), extended with an additional attribute vote, which is generated by multi-
plying all normalized possibility values (i.e. relevant µij(d

0
jm)’s), and the χR(ti)

value.
Formally, if we denote a fuzzy database tuple as

ti =< ai1, ai2, . . . , aiN , ai(N+1) >

such that for j = 1...N is a descriptive attribute containing a fuzzy set

{(d0
jm|µij(d

0
jm)) : d0

jm ∈ D0
j , µij(d

0
jm) 7→ (0, 1]},

where µij(d
0
jm) is normalized using techniques presented above, and ai(N+1) =

χR(ti), then we can defuzzify ti by transferring it to a set of 1NF tuples (i.e.
fractions of ti), denoted as Fi, where each of Fi’s elements has the following
format: fik =< fk1, fk2, ..., fkN , fk(N+1) > such that for j = 1...N fkj = d0

jm

where d0
jm ∈ aij , fk(N+1) = ai(N+1) ·

∏N
j=1 µij(fkj), and k = 1...

∏N
j=1 |aij |. |aij |

denotes the cardinality of the fuzzy set.
Example of a defuzzified table (using Table 1 as input and assuming that

the attribute Nickname has been removed before defuzzification) is presented
in Table 7. To further reduce the size of the output data table, we can remove
attribute Id and merge the tuples which have the same values in all descriptive
attributes (e.g. rows 3 and 4 in Table 7). To maintain original proportions among
the data entries when merging these tuples, we need to add their votes. The
resulting relation has a format very similar to the generalized relation presented
in Table 5 and can be easily analyzed by popular data mining algorithms.

Implementation details of our attribute-oriented defuzzification algorithm
are presented in Table 8. As the input, we assume: (1) a fuzzy tuple, denoted as
ti, with the total number of descriptive attributes equal N , and χR(ti) specified
as the (N + 1)th attribute, and (2) a set of N Partition Trees, reflecting fuzzy
similarity relations specified for descriptive attributes and denoted as G1...N .
On the output, we get a collection of database tuples in the 1NF format (each
denoted as fik reflecting the fuzzy tuple ti. Each of the output tuples has
the following format: N atomic attribute values d0

k1, d
0
k2, ..., d

0
kN (such that

d0
kj ∈ aij), followed by a vote (i.e. (N +1)st attribute) representing how strongly

the original fuzzy tuple ti’s is reflected in the particular fik tuple. In Table 8
we denoted the whole set of output tuples (i.e. ti’s fractions) as Fi. The set
reflects the complete defuzzified (i.e. atomic) representation of an individual
fuzzy tuple ti.

When describing a fuzzy tuple processing, we used a few temporary data
structures to make our pseudo-code easier to read. The most important ones
are specified in the Internal Data Structures section of Table 8. To save space in

438 R.A. ANGRYK

T
a
b
le

7
.

D
ef

u
zz

ifi
ed

d
a
ta

b
a
se

ta
b
le

,
d
er

iv
ed

fr
o
m

T
a
b
le

1

Id
*

C
o

u
n

tr
y

o
f

ci
ti

ze
n

sh
ip

a

tt
ri

b
u

te
-s

p
ec

if
ic

 v
o

te
*

C
o

u
n

tr
y

o
f

o
p

er
a

ti
o

n

a
tt

ri
b
u

te
-s

p
ec

.
vo

te
*

V
o

te

1
2

3
U

kr
a

in
e

3
6
7

.
0

2
:
)
0.
1

7.
1

7.
1

0.
0

7.
0

0.
1

6.
0

9.
0

8.
0

8.
0

(

!
!

!
!

!
!

!
U

S
A

0.
1

2
2
.
0

6.
0

0.
1

3
6
7

.
0

"

"

1
2

3
B

el
a

ru
s

3
8
9

.
0

2
:
)
0.
1

7.
1

7.
1

0.
0

7.
0

0.
1

6.
0

9.
0

8.
0

9.
0

(

!
!

!
!

!
!

!
U

S
A

0.
1

2
3
3

.
0

6.
0

0.
1

3
8
9

.
0

"

"

1
2

3

U
S

A
2
4
4

.
0

2
:
)
0.
1

7.
1

7.
1

0.
0

0.
1

6.
0

9.
0

8.
0

6.
0

(

!
!

!
!

!
!

U
S

A
0.
1

1
4
6

.
0

6.
0

0.
1

2
4
4

.
0

"

"

2
4

5

U
S

A
0.
1

U
S

A
7
2
7

.
0

3.
0

8.
0

8.
0

!

5
8
2

.
0

8.
0

7
2
7

.
0

0.
1

"

"

2
4

5

U
S

A
0.
1

C
o

lo
m

b
ia

2
7
3

.
0

3.
0

8.
0

3.
0

!
2
1
8

.
0

8.
0

2
7
3

.
0

0.
1

"

"

9
8

7
C

o
lo

m
b

ia
4
0
8

.
0

2
:
)
0.
1

7.
1

7.
1

0.
0

7.
0

0.
1

4.
0

8.
0

9.
0

9.
0

(

!
!

!
!

!

!
!

C
o

lo
m

b
ia

0.
1

0
4
1

.
0

1.
0

0.
1

4
0
8

.
0

"

"

9
8

7

V
en

ez
u

el
a

3
8
3

.
0

2
:
)

4.
4

0.
0

7.
0

0.
1

4.
0

8.
0

9.
0

8.
0

(

!
!

!
!

!
C

o
lo

m
b

ia
0.
1

0
3
8

.
0

1.
0

0.
1

3
8
3

.
0

"

"

9
8

7

S
p

a
in

2
0
9

.
0

2
:
)
0.
1

7.
1

7.
1

0.
0

0.
1

4.
0

8.
0

9.
0

4.
0

(

!
!

!
!

!
!

C
o

lo
m

b
ia

0.
1

0
2
1

.
0

1.
0

0.
1

2
0
9

.
0

"

"

*
 T

h
e

a
tt

ri
b
u

te
 I

D
 a

n
d

 a
ll

 c
a

lc
u

la
ti

o
n

s
h
a

ve
 b

ee
n

 s
h
o

w
n

 o
n

ly
 t

o
 m

a
ke

 o
u

r
p

re
se

n
ta

ti
o
n

 m
o

re
 u

n
d

er
st

a
n

d
a

b
le

.

T
h

es
e

re
su

lt
s

a
re

 n
o

t
d

is
p

la
ye

d
 i

n
 t

h
e

o
u

tp
u

t
ta

b
le

 g
en

er
a

te
d

 b
y

o
u
r

a
lg

o
ri

th
m

.

Defuzzification of fuzzy database tuples 439

Table 8. Algorithm for attribute-oriented defuzzification of fuzzy database tuple

INPUT:

Fuzzy Tuple, denoted as ti, containing ai1, ai2, ..., aiN descriptive attributes, and
one additional attribute representing ti’s belonging to the fuzzy database table R :
ai(N+1) = χR(ti).
Partition Trees for all descriptive attributes. Each of the trees is denoted as Gj ,

where j = 1 . . . N , and Gj =
{

(Dh
j , αh) : 0 ≤ h < Hj , αh ∈ [0, 1]

}

, where our aij entry

is a fuzzy set on appropriate D0
j and dh

jm denotes the mth node (i.e. equivalence class)

in the hth level of the tree Gj .
Internal Data Structures:

Results of aij ’s normalization, based on the values of possibilities entered by

the user, are stored in: anij = {(d0
jm|µn

ij(d
0
jm)) : d0

jm ∈ D0
j , µn

ij(d0
jm) 7→ (0, 1]} such

that
∑

d0
jm

∈aij
µn

ij(d0
jm) = 1.

Results of aij ’s normalization using fuzzy similarity relation are stored

in: asij = {(d0
jm|µs

ij(d
0
jm)) : d0

jm ∈ D0
j , µs

ij(d0
jm) 7→ (0, 1]} such that

∑

d0
jm

∈aij
µs

ij(d0
jm) = 1.

Subset of Resemblance (see Table VI for an example) is a set of ordered pairs denoted

as: Rj = {(rp, αp) : rp ⊆ dh
jm, (dh

jm, αp) ∈ Gj}, where αp = MAX{αh : (rp, αh) ∈

Gj}.
OUTPUT:

Defuzzified Tuple, a set of ti’s fractions, denoted as Fi, such that each of Fi’s elements
is in 1NF and has the following format < fk1, fk2, ..., fkN , fk(N+1) >, where fkj denotes

a single equivalence class of the jth attribute at the 0th abstraction level (i.e. fkj ∈ D0
j),

such that fkj ∈ aij for all descriptive attributes (i.e. j = 1 . . . N), and fk(N+1) =

χR(ti) ·
∏N

j=1 µij(fkj).

METHOD:
(1) Fi = {∅};
(2) for (each descriptive attribute aij , wherej = 1...N) {
(3) if (aij contains non-atomic value) { Rj = {∅}; anij = {∅}; asij = {∅};

(4) for (each (d0
jm|µij(d0

jm)) ∈ aij) { µn
ij(d0

jm) =
µij(d0

jm)
∑

d0
jm

∈aij
µij(d0

jm
)
;

anij = anij

⋃

(d0
jm|µn

ij(d
0
jm)); }

(5) aij = anij ;
(6) } // end of “if (aijcontains non-atomic value)”
(7) if (aijcontains more than 2 values) {
(8) Using all d0

jm ∈ aij , generate a list of all non-empty subsets of aij , which
are ordered from the largest subset to the subsets containing only 1 element.
The list is named Candidates for Subsets of Resemblance, and denoted
as Cj = {cq : cq ⊆ aij , |cq| ≥ |cq+1| ≥ 1};

(9) for (each equivalence class d
Hj−1

jm from the top of Gj) DFSearchForResem-

blances(dH−1
jm , Cj);

(10) for (each d0
jm ∈ aij) { for (each pair (rp, αp)in Rj) if (d0

jm ∈ rp) µs
ij(d0

jm) =

µs
ij(d

0
jm) + αp;

(11) asij = asij

⋃

(d0
jm|µs

ij(d
0
jm)); }

(12) for (each (d0
jm|µs

ij(d0
jm)) ∈ asij) µs

ij(d0
jm) =

µs
ij(d0

jm)
∑

d0
jm

∈asij
µs

ij
(d0

jm
)
;

(13) for (each d0
jm ∈ aij) µij(d0

jm) =
µn

ij (d0
jm)+µs

ij(d0
jm)

2 ;
(14) } //end of “if (aijcontains more than 2 values)”
(15) } //end of “for each descriptive attribute aij”
(16) CreateDefuzzifiedTuples (ai1, 1);
(17) return;

440 R.A. ANGRYK

procedure DFSearchForResemblances (Node of a Partition Tree dh
jm, Candidates for Re-

semblances Cj)
(18) if (h < 0 ∨ Cj == {∅}) return;

(19) if (c1 ⊆ dh
jm) UpdatePairOfResemblances(c1, αh);

(20) else { Cj = Cj\{c1};
(21) DFSearchForResemblances(dh

jm, Cj); }

(22) for (each d
h−1
jm) if (dh−1

jm ∈ DirectDescendentsOf(dh
jm)) DFSearchForResem-

blances(dh−1
jn , Cj);

(23) return;
procedure UpdatePairOfResemblances (Candidate for Resemblances c, Similarity Level α)
(24) for (each pair (rp, αp) ∈ Rj) if (rp == c) { αp = α; return; }
(25) Rj = Rj

⋃

(c, α);
(26) return;
procedure CreateDefuzzifiedTuples (Attribute aij , Index of Fraction k)
(27) if (j > N) {k = k + 1; fk(N+1) = aij ; return; }
(28) for (each d0

jm ∈ aij) { c = k + 1;
(29) CreateDefuzzifiedTuples(ai(j+1) , k);

(30) for (ℓ = c...k) { fℓj = d0
jm; fℓ(N+1) = fℓ(N+1) · µij(fℓj); }

(31) return;

memory, the final results of attribute-specific defuzzification (i.e. normalization
using µn

ij and µs
ij values) are saved back to the original attribute (aij), before the

tuple decomposition (using a cross product) and weighting (using the original
χR(ti) value) is performed in the recursive procedure named CreateDefuzzified-
Tuples.

The algorithm takes a single fuzzy tuple as an input, so it needs to be run
on all imprecise tuples in the fuzzy database table.

3.2. Experimental results

To carefully evaluate a large-scale performance of the defuzzification algorithm,
we conducted our experiments using artificially generated datasets and different
types of partition trees. To make sure our results can be clearly interpreted and
are not influenced by the cost of merging a large number of fuzzy attributes,
which we implemented in the recursive CreateDefuzzifiedTuples procedure (lines
27-31 in Table 8), our fuzzy data table contains only two attributes: a descriptive
one (denoted as ai1), and another attribute containing ti relevance value (ai2 =
χR(ti)).

The test data for the descriptive attribute ai1was generated by randomly
picking values from the domain containing 32 symbols, which were interpreted
as distinct equivalence classes at the lowest (i.e. α=1.0) abstraction level of all
partition trees we used (see Fig. 3). The ai1entry was considered to carry 75%
of imprecision (see Table 9 for examples), when the number of elements in this
attribute was at 75% of the domain size at the lowest abstraction level (i.e. we
had |ai1| = 24 pairs of the format (d0

1m|µi1(d
0
1m)) in our descriptive attribute

entry, with the domain containing
∣

∣D0
1

∣

∣ = 32 equivalence classes at the least
abstract level). To make sure our data entries are random, but reflect the same
imprecision, we have chosen 24 descriptors (i.e. our d0

1m’s) in random order for

Defuzzification of fuzzy database tuples 441

each tuple of the 75%-imprecise data set and merged them with randomly gen-
erated membership degrees (i.e. our µi1(d

0
1m)’s). The degrees of belongingness

(χR(ti)), which we stored in the second attribute (ai2), were also created using
a random number generator. We made sure that allµi1(d

0
1m) and χR(ti) values

fit into (0, 1] range. It is important to note that the distribution of all values
in our fuzzy tuples is completely random and does not follow distributions of
equivalence classes in any of the partition trees, which we have used during our
experiments.

To make sure we conduct comparable experiments, we decided to preserve
the original randomness in our imprecise data sets when running all of our
experiments. We initially generated one data file with 30,000 fuzzy tuples,
where each of the tuples contained the descriptive attribute ai1 with a ran-
domly generated fuzzy set representing 75% of data imprecision, followed by a
random number from the (0,1] range, which simulated ai2 entry. To generate
the 71.875%-imprecise data file we simply eliminated one pair (d0

1m|µi1(d
0
1m))

from each fuzzy set ai1 stored in our originally 75%-imprecise data file. We
continued this elimination process until three pairs remained in each ai1 entry,

which is reflected as the |ai1|

|D0
1|

= 3
32 = 9.375% of imprecision in our plots. For

scalability evaluation, we have chosen two earlier generated data files (one with
12.5% and another one with 75% of data imprecision), and removed respective
tuples from both data files, gradually generating derivative files with 28, 26, . . . ,
4, and finally 2 thousands of fuzzy tuples.

All of our data files were tested against different types of partition trees,
reflecting different relations of fuzzy similarity among the categorical values oc-
curring in our artificial domain of the attribute A1. Fig. 3 presents six different
fuzzy similarity relations (G1, G2, . . . , G6). We ordered them based on their
numbers of abstraction levels. The same attribute domain (D0

1) was used in
different types of partition trees, as presented on the top of Fig. 3 (G1), al-
though the symbols are not explicitly presented in the remaining hierarchies.
To make things easier to compare - each of our fuzzy similarity relations pre-
sented in Fig. 3 has been derived from 32 distinct equivalence classes at the lowest
abstraction level, and all trees have α=1.0 at the bottom, and α=0.0 at the top.

Please note that although partition trees G4 and G5 represent identical
shapes, they have different α-values. G5 depicts a similarity relation where the
highly similar concepts are quickly unified at the higher values of α, and G4
represents a case where symbolic values are not that similar and are unified at
more abstract levels (i.e. with lower values of α). Although we had expected
that running time of our algorithm was dependent on the shape of our partition
trees, rather than on a distribution of α-values within an identically shaped
tree, we generated these two similarity relations to experimentally confirm our
expectations (see Figs. 4-7 for the results). G4 and G5 have a total of five
abstraction levels in their hierarchy (H = 5). They have also the same average
branching factor (b = 2.148).

442 R.A. ANGRYK

T
a
b
le

9
.

E
x
a
m

p
le

s
o
f
fu

zz
y

re
co

rd
s

u
se

d
d
u
ri

n
g

o
u
r

te
st

s

F
u

zz
y

 r
ec

o
rd

 t
i =

 <
 a

i1
,
a

i2
 >

D
a
ta

Im
p

re
ci

si
o
n

a
i1

a
i2

a
|0

.5
9
,
d

|0
.2

4
,
g

|0
.6

1
,

j|
0
.9

4
,
m

|0
.5

6
,
p

|0
.7

3
,
s|

0
.0

4
,
w

|0
.1

9
,
z|

0
.4

5
,
b
|0

.6
9

,

e|
0

.7
5

,
h

|0
.3

,
k|

0
.0

1
,
n

|0
.9

2
,
q
|0

.2
1

,
t|

0
.5

3
,

x|
0

.7
9
,

c|
0

.6
2

,
f|

0
.2

4
,

i|
0

.8
9
,

l|
0
.5

2
,

o
|0

.0
7
,

r|
0

.9
8

,
u

|0
.1

2

0
.6

3

%
7
5

3
2

2
4

0 11

Da
i

a
|0

.5
9
,
d

|0
.2

4
,
g

|0
.6

1
,

j|
0
.9

4
,
m

|0
.5

6
,
p

|0
.7

3
,
s|

0
.0

4
,
w

|0
.1

9
,
z|

0
.4

5
,
b
|0

.6
9

,

e|
0

.7
5

,
h

|0
.3

,
k|

0
.0

1
,
n

|0
.9

2
,
q
|0

.2
1

,
t|

0
.5

3
,

x|
0

.7
9
,

c|
0

.6
2

,
f|

0
.2

4
,

i|
0

.8
9
,

l|
0
.5

2
,

o
|0

.0
7
,

r|
0

.9
8

0
.1

2

%
8
7
5

.
7
1

3
2

2
3

0 11

Da
i

q
|0

.0
7
,
d

|0
.2

4
,
g

|0
.6

1
,

j|
0
.9

4
,
m

|0
.5

6
,
p

|0
.7

3
,
s|

0
.0

4
,
w

|0
.1

9
,
z|

0
.4

5
,
b
|0

.6
9

,

e|
0

.7
5

,
h

|0
.3

,
k|

0
.0

1
,
n

|0
.9

2
,

c|
0

.2
1

,
t|

0
.5

3
,

x|
0

.7
9
,
a

|0
.6

2
,

f|
0

.2
4
,

i|
0

.8
9
,

l|
0
.5

2
,

o
|0

.0
7

0
.4

7

%
7
5
.

6
8

3
2

2
2

0 11

Da
i

Defuzzification of fuzzy database tuples 443

F
ig

u
re

3
.

D
iff

er
en

t
ty

p
es

o
f
p
a
rt

it
io

n
tr

ee
s

fo
r

d
es

cr
ip

ti
v
e

a
tt

ri
b
u
te

a
i1

u
se

d
d
u
ri

n
g

o
u
r

te
st

s
(|
D

0 1
|
=

3
2
).

444 R.A. ANGRYK

G1 and G6 represent the extreme cases. The hierarchy G1 has only the root
and the leaves—its average branching factor is b = 32 and the value of H is
equal 2 (b >> H), while the hierarchy G6 is a classical dendrogram with the
average branching factor b being equal to 1.0625, and the height of H = 32
(b << H). Some levels of G6 have been omitted in Fig. 3 due to the limited
space of this presentation. Obviously, G6 represents the tallest tree we could
consider for the domain of 32 values.

Our algorithm has been tested using different types of hierarchies from Fig. 3
and data sets with different percentages of data imprecision (see Fig. 4 for
results), and with different numbers of equally imprecise tuples (scalability tests
are presented in Figs. 5-7). Results presented in Fig. 4, show that time required
to run our data defuzzification algorithm is linearly proportional to the degree
of imprecision occurring in the fuzzy attribute for the fuzzy data tables with
imprecision = 75%. The running time for G1 is the best because it has the
least number of levels, which gives it an advantage since our data defuzzification
algorithm uses a depth-first search (see DFSearchForResemblances procedure in
Table 8). Fig. 4 also contains timings for two look-alike hierarchies, G4 and G5,
which have identical shapes but different distributions of α-values. It is evident
from Fig. 4 (a) (see two overlapping plots on the top), that the running times
for these two hierarchies are the same. This is because our data defuzzification
algorithm traverses the same nodes, while storing and updating matches found
in the hierarchies with different values of α. It is important to note that the
vote fractions, generated when traversing these two trees, may be distributed
differently due to differences in propagation of α’s in each of the trees. The
overlapping plots in Fig. 4 confirm, however, that the distribution of α-values
among the levels does not have a direct impact on running time of our data
defuzzification algorithm. Moreover – the running time of the algorithm seems
to be linearly correlated with the degree of data imprecision, and should be
expected to grow with the number of levels in the partition tree (i.e. our H).

Figs. 4(b) and 5 show that the tallest hierarchy (G6) takes the maximum
time compared to all other hierarchies. From our experiment, it becomes appar-
ent that the procedure DFSearchForResemblances (Table 8) conducts a number
of level-dependent searches, where the performance decreases with increases in
the number of levels in the partition tree, which suggests that flattening of the
partition trees (i.e. making them more bushy, similarly to the way B+trees are
arranged) in large-scale applications may be a recommended approach (Chuang
and Chien, 2002, 2004; Wall, Richter and Angryk, 2005). It is important to
remember, however, that our test results were generated with randomly dis-
tributed data points. In real life we would expect some kind of positive corre-
lation between distribution of imprecise attribute entries in a fuzzy data table
and a fuzzy similarity relation defined for the descriptive attribute.

A higher degree of data imprecision, in the case of partition trees with a
very low branching factor b (see Figs. 5, and 4(b) for the results generated by
G6, which has b = 1.0625), causes our DFSearchForResemblances procedure

Defuzzification of fuzzy database tuples 445

2

4

6

8

10

12

14

9
.3
7
5
%

1
2
.5
0
0
%

1
5
.6
2
5
%

1
8
.7
5
0
%

2
1
.8
7
5
%

2
5
.0
0
0
%

2
8
.1
2
5
%

3
1
.2
5
0
%

3
4
.3
7
5
%

3
7
.5
0
0
%

4
0
.6
2
5
%

4
3
.7
5
0
%

4
6
.8
7
5
%

5
0
.0
0
0
%

5
3
.1
2
5
%

5
6
.2
5
0
%

5
9
.3
7
5
%

6
2
.5
0
0
%

6
5
.6
2
5
%

6
8
.7
5
0
%

7
1
.8
7
5
%

7
5
.0
0
0
%

Degree of Data Imprecision

Time (s) G1 G2 G3 G4 G5

(a)

1

10

100

1000

9
.3
7
5
%

1
2
.5
0
0
%

1
5
.6
2
5
%

1
8
.7
5
0
%

2
1
.8
7
5
%

2
5
.0
0
0
%

2
8
.1
2
5
%

3
1
.2
5
0
%

3
4
.3
7
5
%

3
7
.5
0
0
%

4
0
.6
2
5
%

4
3
.7
5
0
%

4
6
.8
7
5
%

5
0
.0
0
0
%

5
3
.1
2
5
%

5
6
.2
5
0
%

5
9
.3
7
5
%

6
2
.5
0
0
%

6
5
.6
2
5
%

6
8
.7
5
0
%

7
1
.8
7
5
%

7
5
.0
0
0
%

Degree of Data Imprecision

Time (s)

G1 G2 G3 G4 G5 G6

(b)

Figure 4. Total running time as a function of data imprecision for different
shapes of partition trees (number of data records for all plots = 30,000

to traverse further before the benefits of the branch-pruning strategy (see lines
18-23 in Table 8), can be noticed. This is why tall trees with a low branching
factor b generate higher cost when used against the data sets with very high
imprecision (i.e. 75% in our examples). Our results show well the costs that
may be necessary to interpret large sets of highly imprecise data. They also
confirm our expectation that flattening (i.e. increasing of an average branching
factor) of dendrogram-like hierarchies, before using them for data generalization
or specialization, can be very useful in practice.

Figs. 5-7 depict the running time as a function dependent on the number
of tuples in the dataset (with the degree of data imprecision unchanged). We
carried out our scalability tests using two different degrees of data imprecision:

446 R.A. ANGRYK

0

20

40

60

80

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of fuzzy tuples (x1000)

T
im

e
 (
s
)

G6 for 12.5% G6 for 75%

(a)

2

2.4

2.8

3.2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of fuzzy tuples (x1000)

Time (ms)

G6 for 12.5% G6 for 75%

(b)

Figure 5. The worst case scenario — algorithm scalability for dendrogram-like
partition trees (partition tree G6 in Fig. 3). (a) Actual time taken by our
algorithm. (b) Average time to traverse a single record

12.5% and 75%. Figs. 6 and 7 show that our defuzzification algorithm has
a linear performance with respect to the number of fuzzy tuples, when run
using the five examples of partition trees we introduced earlier (i.e. G1 −G5 in
Fig. 3). Since G6 has the highest number of levels, it takes the longest time to
traverse when compared with flatter trees (the scalability tests for dendrogram
are presented in Fig. 5). On the other hand, G1 has only two levels and therefore
it took the shortest time to check using our recursive DFSearchForResemblances
procedure at every corresponding number of fuzzy tuples. Fig. 6(b) shows the
average time to traverse a partition tree for a single tuple with the same data as
used to generate results presented in Fig. 6(a). The same relation occurs between
parts (a) and (b) in Figs. 5 and 7. In Fig. 6(b) and 7(b), average timing lines
are almost straight and become parallel to the horizontal axis as the number
of tuples increases. As expected, it can be noticed that our algorithm constant
initiation time resulted in the average time of defuzzification per tuple being
slightly higher for low numbers of tuples in our fuzzy data table (as shown

Defuzzification of fuzzy database tuples 447

0

1

2

3

4

5

6

7

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of fuzzy tuples (x1000)

T
im

e
 (
s
)

G1 G2

G3 G4

G5

(a)

0

0.1

0.2

0.3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of fuzzy tuples (x1000)

Time (ms) G1 G2 G3 G4 G5

(b)

Figure 6. Algorithm scalability for 12.5% of data imprecision. (a) Actual time
taken by our algorithm for partition trees G1-G5 (presented in Fig. 3). (b)
Average time to traverse a single record for the same similarity relations.

in Figs. 5(b), 6(b), and 7(b)). This behavior is caused by almost constant
data structures initialization costs (used mainly for loading a partition tree
to the primary memory), which typically have a more significant influence on
the algorithm average running time when considered in the context of smaller
datasets. With each type of hierarchy, the average time of the defuzzification
per tuple seems to stabilize to a constant as the number of tuples increases.
Based on the plots presented in Figs. 5(b), 6(b), and 7(b), we are happy to
report that the algorithm maintained the linear average time performance for
all investigated partition trees. Exactly the same behaviors have been found
when using datasets with 12.5% of data imprecision and the ones with 75%.

Now, let us consider two partition trees in Fig. 8. G3 and G7 have the same
heights (H = 4), but differ in the distributions of branching factors in individual
levels. The hierarchy G3 starts splitting its equivalence classes earlier (at high
levels of the partition tree), whereas intensity of splitting for G7 increases at
the bottom of the tree. Although both hierarchies have 32 atomic equivalence
classes at the α = 1.0 level of the tree, in the case of G7 they are merged

448 R.A. ANGRYK

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of fuzzy tuples (x1000)

T
im

e
 (
s
)

G1 G2

G3 G4

G5

(a)

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of fuzzy tuples (x1000)

Time (ms) G1 G2 G3 G4 G5

(b)

Figure 7. Algorithms scalability for 75% of data imprecision. (a) Actual time
taken by our algorithm for partition trees G1-G5 (presented in Fig. 3). (b)
Average time for the same similarity relations.

quickly at the lower part of the tree. In contrast, the other hierarchy (G3)
possesses more equivalence classes closer to the top of the tree, resulting in the
bigger number of nodes at intermediate levels (see Fig. 8(a)-(b)). The resulting
runtime behaviors for these two hierarchies with respect to the degree of data
imprecision are plotted in Fig. 8(c), and the results of our scalability tests are
presented in Fig. 8(d). Our data defuzzification algorithm would always take
more time in the case of partition tree G3 compared to G7 as the algorithm
needs, on average, to traverse more nodes when searching the hierarchy G3.
This is caused by the fact that trees with a lower branching factor close to their
root are providing better chances for larger subtrees of the partition tree being
pruned earlier, when we perform depth first search (DFS) using non-atomic
values as search keys.

Figs. 8(c)-(d) show that our data defuzzification algorithm performs better
with hierarchy G7 than G3. This suggests that the low branching factor near
the root of the partition tree and comparatively higher branching factor at the
bottom is the preferred choice when given a task of flattening partition trees for
the purpose of attribute-oriented defuzzification.

Defuzzification of fuzzy database tuples 449

(a

)
(b

)

468

1
0

1
2

1
4

9.375%

12.500%

15.625%

18.750%

21.875%

25.000%

28.125%

31.250%

34.375%

37.500%

40.625%

43.750%

46.875%

50.000%

53.125%

56.250%

59.375%

62.500%

65.625%

68.750%

71.875%

75.000%

D
e
g

re
e
 o

f
 D

a
ta

 I
m

p
re

c
is

io
n

T
im

e
 (

s)
G

3
G

7

02468

1
0

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

N
u
m

b
e
r

o
f
fu

z
z
y
 t
u
p
le

s
 (
x
1
0
0
0
)

Time

G
3
 f
o
r
1
2
.5

%
G

3
 f
o
r
7
5
%

G
7
 f
o
r
1
2
.5

%
G

7
 f
o
r
7
5
%

(c
)

(d
)

F
ig

u
re

8
.

Im
p
a
ct

o
f
a
g
g
re

g
a
ti
n
g

th
e

eq
u
iv

a
le

n
ce

cl
a
ss

es
a
t

h
ig

h
er

v
s.

lo
w

er
le

v
el

s
o
f
p
a
rt

it
io

n
tr

ee
.

450 R.A. ANGRYK

This is a very interesting behavior, as it is opposite to the strategies recom-
mended for depth first search (DFS) using atomic search keys. In the case of
atomic values, we want the trees to have bushy character at the top, as more
expensive search at the top lets us prune the larger portions of a tree early,
since only a single subtree is chosen at each level. In the case of sets of values
(i.e. fuzzy data entries) used as search keys, a larger branching factor close to
the root of the tree generates better chances of finding at least partial matches
in the larger number of subtrees and therefore more nodes usually need to be
checked (compare Figs. 9(b) and 9(c)). This generates additional computational
costs and decreases performance of our DFSearchForResemblances procedure.

4. Conclusions

In this work we focused on the problem of interpretation of imprecise, categorical
data entries in fuzzy relational databases. The paper shows a new, intuitive way
in which a fuzzy tuple can be transformed to a collection of atomic values in a
time-efficient manner. Our heuristic attribute-oriented defuzzification algorithm
allows for transfer of fuzzy tuples to the form that allows analysis of such data via
a majority of regular (i.e. non-fuzzy database specific) data mining algorithms.

By publishing this paper we hope to encourage scientists working in fuzzy
databases area to popularize alternative fuzzy data interpretation algorithms
allowing for analysis of imprecise data using well known classic data mining
techniques. Our scalability tests for the developed algorithm are encouraging
as they show that the fuzzy collections can be transformed to the atomic values
efficiently. Our experiments show that time required to run our data defuzzifi-
cation algorithm is linearly proportional to the degree of imprecision occurring
in the fuzzy data table.

Acknowledgment

Rafal Angryk would like to express his gratitude to his former Ph.D. advisor –
Dr. Frederick Petry, whose questions provided initial motivation for this work.
The author also thanks Dr. Denbigh Starkey, and Mrs. Jeannette Radcliffe, who
provided valuable comments on this writing. Some parts of the experimental
results were generated using the code developed by Mr. Shahriar Hossain.

In addition, the author would like to thank the Montana NASA EPSCoR
Grant Consortium for sponsoring a part of this research (Award No. M166-05-
Z3184).

Defuzzification of fuzzy database tuples 451

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

i
j
k
l
m
n
o
p

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

a
b

c
d

e
f

g
h

i
j
k

l
m

n
o
p

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

a
b

c
d

e
f

g
h

i
j

k
l
m
n

o
p

a
b

c
d

e
f

g
h

i
j
k

l
m

n
o
p

(a
)

(b
)

F
ig

u
re

9
.

C
o
m

p
a
ri

so
n

o
n

se
a
rc

h
b
eh

av
io

r
fo

r
n
o
n
-a

to
m

ic
se

a
rc

h
k
ey

s.
(a

)
N

o
n
-a

to
m

ic
k
ey

-b
a
se

d
D

F
S

(f
o
r

K
ey

=
{
b,

c,
d
,e

,f
,g
}
)

in
th

e
tr

ee
w

it
h

lo
w

b
ra

n
ch

in
g

fa
ct

o
r

(b
=

2
)

cl
o
se

to
th

e
ro

o
t

a
ll
ow

s
th

e
b
en

efi
ts

o
f

p
ru

n
in

g
to

o
cc

u
r

ea
rl

ie
r.

(b
)

N
o
n
-a

to
m

ic
k
ey

-b
a
se

d
D

F
S

se
a
rc

h
in

th
e

tr
ee

w
it
h

h
ig

h
er

b
ra

n
ch

in
g

fa
ct

o
r

(b
=

4
)

cl
o
se

to
th

e
ro

o
t.

452 R.A. ANGRYK

References

Angryk, R. (2006) Similarity-driven Defuzzification of Fuzzy Tuples for En-
tropy-based Data Classification Purposes. Proc. 15th IEEE Int. Conf. Fuz-
zy Systems (FUZZ-IEEE’06), Vancouver, Canada, July 2006, 1490-1498.

Angryk, R. and Petry, F. (2007) Discovery of generalized knowledge from
Proximity-and Similarity-based Fuzzy Relational Databases. Internation-
al Journal of Intelligent Systems 22 (7), 763-779.

Angryk, R. and Petry, F. (2005) Mining Multi-Level Associations with Fuz-
zy Hierarchies. Proc. 14th IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE
’05), Reno, NV, USA, May 2005, 785-790.

Baldwin, J.F. and Zhou, S.Q. (1984) Fuzzy relational inference language.
Fuzzy Sets and Systems 14 (2), 155-174.

Buckles, B.P. and Petry, F.E. (1982) A fuzzy representation of data for
relational databases. Fuzzy Sets and Systems 7 (3), 213-226.

Buckles, B.P. and Petry, F.E. (1983) Information-theoretic characteriza-
tion of fuzzy relational databases. IEEE Transactions on Systems, Man,
and Cybernetics 13 (1), 74-77.

Chuang, S.-L. and Chien, L.-F. (2002) Towards automatic generation of
query taxonomy: a hierarchical query clustering approach. Proc. 2nd

IEEE Int. Conf. Data Mining (ICDM-IEEE ’02), Maebashi City, Japan,
December 2002, 75–82.

Chuang, S.-L. and Chien, L.-F. (2004) A practical Web-based approach to
generating topic hierarchy for text segments. Proc. of Conf. Informa-
tion and Knowledge Management (CIKM’04), Washington, DC, Novem-
ber 2004, 127-136.

Codd, E.F. (1970) A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM 13 (6), 377-387.

Han, J., Cai, Y. and Cercone, N. (1992) Knowledge discovery in databases:
An attribute-oriented approach. Proc. 18th Int. Conf. Very Large Data
Bases (VLDB ’92), Vancouver, Canada, 547-559.

Han, J., Cai, Y. and Cercone, N. (1993) Data-Driven Discovery of Quan-
titative Rules in Relational Databases. IEEE Transactions on Knowledge
and Data Engineering 5 (1), 29-40.

Han, J. and Kamber, M. (2006) Data Mining: Concepts and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco, CA.

Kacprzyk, J. and Zadrozny, S. (2005) Linguistic database summaries and
their protoforms: towards natural language based knowledge discovery
tools. Information Sciences 173 (4), 281-304.

Kantardzic, M. and Zurada, J. (2005) New Generation of Data Mining
Applications. IEEE Press and John Wiley.

Medina, J.M., Pons, O. and Vila, M.A. (1994) GEFRED: a generalized
model of fuzzy relational databases. Information Sciences—Informatics
and Computer Science: An International Journal 76 (1-2), 87-109.

Defuzzification of fuzzy database tuples 453

Petry, F.E. (1996) Fuzzy Databases: Principles and Applications. Kluwer
Academic Publishers, Boston, MA.

Prade, H. and Testemale, C. (1984) Generalizing database relational al-
gebra for the treatment of incomplete or uncertain information and vague
queries. Information Sciences 34 (2), 115-143.

Raju, K.V.S.V.N. and Majumdar, A.K. (1988) Fuzzy functional dependen-
cies and lossless join decomposition of fuzzy relational database systems.
ACM Transactions on Database Systems 13 (2), 129-166.

Rundensteiner, E.A., Hawkes, L.W. and Bandler, W. (1989) On near-
ness measures in fuzzy relational data models. International Journal of
Approximate Reasoning 3 (3), 267-298.

Shenoi, S. and Melton, A. (1989) Proximity Relations in the Fuzzy Rela-
tional Database Model. International Journal of Fuzzy Sets and Systems
31 (3), 285-296.

Tamura, S., Higuchi, S. and Tanaka, K. (1971) Pattern Classification
Based on Fuzzy Relations. IEEE Transactions on Systems, Man, and
Cybernetics 1 (1), 61-66.

Urrutia, A., Galindo, J., Jimenz, L. and Piattini, M. (2006) Data Mo-
deling Dealing With Uncertainty in Fuzzy Logic. In: D. Avison, S. Elliot,
J. Krogstie, J. Pries-Heje, eds., The Past and Future of Information Sys-
tems: 1976–2006 and Beyond. Series: IFIP International Federation for
Information Processing 214, Springer, Boston, 201-217.

Wall, B., Richter, N. and Angryk, R. (2005) Creating Concept Hierar-
chies in an Information Retrieval System. Proc. 5th IEEE Int. Conf.
Data Mining (ICDM-IEEE ’05), Workshop on Foundations of Semantic
Oriented Data and Web Mining, Houston, TX, USA, November 2005, 99-
105.

Weka 3 (2009) Data Mining Software in Java (March 17th, 2009),
http://www.cs.waikato.ac.nz/ml/weka/

Yager, R.R. and Petry, F.E. (2006) A Multicriteria Approach to Data Sum-
marization Using Concept Ontologies. IEEE Transactions on Systems,
Man, and Cybernetics 14 (6), 767-780.

Zadeh, L.A. (1970) Similarity relations and fuzzy orderings. Information
Sciences 3 (2), 177-200.

Zemankova-Leech, M. and Kandel, A. (1984) Fuzzy Relational Databases
- a Key to Expert Systems. Interdisciplinary Systems Research, Verlag
TUV, Rheinland, Koln.

