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Abstract: This paper is devoted to the evaluation of conditions
involving aggregates in the context of flexible querying of relational
databases. An example of such a condition is “the maximum salary
of young employees is high”, where the aggregate max applies to a
fuzzy set of salaries. At first, we consider the evaluation of quantified
statements where the aggregate count (the cardinality) is implicitly
used. We extend this result to conditions involving the aggregates
average, maximum or minimum. The contribution of this paper is
to propose a new theoretical background for their evaluations based
on an arithmetic on gradual numbers (Nf ,Zf ,Qf ).
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1. Introduction

Flexible querying of relational databases aims at expressing preferences in que-
ries instead of boolean requirements as is the case for regular (or crisp) querying.
As a consequence, a flexible query returns a set of discriminated answers to the
user (from the best answers to the less preferred). Many approaches to define
flexible queries have been proposed and it has been shown that the fuzzy sets
(Zadeh, 1965) based approach is most general (Bosc and Pivert, 1992). An
extension of the SQL language (namely SQLf, Bosc and Pivert, 1995) has been
proposed to define sophisticated flexible queries using fuzzy sets.

In this context, predicates are defined by fuzzy sets and are called fuzzy
predicates. They can be combined using various operators such as generalized
conjunctions and generalized disjunctions (respectively expressed by t-norms
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and t-conorms) or using more sophisticated operators such as averages. In ad-
dition, linguistic quantifiers (Zadeh, 1983) (which are quantifiers defined by lin-
guistic expressions like most of or around 3 ) allow to define a particular type of
conditions called quantified statements. Many types of linguistic quantifiers can
be found in the literature (Diaz-Hermida, Bugarin and Barro, 2003; Glockner,
1997, 2004; Losada, Diaz-Hermida and Bugarin, 2006; Zadeh, 1983) as semi-
fuzzy quantifiers which allow to model expressions like “there are twice as many
men as women”. We limit this presentation to the original linguistic quantifiers
defined by Zadeh (Zadeh, 1983) and the two types of quantified statements he
proposes.

A quantified statement of the first type is denoted “Q X are A” where Q is a
linguistic quantifier, X is a crisp set and A is a fuzzy predicate. Such a condition
means that “the cardinality of the fuzzy set made of elements from X satisfying
A is in agreement with Q”. An example is provided by “most of employees are
young” where Q is most of, X is a set of employees whereas A is the condition
to be young. In this first type of quantified statements, the referential for the
linguistic quantifier is a crisp set (denoted by X, the set of employees when
considering the example). In the second type of quantified statements, the
quantifier applies to a fuzzy set as in “most of young employees are well-paid”
where the referential for most of is a fuzzy set (of young employees). This
second type of conditions is written “Q B X are A” (in the example, Q is most
of while B is the predicate to be young and A is the predicate well-paid). Such
a statement means that the proportion of A elements among the B elements is
in agreement with the linguistic quantifier Q.

Two kinds of linguistic quantifiers can be distinguished: absolute quantifiers
(which refer to an absolute number such as about 3, at least 2 ...) and relative
quantifiers (which refer to a proportion such as about the half, at least a quarter
...). To evaluate a quantified statement is to determine the extent to which it is
true and this paper proposes a new theoretical framework for their evaluation.
Propositions are based on the handling of gradual integers (Nf , Zf ) (Rocacher,
2003; Rocacher and Bosc, 2003) and gradual rational numbers (Qf ) as defined
in Rocacher and Bosc (2005). These specific numbers express well-known but
gradual numbers and differ from usual fuzzy numbers which define imprecise
(ill-known) numbers. In addition, since their definition is closely related to the
concept of cardinality of a fuzzy set, their use to evaluate quantified statements
appears to be natural.

We think that the study of quantified statements is a first step to evaluate
more complex conditions involving an aggregate. In these conditions, the diffi-
culty is to compute the value of an aggregate on a fuzzy set. As an example,
when considering the condition “the maximum salary of young employees is
high” it is necessary to determine the maximum value of a fuzzy set. This paper
shows that gradual number theory can be used for this purpose in case of the
average, maximum and minimum aggregates.



Conditions with aggregates evaluated using gradual numbers 397

Section 2 introduces the gradual numbers while Section 3 introduces the
definition of linguistic quantifiers and quantified statements of type “Q B X are
A” and “Q X are A”. Section 4 proposes a gradual truth value as the result of
evaluation of a quantified statement. Since a scalar value is mandatory in the
context of SQLf, Section 5 proposes two interpretations to obtain two different
scalar evaluations from this gradual truth value. The extension of this work to
evaluate conditions involving the aggregates average, maximum and minimum
is shown in Section 6.

2. Gradual numbers

It has been shown (Rocacher, 2003) that dealing with both quantification and
preferences defined by fuzzy sets leads to defining gradual natural integers (ele-
ments of Nf ) corresponding to fuzzy cardinalities. Then, Nf has been extended
to Zf (the set of gradual relative integers) and Qf (the set of gradual rationals)
in order to deal with queries based on difference or division operations (Ro-
cacher and Bosc, 2005). These new frameworks provide arithmetic foundations
where difference or ratio between gradual quantities can be evaluated. As a
consequence, gradual numbers are essential, in particular, for dealing with flex-
ible queries using absolute or relative fuzzy quantifiers. This is the reason why
this section shortly introduces the set Nf of gradual integers (Subsection 2.1),
and its extensions Zf (Subsection 2.2) and Qf (Subsection 2.3). In Subsection
2.4, it is shown that applying a fuzzy predicate on a gradual number provides
a specific truth value, which is also gradual.

2.1. Gradual natural integers

The fuzzy cardinality |F | of a fuzzy set F , as proposed by Zadeh (Zadeh, 1983)
is a fuzzy set on N , called FGCount(F ), defined by:

∀ n ∈ N, µ|F |(n) = sup{α| |Fα| ≥ n},

where Fα denotes the α-cut of fuzzy set F .
The degree µ|F |(n), associated with a number n in the fuzzy cardinality

|F | is interpreted as the extent, to which F has at least n elements. The fuzzy
cardinality is a normalized fuzzy set of integers and the associated nonincreasing
characteristic function provides the different cardinalities of the different α-cuts.

Example 1 The fuzzy cardinality of the fuzzy set F = {1/x1, 1/x2, 0.8/x3,
0.6/x4} is: |F | = {1/0, 1/1, 1/2, 0.8/3, 0.6/4}. Degree 0.8 is the extent to which
F contains at least 3 elements.

It is very important to notice that we do not interpret a fuzzy cardinality
as a fuzzy number based on a possibility distribution (which has a disjunctive
interpretation). In our case, the knowledge of all the cardinalities of all the
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different α-cuts of a fuzzy set F provides an exact characterization of the number
of elements belonging to F . Consequently, |F | must be viewed as a conjunctive
fuzzy set of integers. As matter of fact, the considered fuzzy set F represents
a perfectly known collection of data (without uncertainty), so its cardinality
|F | is also perfectly known. We think that it is more convenient to qualify
such cardinality as a “gradual” number rather than a “fuzzy” number. Other
fuzzy cardinalities based on the definition of FGCounts, such as FLCounts or
FECounts, have been defined by Zadeh (1983) or Wygralak (1999). Dubois and
Prade (1985) and Delgado, Sanchez and Vila (2000) have adopted a possibilistic
point of view where fuzzy cardinality is interpreted as a possibility distribution
over α-cuts corresponding to a fuzzy number (Dubois and Prade, 1987).

The set of all FGCounts is called Nf and represents the set of gradual natural
integers. The α-cut xα of a gradual natural integer x is an integer defined as the
highest integer value appearing in the description x associated with a degree at
least equal to α:

xα = max{c ∈ N |µx(c) ≥ α}.

When x describes the FGCount of a fuzzy set A, the following equality holds:

xα = |Aα|.

This approach is along the line presented by Dubois and Prade (2005) where
they introduce the concept of fuzzy element e in a set S, defined as an assignment
function ae from a complete lattice to S. Following this view, a gradual natural
integer x belonging to Nf can be defined by an assignment function ax from
]0, 1] to N such that:

∀α ∈ ]0, 1], ax(α) = xα.

If x is identified with a fuzzy cardinality |F | of a fuzzy set F , then ax(α) is the
cardinality of the α level cut of F .

Example 2 |F | = {1/0, 1/1, 1/2, 0.8/3, 0.6/4} is a gradual natural integer de-
fined by an assignment a function a|F | graphically represented by Fig. 1. From
Fig. 1, we get : a|F |(0.7) = |F0.7| = 3.

Any operation # between two natural integers can then be extended to
gradual natural integers x and y by defining (Rocacher and Bosc, 2005) the
corresponding assignment function ax#y as follows:

∀α ∈ ]0, 1], ax#y(α) = ax(α)#ay(α) = xα#yα.

Due to the specific characterization of gradual integers, it can easily be shown
that Nf is a semi-ring structure. So, the addition and product operations satisfy
the following properties: (Nf , +) is a commutative mono¨id (+ is closed and
associative) with the neutral element {1/0} ; (Nf , ∗) is a mono¨id with the
neutral element {1/0, 1/1}; the product is distributive over the addition.
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Figure 1. The assignment function of a fuzzy cardinality.

2.2. Gradual relative integers

In Nf the difference between two gradual natural integers may be not defined.
As a consequence, Nf has to be extended to Zf in order to build up a group
structure.

The set of gradual relative integers Zf is defined by the quotient set (Nf ×
Nf )/ℜ of all equivalence classes on (Nf ×Nf) with regards to ℜ the equivalence
relation characterized by:

∀(x+, x−) ∈ (Nf × Nf ), ∀(y+, y−) ∈ (Nf × Nf ),

(x+, x−)ℜ(y+, y−) iff x+ + y− = x− + y+.

The α-cut of a gradual relative integer (x+, x−) is defined as the relative
integer x+

α − x−
α . As a consequence, the assignment function ax of a gradual

relative integer x is a function from ]0, 1] to Z such that:

∀α ∈ ]0, 1], ax(α) = x+
α − x−

α = ax+(α) − ax−(α).

The assignment function can be also be represented by a unique canonical rep-
resentative xc, which enumerates the values of its different α-cuts on Z:

xc = {αi/(x+
αi

− x−
αi

)},

where the αis correspond to the different degrees appearing in the representation
of x+ and x−. The canonical representation gathers the discontinuity points of
the assignment function.

Example 3 The canonical representation of the fuzzy relative x = (x+, x−)
(with: x+ = {1/0, 1/1, 0.8/2, 0.5/3, 0.2/4} and x− = {1/0, 1/1, 0.9/2}) is:

(x+, x−)c = {1/0, 0.9/− 1, 0.8/0, 0.5/1, 0.2/2}.
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For the level of 0.9 we get: x+
0.9 = 1 while x−

0.9 = 2. As a consequence, the
α-cut of (x+, x−) at level 0.9 is x+

0.9 − x−
0.9 = −1. The assignment function of

(x+, x−) is represented by Fig. 2.

Figure 2. Assignment function of the gradual relative integer (x+, x−).

If x and y are two gradual relative integers, the addition and the multiplica-
tion are respectively defined by the classes (x+ + y+, x− + y−) and ((x+ ∗ y+)+
(x− ∗ y−), (x+ ∗ y−)+ (x− ∗ y+)). The addition is commutative, associative and
has a neutral element, denoted by 0Zf

, defined by the class {(x , x )|x ∈ Nf}.
When considering the assignment functions of two relative integers x and y, the
assignment functions of their sum and product are :

∀α ∈ ]0, 1], ax+y(α) = ax(α) + ay(α) = xα + yα.

∀α ∈ ]0, 1], ax∗y(α) = ax(α) ∗ ay(α) = xα ∗ yα.

Each fuzzy relative integer (x+, x−) has an opposite, denoted by −x =
(x−, x+). This is remarkable because in the framework of usual fuzzy numbers
this property is not always satisfied. It can be easily checked that the product in
Zf is commutative, associative and distributive over the addition, the neutral
element being the fuzzy relative integer ({1/0, 1/1}, {1/0}). Therefore we
conclude that (Zf , +, ∗) forms a ring.

2.3. Gradual rational numbers

The question is now to define an inverse to each gradual integer and to build up
the set of gradual rational numbers. We define Z∗

f as the set of gradual integers,
x such that: ∀α ∈]0, 1], ax(α) 6= 0 and ℜ’ as the equivalence relation such that:

∀(x, y) and (x′, y′) ∈ (Zf × Z∗
f ),

(x, y)ℜ′(x′, y′) iff x ∗ y′ = x′ ∗ y.
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The set of gradual relational numbers Qf is defined by the quotient set
(Zf × Z∗

f )/ℜ′ of all equivalence classes on (Zf × Z∗
f ) with regards to ℜ′. As a

consequence, a gradual relational number is defined by a ratio x/y where x ∈ Zf

and y ∈ Z∗
f . The assignment function ax/y of x/y is a function from ]0, 1] to Q

defined by:

∀α ∈ ]0, 1], ax/y(α) = ax(α)/ay(α) = xα/yα.

It can also be represented, thanks to a canonical representation, by enumerating
values associated with the different α-cuts, which are rational numbers. When
considering the assignment functions of two gradual relational numbers u and
v , the assignment functions of their sum and product are:

∀α ∈ ]0, 1], au+v(α) = au(α) + av(α) = uα + vα,

∀α ∈ ]0, 1], au∗v(α) = au(α) ∗ av(α) = uα ∗ vα.

2.4. Gradual truth value

This section proposes a computation to determine the truth value obtained when
applying a fuzzy predicate on a gradual number. Let x be an element of Nf

or Zf or Qf (its assignment function being ax) and T a fuzzy predicate. The
application of the predicate T on x produces a gradual truth value S defined on
the interval ]0, 1] characterized by the assignment function defined by:

∀α ∈]0, 1], aS(α) = µT (ax(α)).

For a given level α, aS(α) represents the satisfaction of the corresponding α-cut
of the gradual number. In other words, for a given level α, the gradual number
satisfies predicate T at degree aS(α).

Example 4 We consider the fuzzy predicate “high” defined by Fig. 3 and con-
dition “the number of young employees is high”, where the number of young
employees (fuzzy cardinality) is the gradual integer x canonically represented by
{1/15, 0.7/20, 0.2/25} (which means that 15 employees are completely young, 5
employees have the same age and are young at the level 0.7, whereas 5 other
people are rather not young since their level of youth is estimated at 0.2).

The assignment function for the number x is the following:

∀α ∈ ]0, 0.2], ax(α) = 25,

∀α ∈ ]0.2, 0.7], ax(α) = 20,

∀α ∈ ]0.7, 1], ax(α) = 15.

The application of the predicate “ high” to the gradual integer x produces a
gradual truth value S, whose function of assignment is defined by:

∀α ∈ ]0, 1], aS(α) = µhigh(ax(α)).

We get the gradual truth value given by Fig. 4.
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Figure 3. The fuzzy predicate high

Figure 4. Gradual truth value S

This gradual truth value shows the different results associated to the different
α-cuts. When referring to previous example and when considering level 0.8, the
fuzzy cardinality x states that the cardinality of this α-cut is 15 (ax(0.8) = 15).
Since µhigh(15) = 0.25, this cardinality satisfies to be high at degree 0.25. It can
be checked that aS(0.8) = 0.25.

3. Linguistic quantifiers

Subsection 3.1 recalls the definition of linguistic quantifiers. Subsection 3.2
introduces the principles advocated in this paper for the evaluation of quantified
statements of type “Q X are A” and “Q B X are A”.
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3.1. Representation of linguistic quantifiers

A first representation for an absolute quantifier (respectively, relative quantifier)
is a fuzzy subset Q of the real line (respectively of the unit interval [0,1]). This
fuzzy subset is interpreted in terms of a matching between cardinalities (respec-
tively proportions) and degrees of satisfaction. In both cases, µQ(j) represents
the truth value of the statement “Q X are A” when j elements in X completely
satisfy A, whereas A is fully unsatisfied by the others (j being a number or a
proportion). The representation of an increasing linguistic quantifier satisfies:

1) µQ(0) = 0,

2) ∃ k such as µQ(k) = 1,

3) ∀ i , j if i > j then µQ(i) ≥ µQ(j ).

A decreasing linguistic quantifier is defined by:

1) µQ(0) = 0,

2) ∃ k such as µQ(k) = 1,

3) ∀ i , j if i > j then µQ(i) ≥ µQ(j ).

A unimodal quantifier is a fuzzy subset Q such that:

1) µQ(0) = 0,

2) ∃ k such as µQ(k) = 1,

3) ∀ i , j if i > j > k then µQ(i) ≥ µQ(j ),

4) ∀ i , j if i < j < k then µQ(i) ≤ µQ(j ).

3.2. Quantified statements

This section introduces the basis for the evaluation of “Q X are A” and “Q
B X are A” statements (Q being absolute or relative). First, we consider the
evaluation of quantified statements in the particular case of crisp predicates.
This situation is then adapted to the case of fuzzy predicates in order to propose
principles for an interpretation in the general case. It is worth mentioning that,
in case of an absolute quantifier, a quantified statement of type “Q B X are A”
reverts to a quantified statement of the first type, since it can be rewritten :
“Q X are (A and B)”. As an example, “at least 3 young employees are well-
paid” is equivalent to “at least 3 employees are (young and well-paid)”. As a
consequence, when dealing with quantified statements of type “Q B X are A”,
this paper only deals with relative quantifiers.

Obviously, when A is a crisp predicate, the evaluation of “Q X are A”, Q
being absolute, is given by µQ(c) where c is the cardinality of the set made of
elements from X which are A. In case of a relative quantifier Q, the evaluation
is provided by µQ(c/n) where c is the cardinality of the set made of elements
from X which are A, while n is the cardinality of set X (c/n being the proportion
of A elements in X). When the predicates A and B in the quantified statement
“Q B X are A” are crisp (Q being relative), the evaluation is provided by µQ(p)
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where p is the proportion of elements which are A among the elements which
are B.

In the general case, the cardinality c of the previous evaluations is the car-
dinality of a fuzzy set while proportion p is a ratio between two cardinalities
of fuzzy set. We define these cardinalities of fuzzy sets as gradual numbers
(FGCount) and we carry out the computation using the extended arithmetic
defined on gradual numbers (Rocacher and Bosc, 2005) (see Section 2). In this
context, the result can be either a gradual truth value (see Section 4) or a scalar
truth value (i.e. a degree set in [0, 1], see Section 5).

4. Evaluation of quantified statements

Section 4.1 considers the evaluation of quantified statements of type “Q X are
A”, where Q is absolute or relative. Section 4.2 considers the evaluation of
quantified statements of type “Q B X are A”, where Q is relative.

4.1. Quantified statements of type “Q X are A”

In case of an absolute quantifier, we need to compute µQ(c), where c is the
cardinality of the fuzzy set A(X) made of elements from X, which satisfy fuzzy
condition A (∀e ∈ X, µA(X)(e) = µA(e)). A canonical representation for c is
(see Section 2.1):

∀α ∈ ]0, 1], c(α) = |A(X)α|.

The application of predicate Q on the gradual integer c gives a gradual truth
value S defined by (see Section 2.4):

∀α ∈ ]0, 1], aS(α) = µQ(c(α)) = µQ(|A(X)α|).

The gradual truth value S expresses the satisfaction of each α-cut of A(X) with
respect to the linguistic quantifier Q.

A degree α is viewed as a quality threshold for the satisfactions with respect
to A and the value aS(α) states that: “the quantity of elements which satisfy A
at least at level α is in agreement with Q”. In other words, aS(α) represents the
truth value for “Q X are A” when considering the α-cut A(X)α (aS(α) being
the truth value of “Q elements are in A(X)α”).

In case of a relative quantifier, we need to compute µQ(c/n) where c is the
cardinality of the fuzzy set A(X), made of elements from X, which satisfy the
fuzzy condition A (∀ e ∈ X, µA(X)(e) = µA(e)), and n the cardinality of set X.
Similarly to the case of an absolute quantifier, the application of a predicate Q
on the gradual number c/n gives a gradual truth value S defined by:

∀α ∈ ]0, 1], aS(α) = µQ(c(α)/n) = µQ(|A(X)α|/n).

Here again, the gradual truth value S expresses the satisfaction of each α-cut
of A(X) with respect to the linguistic quantifier.
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Example 5 We consider the statement “ about 3 X are A” where X = {x1, x2,
x3, x4} such that µA(x1) = µA(x2) = 1, µA(x3) = 0.8, µA(x4) = 0.6. The
linguistic quantifier about 3 is given by Fig. 5. The gradual truth value for
“ about 3 X are A” (defined by: ∀α ∈ ]0, 1], µS(α) = µQ(c(α)) is given by
Fig. 6.

This gradual truth value provides the satisfactions obtained for the different
α-cuts of A(X) (set made of elements from X which satisfy fuzzy condition A).
As an example µS(0.7) = µQ(|A(X)0.7|) = µQ(3) = 1.

Figure 5. A representation for the quantifier about 3

Figure 6. A gradual truth value for “about 3 X are A”

In the two cases, the value µS(α) represents the truth value for the quantified
statements when considering the interpretations at the level α of the fuzzy
sets. The advantage of this representation is to provide the different results
given by the different interpretations of the fuzzy sets. As a consequence, this
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result has a clear meaning and can be the base for further processing of such as
defuzzifications.

4.2. Quantified statements of type “Q B X are A” where Q is relative

In this case, we need to compute µQ(p) where p = c/d such that:

• c is the cardinality of the fuzzy set (A ∩ B)(X) made of elements from X
which satisfy fuzzy condition A and condition B (∀x ∈ X, µA∩B(X)(x ) =
min(µA(x ), µB(x ))),

• d is the cardinality of the fuzzy set B(X) made of elements from X which
satisfy fuzzy condition B.

For the proportion c/d to be defined, d has to belong to Z∗
f , which means

∀α ∈]0, 1], ad 6= 0, which implies ∀α ∈]0, 1], |B(X)α| 6= 0 (in other words, fuzzy
set B(X) is normalized). The gradual rational number c/d is defined by the
couple (c, d). A canonical representation for c/d is (see Subsection 2.3):

∀α ∈ ]0, 1], p(α) = c(α)/d(α).

The cardinality c (respectively d) being that of the fuzzy set A∩B(X) (respec-
tively B(X)), we get:

∀α ∈ ]0, 1], p(α) = |(A ∩ B(X))α|)/|B(X)α|.

The application of a predicate Q on a gradual rational number such as p gives
a gradual truth value S defined by (see Subsection 2.4):

∀α ∈ ]0, 1], aS(α) = µQ(p(α)/n) = µQ(|(A ∩ B(X))α|/|B(X)α|).

The fuzzy truth value S expresses the satisfaction of each α-cut of A(X) and
A ∩ B(X) with respect to the linguistic quantifier.

In case of a not normalized fuzzy set B(X), one may consider that empty
α-cuts receive an evaluation of 0:

∀α ∈ ]0, max
x∈X

µB(x)],

aS(α) = µQ(p(α)/c(α)) = µQ(|(A ∩ B(X))α|/|B(X)α|).

∀α ∈ ] max
x∈X

µB(x), 1], aS(α) = 0.

The value α is viewed as a quality threshold for the satisfactions with respect
to A and B. When the minimum is chosen as a t-norm to define A∩B(X), the
value µS(α) is the degree of truth of the statement : “among the elements which
satisfy B at least at level α, the proportion of elements x with µA(x ) ≥ α, is in
agreement with Q” (since we have (A ∩ B(X))α = A(X)α ∩ B(X)α). In other
words, µS(α) represents the truth value for “Q B X are A” when considering
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the two α-cuts B(X)α and A(X)α) (µS(α) is the truth value of “Q elements
in B(X)α are in A(X)α”). The value µS(α) represents the truth value for the
quantified statement when considering the interpretations at level α of the two
fuzzy sets. The gradual truth value provides the different results given by the
different interpretations of the fuzzy sets A(X) and B(X).

Example 6 We consider the statement “ about half B X are A” where X =
{x1, x2, x3, x4} and the linguistic quantifier about half from Fig. 7.

The different satisfactions with respect to B and A are described by Fig. 8
and we obtain the fuzzy truth value given by Fig. 9. As an example, we get
aS(0.6) = 1/3 because |(A∩B(X))0.6|/|B(X)0.6| = 2/3 and µQ(2/3) = 1/3. The
truth value of the statement “ about half elements in {x such that µB(x) ≥ 0.6}
are in {x such that µB(x) ≥ 0.6}” is 1/3.

Figure 7. The quantifier about half

x1 x2 x3 x′

µB(xi) 1 0.9 0.7 0.3
µA(xi) 0.8 0.3 1 1

µA∩B(xi) 0.8 0.3 0.7 0.3

Figure 8. The satisfaction with respect to B and A

5. A scalar value for the evaluation

The gradual truth value S computed in the previous section represents the differ-
ent satisfactions of the different α-cuts with respect to the linguistic quantifier.

This gradual truth value can be defuzzified in order to obtain a scalar eval-
uation (set in [0, 1]). Various interpretations can be associated to this defuzzi-
fication and we consider the following one (since it is more natural):
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Figure 9. The fuzzy truth value for “about half B X are A”

“the higher the scalar interpretation, the more levels α have a high
truth value µS(α)”.

In case of a gradual truth value provided by a quantified statement, we get:
“the higher the scalar interpretation, the more α-cuts satisfies the
constraint defined by the linguistic quantifier”.

A scalar interpretation of 1 for “Q X are A” (respectively “Q B X are A”)
means that whatever is the chosen interpretation for A(x) (respectively A(x)
and B(x)) the cardinality of elements A (respectively the proportion of elements
A among the B elements) is fully in agreement with Q. Otherwise, the higher the
scalar evaluation, the more there exists interpretations such that the cardinality
(respectively the proportion) highly satisfies Q.

In Section 5.1, we consider a quantitative defuzzification (since based on an
additive measure (a surface)), while in Section 5.2 we consider a qualitative
defuzzification (based on a non additive computation).

5.1. A quantitative approach

In this approach, the surface of the fuzzy truth value is delivered to the user.
The scalar interpretation is then:

δ =

∫ 1

α=0

aS(α)dα.

Value δ is the area delimited by function aS . Since this function is a stepwise
function, we get:

δ = (α1 − 0) ∗ aS(α1) + (α2 − α1) ∗ aS(α2) + . . . + (αn − αn−1) ∗ aS(αn),

where the discontinuity points are (α1, aS(α1)), (α2, aS(α2)), . . ., (αn, aS(αn)),
with α1 < α2 < . . . < αn. When dealing with “Q X are A” statements, it has
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been shown (Lietard and Rocacher, 2005) that this approach is a generalization
of the OWA based interpretation.

Example 7 We consider the statement “ about half B X are A” of Example 6
and the gradual truth value given by Fig. 9. We compute:

δ = (0.7 − 0.3) ∗ 1/3 + (0.8 − 0.7) ∗ 1 ≈ 0.233.

This result is in accordance with our intuition since it seems that the proportion
of elements which are A among the B elements is near to 2/3 (with µQ(2/3) =
1/3).

5.2. A qualitative approach

According to this approach, the scalar interpretation takes into consideration
two aspects:

• a guaranteed (minimal) satisfaction value β associated to the α-cuts (β
must be as high as possible),

• the repartition of β among the α-cuts (β should be attained by the most
possible α-cuts).

Obviously, these two aspects are in opposition since, in general, the higher
β, the smaller the repartition. The scalar interpretation δ reflects a compromise
between these two aspects and we get:

δ = maxβ∈]0,1] min(β, each (β)),

where each(β) means “for each level α, aS(α) ≥ β”. The truth value for each(β)
can be a matter of degree and we propose to sum the lengths of intervals (of
levels) where the threshold β is reached:

each (β) =
∑

]αi,αj ] such that ∀α∈ ]αi,αj ], aS(α)≥β(αj − αi).

The higher each(β), the more numerous the levels α for which µS(α) ≥ β. In
particular, each(β) equal 1 means that for each level α, aS(α) is larger than (or
equal to) β.

When dealing with “Q X are A” statements, it has been shown (Bosc and
Lietard, 2005) that this approach is a generalization of the Sugeno fuzzy integral
based interpretation. In addition, from the computational point of view, the
definition of δ needs to handle an infinity of values β. However, it is possible
(Bosc and Lietard, 2005) to restrict computations to β values belonging to the
set of “effective” aS(α) values:

δ = max{β|∃α such that β=aS(α)} min(β, each (β)).
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Example 8 We consider the statement “ about half B X are A” of Example
7 and the fuzzy truth value given by Fig. 9. The values β to be considered
are 1/3 and 1. Furthermore each (1/3) = 0.5 and each (1) = 0.1. We get
δ = max(min(1/3, 0.5), min(1, 0.1)) = 1/3. As shown in Example 7, a truth
value of 1/3 for “ about half B X are A” is coherent.

6. Evaluation of conditions involving an aggregate

The evaluation of quantified statements is based on the expression of cardi-
nalities of fuzzy sets, which justifies the use of gradual number theory. This
section shows that it is possible to go far beyond the evaluation of quantified
statements, in particular - to evaluate conditions calling on an average value
of a fuzzy set, as in the example “the average salary of young employees is
high” where young and high are two vague conditions defined by fuzzy sets. To
evaluate this condition reverts to compute the average salary of a fuzzy set of
salaries — salaries of young employees — and to confront this average value
with the fuzzy condition high. The computation of the average can be achieved
thanks to the gradual number theory (the addition and division being defined),
the average being represented by a gradual number. This gradual number is
confronted to condition high, which leads to a gradual truth value, which can
be defuzzified in order to provide a scalar evaluation of the condition.

In the same spirit, it is also possible to evaluate others kinds of conditions,
involving the aggregate max or min, as in “the maximum salary of young em-
ployees is high”. The evaluation of these conditions needs to define the appli-
cation of the max and min operators to gradual numbers.

Section 6.1 shows how to evaluate conditions of the type “avg(A) is C” where
the average value of fuzzy set A is confronted to the fuzzy predicate C. Section
6.2 proposes a computation to evaluate conditions of type “max(A) is C” and
“min(A) is C” where A is a fuzzy set and C a fuzzy condition.

6.1. Evaluation of conditions of type “avg (A) is C”

Let A be a fuzzy set of numerical values. The average value of fuzzy set A is
given by the following ratio:

Avg (A) =
Sum (A)

Card (A)
,

where Sum (A) is the sum of elements from A while Card (A) is the gradual
integer representing its cardinality (its FGCount). For the computation to be
founded, it is necessary for Card (A) to belong to N∗

f , which implies that its
assignment function satisfies ∀α ∈]0, 1], aCard (A)(α) 6= 0 which implies ∀α ∈
]0, 1], |Aα| 6= 0 (A is a normalized fuzzy set).

We propose to represent Sum (A) by a gradual number and, as a consequence,
the average can be computed in the form of a gradual number. To compute
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Sum (A), it is necessary to define the fuzzy set A as the union of several fuzzy
singletons {µA(x)/x}, where x belongs to the support of the fuzzy set. Since A
is defined on a numerical universe, each fuzzy singleton {µA(x)/x} represents a
gradual number and we get:

Sum (A) =
∑

x∈Support(A){µA(x)/x}

where each gradual number {µA(x)/x} is defined by the following assignment
function ax(α) = x where α ≤ µA(x) and 0 elsewhere (see Fig. 10). With this
definition for Sum (A), we get the following result :

∀α ∈ ]0, 1], aAvg (A)(α) =

∑
x∈Aα

x

|Aα|
= avg (Aα).

Figure 10. The assignment function of a singleton {µA(x)/x}

In other words, the assignment function aAvg(A) provides the average value
of the different α-cuts of the fuzzy set A.

Proof. The starting point is:

Avg (A) =

∑
x∈Support(A){µA(x)/x}

Card (A)
.

From the definition of the division and addition of gradual numbers we get:

∀α ∈ ]0, 1], aAvg (A)(α) =

∑
x∈Support(A) ax(α)

aCard (A)(α)
.

Since:

aCard (A)(α) = |Aα|
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and ax(α) = x where α ≤ µA(x) and 0 elsewhere we get:

∀α ∈ ]0, 1], aAvg (A)(α) =

∑
x∈Support(A) and µA(x)≥α x

|Aα|

=

∑
x∈Aα

x

|Aα|
= avg (Aα).

The assignment function of the average value being defined, it is possible to
compute the gradual truth value S of condition “avg (A) is C”:

∀α ∈]0, 1], aAvg (A)(α) = µC(aAvg (A)(α))

= µC(

∑
x∈Aalpha

x

|Aα|
) = µC(avg (Aα).

This gradual truth value provides the satisfaction of each α-cut with respect to
condition “its average value is C”.

However, this approach is limited to fuzzy sets A such that∀α∈]0, 1], |Aα| 6=0.
One may think of extending this result by considering that empty α-cuts get
the satisfaction of 0:

∀α ∈ ]0, 1], aS(α) = µC(

∑
x∈Aα

x

|Aα|
)

when |Aα| 6= 0 and 0 otherwise.

Example 9 The statement “avg (A) is high” is considered with the following
fuzzy set A:

A = 0.1/1 + 0.1/2 + 0.1/3 + 0.1/4 + 0.1/5 + 0.1/15 + 0.2/200

+ 0.5/700 + 0.8/500 + 1/600.

It is assumed that: µhigh(203) = 0.2, µhigh(500) = 0.8, µhigh(550) = 0.9 and
µhigh(600) = 1. The different values taken by the average are provided by Fig. 11
and the gradual truth value for condition “avg (A) is high” is given by Fig. 12.

α 0.1 0.2 0.5 0.8 1
avg(Aα) 203 500 600 550 600

µhigh(avg(Aα)) 0.2 0.8 1 0.9 1

Figure 11. The truth values of “avg (Aα) is high”

This gradual truth value can be defuzzified according to the two methods
introduced in Section 5. As a consequence, we obtain two scalar values, a
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Figure 12. Gradual truth value for “avg (Aα) is high”

quantitative scalar value which represents the surface delimited by the gradual
truth value:

δ =
∫ 1

α=0 aS(α)dα

and a qualitative scalar value:

δ = max{β|∃α such that β=aS(α)} min(β, each (β))

where each (β) is defined by:

each (β) =
∑

]αi,αj ] such that ∀α∈ ]αi,αj ] aS(α)≥β(αj − αi).

Example 10 We consider the previous example, and the gradual truth value
provided by Fig. 12. The quantitative scalar value is:

δ = (0.1 ∗ 0.2) + (0.1 ∗ 0.8) + (0.3 ∗ 1) + (0.3 ∗ 0.9) + (0.2 ∗ 1) = 0.87.

To compute the qualitative scalar value we need to determine the values for
function each. Fig. 12 gives: each (0.2) = 1, each (0.8) = 0.9, each (0.9) = 0.8
and each (1) = 0.5. The qualitative scalar value is then:

δ = max(min(0.2, 1), min(0.8, 0.9), min(0.9, 0.8), min(1, 0.5)) = 0.8.

The statement “avg (A) is high” is rather true (at degree 0.8 or 0.87) since
every interpretation of fuzzy set A (except for the lowest ones) strongly satisfies
condition “the average is high” (see Fig. 12).



414 L. LIETARD, D. ROCACHER

6.2. Evaluation of conditions of type “max(A) is C” and

“min(A) is C”

As explained in Subsection 6.1, the fuzzy set A can be described by the union of
several fuzzy singletons {µA(x)/x} where x belongs to the support of the fuzzy
set (A being defined on a numerical universe, each of these fuzzy singleton is a
gradual number). The maximum (respectively minimum) value of the fuzzy set
A is the maximum (respectively minimum) value among the different {µA(x)/x}:

Max (A) = maxx∈Support(A){µA(x)/x}

(respectively Min (A) = minx∈Support(A){µA(x)/x}).

The maximum (respectively minimum) of two gradual numbers x and y (their
assignment function being respectively ax and ay) is given by (Dubois and
Prade, 2005):

∀α ∈ ]0, 1], amax(x,y)(α) = max(ax(α), ay(α)),

(respectively amin(x,y)(α) = min(ax(α), ay(α))).

Finally, the maximum value (respectively minimum value) of fuzzy A is a gradual
number whose assignment function is:

∀α ∈ ]0, 1], aMax (A)(α) = maxx∈support (A) ax(α),

(respectively∀α ∈ ]0, 1], aMin (A)(α) = minx∈support (A) ax(α)).

It is obvious to show that the assignment function of the maximum value (re-
spectively minimum value) describes the different maximum values (respectively
minimum values) taken by the different α-cuts (assuming that the minimum and
maximum of an empty set is value 0):

∀α ∈ ]0, 1], aMax (A)(α) = max{x ∈ |Aα|},

(respectively∀α ∈ ]0, 1], aMin (A)(α) = min{x ∈ |Aα|}).

The gradual truth value S of condition “max(A) is C” (respectively “min(A) is
C”) is:

∀α ∈ ]0, 1], aS(α) = µC(max{x ∈ |Aα|})

(respectively∀α ∈ ]0, 1], aS(α) = µC(min{x ∈ |Aα|}).)

This gradual truth value provides the satisfaction of each α-cut with respect to
condition “its maximum values is C” (respectively “its minimum value is C”),
assuming that the maximum (respectively minimum) value of an empty set is 0.
Here again, this gradual truth value can be defuzzified according to the two
methods introduced in Section 5.
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Example 11 The statement “max(A) is high” is considered with the following
fuzzy set A:

A = 0.2/200 + 0.5/700 + 0.8/400 + 1/500.

If we assume that µhigh(500) = 0.8 and µhigh(700) = 1, we get the results
provided in Fig. 13.

α 0.2 0.5 0.8 1
max(Aα) 700 700 500 500

µhigh(max(Aα)) 1 1 0.8 0.8

Figure 13. The truth values of “max(Aα) is high”

The gradual truth value for condition “avg (A) is high” is given by Fig. 14.

Figure 14. Gradual truth value for “max(Aα) is high”

This gradual truth value can be defuzzified according to the two methods
introduced in Section 5. As a consequence, we obtain two scalar values, a quan-
titative scalar value which represents the surface delimited by the gradual truth
value:

δ = (0.5 ∗ 1) + (0.5 ∗ 0.8) = 0.9,

and a qualitative scalar value:

δ = max{β|∃α such that β=aS(α)} min(β, each (β))

where each (β) is defined by:

each (β) =
∑

]αi,αj ] such that ∀α∈ ]αi,αj ], aS(α)≥β(αj − αi).
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Fig. 14 gives: each (0.8) = 1, each (1) = 0.5. The qualitative scalar value is
then:

δ = max(min(0.8, 1), min(1, 0.5)) = 0.8.

The statement “max(A) is high” is rather true (at degree 0.8 or 0.9) since
every interpretation of fuzzy set A strongly satisfies condition “the maximum
value is high” (see Fig. 14).

7. Conclusion

This paper is situated at the junction of the evaluation of complex fuzzy con-
ditions and fuzzy arithmetic introduced in Rocacher and Bosc (2003, 2005).
Gradual numbers provide a new framework, where operations such as difference,
division, minimum and maximum can be exactly evaluated. These operations
can be used to define complex conditions, where their results are confronted with
a fuzzy predicate. As a consequence, arithmetic on gradual numbers allows for
evaluating quantified statements and conditions of type “agg(A) is C” where
A is a fuzzy set, C a fuzzy predicate and agg is either the aggregate average,
minimum or maximum.

Such an evaluation provides a gradual truth value, which represents the
different interpretations of the result, each interpretation being an exact eval-
uation of the predicate “the aggregate satisfies C” computed on an α-cut. A
defuzzification process can be applied on the gradual truth value in order to
obtain a scalar result, which can be viewed as a kind of summary. In this pa-
per two types of scalar values can be distinguished: the first one corresponds
to a quantitative view of the fuzzy value, the second one is a qualitative view
(many other defuzzification strategies can also be investigated depending on
application domains).

This work is a first attempt to set the evaluation of conditions involving an
aggregate in the framework of an extended arithmetic and algebra. This aspect
is very important since properties provided by the algebraic framework hold.
Further studies may concern the comparison and generalization of the quali-
tative and quantitative approaches. In a further step, complementary studies
have to be conducted to set an algebraic framework to define logical operations
between gradual truth values.
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