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Abstract:Comparative evaluation operators for sets and multi-
sets are proposed from a possibilistic point of view. In general, an
evaluator estimates the possibility of (non) co-reference of two ar-
bitrary (sub)-objects. Such operators can be used in a hierarchical
possibilistic framework for finding co-referent objects with a com-
plex structure. This paper first discusses properties of evaluators in
general and continues with studying operators for sets and multisets,
thereby making a clear distinction between hard and soft evaluators.
Hard evaluators are based on evaluation of derived (multi)sets, while
soft evaluators use a low level evaluator to incorporate co-reference
at element level. The two important parts of such a soft evalua-
tor are an injective element mapping and an aggregation function.
An algorithm to provide the injective mapping is presented and dis-
cussed. For the aggregation step, ordered weighted conjunction is
studied by introducing parameterized fuzzy quantifiers to calculate
weight vectors. An advanced learning strategy is introduced to train
the optimal parameter matrix.
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1. Introduction

In everyday life, storage of information has become of key importance. Whether
using a high-tech database or a simple paper sheet, each process of data storage
is based on the principle of description of real world phenomena. Since the intro-
duction of databases, several means of representing and storing data in a struc-
tural way have been proposed (relational databases, XML, OO-environment,...).
In the scope of this paper, such a structural description of a real world entity
is called an object. Duplicate objects are two objects that represent or describe
the same real world entity. For that reason, they are called co-referent objects
and the problem of finding them is called the co-reference problem (the term
co-reference is introduced in Cohen, 1998). Detection of co-referent objects has
been investigated extensively in the past decades. In applications of data(base)
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merging, it is of vital importance to avoid duplicate storage and inconsistencies,
as they both lead to inefficient data management and could introduce ambiguity
in the data.

This paper deals with objects that have a predefined structure. A proba-
bilistic model to deal with this problem was given by Fellegi and Sunter (1969).
In more recent work, a hierarchical framework for object matching was intro-
duced (Hallez and De Tré, 2007), which is a generic framework in the sense
that the domain in which results are expressed, is left unspecified. The general
expression domain is due to the fact that object matching is a more general
problem than the co-reference problem. For example, comparing a query object
with a stored object is a matter of preference expression, while finding two co-
referent objects is an uncertain boolean problem, as will be pointed out in the
following. Nevertheless, in both cases two objects are compared and a result is
given, expressing the answer to the question posed. The mentioned framework
is called hierarchical as it exploits a hierarchy of operators to infer the final
result. Equipping the hierarchical framework with the domain of possibilistic
truth values, leads to a possibilistic model for the co-reference problem.

The choice for a possibilistic approach on co-reference is justified by several
reasons.

First of all, objects are (real world) entity descriptions and co-referent objects
describe equal entities, so co-reference is a boolean matter. Either two objects
are co-referent, or not, and there is no such thing as a co-reference degree.
However, due to imperfections in the data, entities can be described in different
ways, which implies that it can be uncertain whether objects are co-referent or
not. An elegant tool to express such uncertainty about boolean propositions
are possibilistic truth values (Prade, 1982), which are epistemological values
that describe knowledge or belief about truth values (i.e. they are not truth
values themselves). Thus, the possibilistic approach presented here expresses
the possibility (i.e. the belief) that two objects describe the same entity or not.
As similarity relations are not always compatible with an intuitive assignment of
such possibilities, the presented approach has a benefit over similarity relations.

Secondly, possibilistic truth values have been recognized in the past as the
desired machinery to deal with linguistic uncertainty (De Cooman, 1995), which
means that the possibilistic approach can deal with objects containing linguistic
terms.

Thirdly, missing data (unknown values or non-existing values) imply un-
certainty in the reasoning process. Using possibilistic truth values allows for
elegant reasoning about missing data.

The possibilistic model for object matching was elaborated in Bronselaer and
De Tré (2007, 2008), where the focus was mainly on aggregation of (intermedi-
ate) results and preference modeling. However, in order to support reasoning,
the possibilistic model requires also possibilistic evaluators for low-level com-
parison, i.e. attribute comparison, to deliver initial possibilistic truth values.
These operators express the uncertainty about the boolean truth value of the
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proposition that two attribute values refer to the same real world value. As these
operators deliver the input for the reasoning process and thus determine the out-
come of this reasoning to a large extent, they are of utmost importance. Still,
their development is, up till now, not deeply investigated. Therefor, this work
offers a prototype for such evaluation operators in the possibilistic framework.
Any domain can be equipped with such an evaluator, but especially important
cases are: numerical data, strings, (multi)sets and linguistic terms (modeled
by possibility distributions). The semantics of the operators are discussed and
the usefulness in practice of some properties is given. Next, evaluators are
constructed for the case of sets and multisets. The choice of elaborating on
these two datatypes is justified by noting that collection datatypes have interes-
ting applications. Firstly, in databases and object oriented languages, many-
valued attributes often occur, often modeled as (multi)sets or lists. Examples
of such attributes are ‘spoken languages’, ‘hobbies’, ‘friends’,... Secondly, detec-
tion of co-referent multisets has a very interesting application in the detection
of co-referent strings, where a tokenization function splits a string into a mul-
tiset of substrings. An explicit difference between hard and soft evaluators for
(multi)sets is introduced. Hard evaluators use derived (multi)sets (such as in-
tersection and union) to formulate a result, which implies that on element level,
strict equality is used. Soft evaluators are a generalization of hard evaluators in
the sense that they assume that non-equal elements can be co-referent. They
use an additional evaluator on the element level, that generates a sequence of
intermediate results and an aggregation function to infer a final result. The use
of ordered weighted conjunction (OWC) for this latter purpose is investigated
by introducing parameterized fuzzy quantifiers specifically designed for compar-
ison of (multi)sets. These quantifiers can be used to calculate the weight vector
of the OWC.

The paper is structured as follows. In Section 2, some basic concepts are
introduced, followed by a brief summary of previous work related to this paper
in Section 3. Section 4 describes a general possibilistic evaluator, which leads to
an evaluator for sets in Section 5 and multisets in Section 6. Finally, a guideline
for future work is given in Section 7 and the main contributions of this work are
summarized in Section 8.

2. Preliminaries

2.1. Possibilistic truth values

A possibilistic truth value (PTV) is a possibility distribution, represented by a
fuzzy set, defined over the set of boolean values I = {T, F}, where T represents
true and F represents false (Zadeh, 1978; Prade, 1982). PTVs are used to ex-
press the uncertainty about the boolean value of a proposition. In contradiction
to what their name might imply, PTVs are not truth values, but epistemologi-
cal values. This means that they describe a state of knowledge or belief about
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the truth value of a proposition. Let P denote the set of all propositions, then
each p ∈ P can be associated with a PTV p̃ = {(T, µp̃ (T )) , (F, µp̃ (F ))}, where
µp̃(T ) represents the possibility that p is true and µp̃(F ) represents the possi-
bility that p is false. The set of all PTVs is denoted ℘̃(I). It is assumed that
max (µp̃(T ), µp̃(F )) = 1, which reflects our assumption that the universe I is
large enough to express the truth value of p. Within the framework of PTVs,
it is possible to define generalizations R̃ of order relations R as follows:

p̃1 R̃ p̃2 ⇔

{
µp̃2(F ) R µp̃1(F ), if µp̃2(T ) = µp̃1(T ) = 1
µp̃1(T ) R µp̃2(T ), otherwise .

The framework of PTVs also provides generalizations of boolean operators in
order to aggregate uncertainty about boolean values. Within the scope of this
paper, the most important operator is a generalization of conjunction:

∧̃ : ℘̃(I)2 → ℘̃(I) :

p̃∧̃q̃ 7→ {(T, t (µp̃(T ), µq̃(T ))) , (F, s(µp̃(F ), µq̃(F )))}

where (t, s) is a t-norm/t-conorm pair, such that the possibilistic variables p̃

and q̃ are t-independent (De Cooman, 1995). In what follows, we will make use
of the couple notation for PTVs, which represents a PTV p̃ as (µp̃(T ), µp̃(F )).

2.2. Multisets

Part of this work will focus on the comparison of multisets, which are an exten-
sion of regular sets. In the remainder of this work, a multiset M derived from a
universe U is characterized by a counting function CM : U → N (Yager, 1986).
For u ∈ U , CM (u) represents the number of times u appears in M . The set of
all multisets drawn from a universe U is denoted M(U). Yager (1986) defines
some extensions of set operators for multisets:

∀u ∈ U : CA∪B(u) = max (CA(u), CB(u))

∀u ∈ U : CA∩B(u) = min (CA(u), CB(u))

∀u ∈ U : CA⊖B(u) = max (CA(u)− CB(u), 0)

∀u ∈ U : CA⊕B(u) = CA(u) + CB(u) .

Next, for these operators the concept of subset is extended for multisets as
A ⊂ B ⇔ ∀u ∈ U : CA(u) ≤ CB(u) and the cardinality of a multiset M can be
computed by ∀M ∈M(U) : |M | =

∑
u∈U CM (u).

3. Related work

As mentioned in the introduction, Fellegi and Sunter (1969) were the first to
give a formal solution for the duplicate detection problem in databases. Their
solution is based on probability theory and assumes records consisting of n
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fields. When comparing two records r1 and r2 the field values of both records
are first compared to each other, resulting in a vector x = [x1, ..., xn] of attribute
comparisons. Hereby, xi represents the [0,1]-valued similarity of the values of
the ith field. Next, a Bayesian network outputs a decision on whether the two
records are duplicates, based on x.

Several methods are proposed to estimate the conditional probabilities of the
Bayesian network. Jaro (1989) assumed conditional independence between the
probabilities to be estimated and suggested the use of an expectation maximiza-
tion (EM) algorithm. Winkler (1993) generalized this idea to the case where
the conditional independence assumption is violated. Du Bois (1969) pointed
out the importance of dealing with missing data.

An alternative to Bayesian modeling is a rule based approach, which has
been studied extensively in Wang and Madnick (1989), Hernandez and Stolfo
(1998), Tejada, Knoblock and Minton (2001), and Koyuncu and Yazici (2001).
While the previous works focus on database records, other works deal with more
complex objects, such as XML-documents and OO-environments (see Marin et
al., 2003; Doan et al., 2003; and Weis and Naumann, 2004).

In more recent work, Hallez and De Tré (2007), a new model was proposed
to deal with a more general problem called object matching, where objects are
assumed to be structured. Taking the structure of objects into account during
comparison results in a more natural reasoning process, which is why this model
is adopted here. Next, to the work mentioned here, a large body of literature
on co-referent objects exists and it is not feasible to describe every paper here.
Two good overview papers are Winkler (2006) and Elmagarmid, Ipeirotis and
Verykios (2007).

A significant part of this paper focuses on comparison of sets and multisets.
The first work concerning this topic is due to Jaccard (1908), who introduced
the well known Jaccard index for sets. This index was generalized by Tversky
in (1977). Dubois and Prade (1982) introduced comparison indexes in a fuzzy
set theoretic framework. In Matthé et al. (2006) an algorithm is provided that
takes similarities between elements into account. However, the outcome of this
algorithm is not unique. In addition, Matthé et al. (2006) provides an extension
of the Jaccard index, whereas this paper shows how ordered weighted conjunc-
tion can be used in order to provide a final result. For a complete overview
concerning comparison indexes for (fuzzy) sets and their properties, the reader
is referred to Cross and Sudkamp (2002).

4. Possibilistic evaluation

As mentioned before, this paper contributes to a possibilistic approach on the co-
reference problem. Therefor, we begin by describing this model and its purpose.

The term ‘object’ refers to an arbitrarily complex description of a structured
entity. Examples of such entities are cars, persons, ... The problem faced in this
paper, is the process of finding those pairs of objects that describe the same
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entity. Such pairs of objects are called co-referent objects. It is assumed here
that the objects reflect the natural structure of the entities in a hierarchical
way, more specific by using a tree structure. The scope of this paper concerns
objects that share such a predefined structure. A possibilistic solution for this
problem is provided next. Given two objects, we have the following affirmative
proposition p = “o1 and o2 are co-referent”, which evaluates to a boolean value.
As entity description allows heterogeneous representations of the same entity,
non-equal objects can refer to the same entity. Hence, there is an implicit un-
certainty about the boolean value of p, which can be modeled by a possibilistic
truth value (Section 2). Consequently, finding co-referent objects requires pro-
viding the PTV associated with proposition p, which is equivalent to calculating
the membership grades of this PTV. These membership grades are computed
by comparing the sub-objects defined in the object structure shared by both ob-
jects. The basic sub-objects are called the attributes and comparing the values
of n attributes results in n basic propositions pi = “o1 and o2 have co-referent
values for the ith attribute”. Attributes are sometimes assumed to be atomic,
but this assumption is omitted here in order to support many-valued attributes.
The operators that formulate possibilistic statements about such propositions
are called possibilistic comparative evaluation operators or evaluators for short.
These statements are combined by using aggregation operators for PTVs, which
are an extension of their corresponding logical boolean operators.

E1 En...

Aggregation structure A

(a11,a12) (an1,an2)

(o1,o2)

DECISION

E1 En...

Aggregation structure A

(a11,a12) (an1,an2)

(o1,o2)

DECISION

Figure 1. General structure of a comparison scheme

To clarify the possibilistic framework, the general structure of a hierarchical
possibilistic comparison scheme is shown in Fig. 1, where A represents an ag-
gregation structure (i.e. a complex tree-structure of aggregation operators) and
Ei denotes a possibilistic evaluation operator for the ith attribute.

Little work has been done concerning the development of such evaluators E

that directly estimate the possibilities of the boolean value of pi (in De Cooman,
1995, an example can be found that deals with linguistic terms). For that
purpose, we first define a generic form of such an operator.
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Definition 1 (Evaluator) Assume a universe U . For each couple of values
(u, u′) ∈ U2, assume an affirmative proposition p = “u and u’ are co-referent”.
The uncertainty about the boolean value of p is given by a possibilistic evaluator
for U , formally defined as:

EU : U2 → ℘̃(I) : (u, u′) 7→ EU (u, u′) = {(T, µp̃(T )) , (F, µp̃(F ))}

with EU (u, u′) = EU (u′, u). Hereby, µp̃(T ) represents the possibility that u and
u′ are co-referent and µp̃(F ) represents the possibility that u and u′ are not
co-referent.

In Definition 1, symmetry is axiomatically required, because it is the only
axiom of the equality relation in the entity world that can be translated to
the evaluator. This is illustrated in Fig. 2, which shows the world of objects
(A, B, ...) describing entities (X, Y, ...) in the real world.

REAL

WORLD

OBJECT

WORLD

A B

X Y=

=

E

A and B are 

co-referent

A and B are

not co-referent

NO YES

A and B are possibly co-referent

YES/NO

describes belief/uncertainty describes

constraints:

(strong) reflexive

REAL

WORLD

OBJECT

WORLD

A B

X Y=

=

E

A and B are 

co-referent

A and B are

not co-referent

NO YES

A and B are possibly co-referent

YES/NO

describes belief/uncertainty describes

constraints:

(strong) reflexive

Figure 2. Difference between equality and co-reference

Note that in Definition 1, U represents the (sub)-object world. Co-reference
is basically equality in the real world. However, (in)equality in the object world
is merely a piece of evidence used by an evaluator E to describe the belief that
the entities are equal. It follows that symmetry is the only axiom that any
evaluator E should satisfy.

Object equality can be used by an evaluator E in two possible ways. If the
constraint:

∀(u, u′) ∈ U2 : u = u′ ⇒ EU (u, u′) = {(T, 1)}

holds, E is a reflexive evaluator, stating that if two values from U are equal,
they are certainly co-referent. A more strict constraint than reflexivity would be
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to assume that as soon as two values are not equal, it is to some extent possible
that they are not co-referent. More specific, if the constraint:

∀(u, u′) ∈ U2 : u = u′ ⇔ EU (u, u′) = {(T, 1)}

is satisfied, E is a strong reflexive evaluator.

A clear distinction is made between both constraints, which both have their
use in applications. For example, let C denote the set of colors. If colors c1 and
c2 are compared based on the human vision system, it follows that EC(c1, c2) =
{(T, 1)} as soon as the human eye can not differentiate between the two colors.
However, this does not ensure that both colors are equal. The actual problem is
that the human vision system is not fully compatible with the equality relation
in the universe C, due to its limitations. Thus, in this case reflexivity is preferred
over strong reflexivity. The same problem occurs when comparing real numbers
that are stored on a computer and thus have a finite number of decimals.

In the scope of this paper, strong reflexivity is preferred because the equality
relation is assumed to be known by the user (i.e. the user can decide upon equal-
ity). Therefor, non-equality always introduces some uncertainty. For example,
assume two strings s=‘John Lennon’ and t=‘Jon Lennon’, it is not infeasible to
state that s 6= t implies that there is some (small) possibility that s and t are not
co-referent. This example clarifies that, in many situations, two objects with
small differences can be non co-referent, which is basically why co-reference
is not compatible with similarity. Therefore, in what follows, evaluators are
assumed to be strong reflexive, unless stated otherwise.

In some cases, it is possible to identify relations between propositions con-
cerning co-reference. For instance, assume a proposition stating the co-reference
of a and b, say pa,b, and a proposition stating the same about b and c, say pb,c.
The uncertainty about the boolean truth values of these propositions is given
by the PTVs p̃a,b and p̃b,c. An interesting question is what can be derived
about pa,c, the proposition stating that a and c are co-referent. In the litera-
ture on similarity measures, such properties are often presented as transitivity,
which is an implicit property of a similarity measure. In the possibilistic model
for co-reference, such a direct transitivity is not present. Nevertheless, for a
given evaluator, it might be possible and useful to derive a conditional possibi-
lity distribution over the domain I = {T, F}, say p̃a,c|p̃a,b, p̃b,c representing the
uncertainty about the boolean value of pa,c, given p̃a,b and p̃b,c.

Let us start by describing the relations that we have. An indication that a

and b are co-referent and an indication that b and c are co-referent, results in an
indication for the co-reference of a and c. An indication that a and b (resp. b

and c) are co-referent combined with an indication that b and c (resp. a and b)
are not co-referent, yields an indication that a and c are not co-referent. Finally,
an indication that a and b are not co-referent combined with an indication that
b and c are not co-referent, tells us nothing about the co-reference of a and c.
As an indicative measure for co-reference we consider necessity, which reflects



A possibilistic view on set and multiset comparison 349

certainty rather than possibility and is derived as follows:

Nec(p = T ) = 1− Pos(p = F )

Nec(p = F ) = 1− Pos(p = T ) .

Based on these transformations and the following notations of conditional ne-
cessity:

N (pa,c = T ) = Nec(pa,c = T |p̃a,b, p̃b,c)

N (pa,c = F ) = Nec(pa,c = F |p̃a,b, p̃b,c)

the above descriptions of the (un)certainty relations between propositions are
formalized as follows:

N (pa,c = T ) ≥ Nec(pa,b = T ) ∧Nec(pb,c = T )

N (pa,c = F ) ≥ (Nec (pa,b = T ) ∧Nec (pb,c = F ))

∨ (Nec (pa,b = F ) ∧Nec (pb,c = T )) .

where the conjunction operator ∧ is min and the disjunction operator ∨ is
max. By adding the normalization condition of necessities min(N (pa,c = T ),
N (pa,c = F )) = 0, the conditional necessities can be determined and hence the
conditional possibilities by using the inverse transformations:

µp̃a,c|p̃a,b,p̃b,c
(T ) = Pos(pa,c = T |p̃a,b, p̃b,c) = 1−N (pa,c = F )

µp̃a,c|p̃a,b,p̃b,c
(F ) = Pos(pa,c = F |p̃a,b, p̃b,c) = 1−N (pa,c = T )

with p̃a,c|p̃a,b, p̃b,c the possibilistic truth value that represents the conditional
uncertainty about the proposition pa,c, given the uncertainty about pa,b and
pb,c. The conditional possibility distribution provides an upper bound for the
uncertainty about proposition pa,c, meaning that if additional information about
this proposition becomes available, the resulting uncertainty must be smaller
than or equal to the conditional uncertainty we had before the addition of
information.

Table 1 contains some examples of derived conditional possibility distri-
butions. The examples show how uncertainty about the basic propositions is
contained in the conditional distribution. When there are indications that both
basic properties are false, the conditional distribution will reflect complete un-
certainty, just as is required.

The inference of a conditional possibility distribution can have important ap-
plications. Nevertheless, it is possible that p̃a,c|p̃a,b, p̃b,c is in contradiction with
E(a, c). Two PTVs, p̃1 and p̃2, concerning a proposition p are in contradiction
if they indicate an opposite truth value as most possible:

(µp̃1(T ) = 1 ∧ µp̃2(F ) = 1) ∨ (µp̃1(F ) = 1 ∧ µp̃2(T ) = 1) .
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Table 1. Examples of conditional possibility distributions

p̃a,b p̃b,c p̃a,c|p̃a,b, p̃b,c

(1,0) (1,0) (1,0)
(1,0) (0,1) (0,1)
(0,1) (0,1) (1,1)
(1,0) (1,1) (1,1)
(0,1) (1,1) (1,1)

(1,0.3) (1,0.1) (1,0.3)
(0.5,1) (1,0.1) (0.5,1)
(0.5,1) (0.3,1) (1,1)
(1,1) (1,1) (1,1)

A consistent evaluator is an evaluator for which p̃a,c|p̃a,b, p̃b,c and E(a, c)
are never in contradiction. Typically, for any non-atomic data type such as
sets and multisets, consistency between the conditional PTV and the actual
evaluation is hard to guarantee. Given a universe U , construction of consistent
evaluators is possible if U can be decomposed into disjunct subsets of U , say
U1, ..., Um, such that it is completely possible that two elements from the same
Ui are co-referent and that it is completely possible that an element from Ui is
not co-referent with any element from Uj , with i 6= j. This is formally stated
by the following theorem:

Theorem 1 Assume a universe U , EU is a consistent evaluator if U can be
decomposed in m sets Ui ∈ ℘(U) such that:

∀i, j ∈ {1, ..., m} : i 6= j ⇒ Ui ∩ Uj = ∅

∀i, j ∈ {1, ..., m} : i 6= j ⇒ ∀(u, v) ∈ Ui × Uj : µEU (u,v)(F ) = 1

∀i ∈ {1, ..., m} : ∀(u, v) ∈ U2
i : µEU (u,v)(T ) = 1 .

This theorem is proved by a case study for three random values u, v and w

and is therefore omitted here. Based on Theorem 1, some interesting consistent
evaluators can be constructed. Assume a universe U and an equivalence rela-
tion R on U (reflexive, symmetric and transitive). Then EU is consistent if it
satisfies µEU (u,v)(T ) = 1⇔ (u R v) and µEU (u,v)(F ) = 1⇔ ¬(u R v). Practical
examples of equivalence relations are equality, modulo and is-synonym-of. As a
second example, assume U and a partial order relation P on U (reflexive, an-
tisymmetric and transitive). Now EU is consistent if it satisfies µEU (u,v)(T ) =
1⇔ ((u R v)∨ (v R u)) and µEU (u,v)(F ) = 1⇔ ¬(u R v)∧¬(v R u). Practical
examples of partial order relations are subset for sets, substring and subsequence
for strings and hierarchical relations in a geographic setting. As the remainder of
the paper focuses on non-atomic data types, consistency is not assumed in what
follows. In conclusion of this Section, a distinction is made between semantical
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evaluators and syntactical evaluators. On the one hand, semantical evaluators
exploit semantical relations between values. For example, the strings “Man-
hattan” and “New York” are highly possibly co-referent, because both strings
refer to a geographic region and one region is a part of the other. Hence, the
semantics of both strings imply a high possibility of co-reference. Syntactical
evaluators, on the other hand, are strictly based on a comparison of the syn-
tactical structure of values. For example, the strings “John Lennon” and “Jon
Lennon” are highly possibly co-referent due to a large syntactical proximity. In
the remainder of the paper, the focus lies on syntactical evaluators.

5. Set evaluation

After introducing a very generic definition of co-reference evaluation, the first
data type for which an evaluator is constructed, is the set-type. Sets are regu-
larly used as data type to model unordered collections in which no duplicates
are allowed. It is emphasized that a set (and consequently also a multiset in
Section 6) is interpreted as a many valued attribute, rather than a complex
object as is the case in Dubois and Prade (1982).

In the following, two approaches for set evaluation are provided. The first
approach is an extension of regular set comparison techniques called hard evalu-
ation, due to the use of element equality in calculations. The second approach,
called soft evaluation, considers that elements themselves can be co-referent,
while not equal. Uncertainty on element level is estimated using a low level
evaluator. An injective element mapping between the two sets is constructed
and the unique sequence of PTVs generated under this mapping is aggregated
to a final result, representing the uncertainty about the co-reference of the sets.

5.1. Hard set evaluation

In a first approach some regular comparison techniques for sets are extended
to ℘̃(I). These comparison strategies calculate a result based on (well known)
set functions (Cross and Sudkamp, 2002), such as union and intersection. After
deriving sets by using such functions, an important step is the mapping of the
derived sets to the unit interval. Dubois and Prade (1982) use fuzzy measures in
this step of the comparison, which are defined as follows. Assume a universe U

and two subsets of U , A and B. A fuzzy measure γ (Sugeno, 1974) is a mapping
from ℘(U) to [0, 1] satisfying γ(∅) = 0, γ(U) = 1 and A ⊆ B ⇒ γ(A) ≤ γ(B).
Our approach requires an estimation of the possibilities that two given sets are
(not) co-referent. To obtain this, a couple of bipolar fuzzy measures is used
to make a distinction between positive and negative information delivered by
the results of set functions. In the context of sets, the positive information is
contained in the elements shared by the sets and the negative information is
contained in the elements that do not occur in the intersection of both sets.
Hence, a formal way of defining a hard possibilistic set evaluator is:
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Definition 2 (Hard Set Evaluator) Assume a universe U . A hard set
evaluator Eh

℘(U) is a strong reflexive evaluator, with:

µEh
℘(U)

(A,B)(T ) = s ·
γT (A ∩B)

γT (A ∪B)

µEh
℘(U)

(A,B)(F ) = s ·
γF (A∆B)

γF (A ∪B)

where A∆B = (A ∪B) ∩ (A ∪B) is the symmetrical difference of two sets and
s is a scaling factor used to ensure normalization.

The fuzzy measures evaluate the relevance of the elements in a set. The
possibility of co-reference is based on whether there is a significant difference in
relevance between the elements in the intersection and the union. Similarly, the
possibility of non co-reference is based on the difference in relevance between
the symmetrical difference and the union. The relevance of an element being in
the intersection might differ strongly from the relevance of that element being
in the symmetric difference, which is why two functions γT and γF are used.
More specifically, x ∈ (A ∩B) might have a low relevance for the possibility
that A and B are co-referent, while x ∈ (A∆B) might be very relevant for the
possibility that A and B are not co-referent. For both γ’s, a simple example is

γ(A) = |A|
|U| .

5.2. Soft set evaluation

5.2.1. Definition

Hard set evaluation is based on set functions that use the equality relation ‘=’
on the universe of discourse. A second and more flexible approach generalizes
the strict equality of elements to co-reference of elements. Thus, it is explicitly
assumed that elements themselves can be co-referent without being equal. Mea-
surement of the possibility of such lower level co-reference requires an evaluator
EU , which is assumed to be given. Obviously, EU must satisfy Definition 1 and
the assumption made in Section 4, i.e. strong reflexivity. Having two subsets of
U , say A and B with |A| ≤ |B|, the goal is to determine whether A and B are
co-referent sets, by using EU . The first step is creating an injection ι from A to
B, thereby giving preference to couples of elements that are more possible to be
co-referent, according to EU . Next, ι implies a sequence of PTVs representing
the knowledge of co-reference on element level. Finally, an aggregation oper-
ator for PTVs transforms the sequence to one PTV stating the possibility of
co-reference of the sets. From these observations, a soft set evaluator is formally
defined as:

Definition 3 (Soft Set Evaluator) Assume a universe U and two subsets
A and B with |A| ≤ |B|. A soft set evaluator is a strong reflexive evaluator
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defined as:

Es
℘(U)(A, B) = φ(κ(A, B)) = φ(p̃1, ..., p̃|B|)

where κ(A, B) is a function that generates |B| PTVs and φ is an aggregation
function.

In the following sections, both functions κ and φ are discussed.

5.2.2. Construction of ι and κ

The first important part in Definition 3 is the construction of a sequence of
PTVs, implied by an injection between the elements of the sets. The construc-
tion of the injection can be split up into two basic steps.

In the first step, Algorithm 1 starts by mapping elements in A ∩ B to each
other, which is justified by a corollary of strong reflexivity:

∀(u, u′) ∈ U2 : u 6= u′ ⇒ ({(T, 1)} =̃ EU (u, u) >̃ EU (u, u′))

where =̃ and >̃ are generalized order relations as introduced in Section 2. Next,
a matrix M of PTVs is created expressing uncertainty about the co-reference
of elements from A\B and B\A. Hereby, the functions r(.) and c(.) provide
one-to-one mappings of elements from A and B to row and column indexes,
which are natural numbers. Note that in Algorithm 1 the variables A and B

are overwritten with their respective asymmetrical differences. Hence, in what
follows it is assumed that, after execution of Algorithm 1, A ∩ B = ∅, which
simplifies our notations.

Algorithm 1 Matrix generation

Require: (A, B) ∈ ℘(U)2 ∧ |A| ≤ |B|
Ensure: An (|A\B| × |B\A|)-matrix M of PTVs and partial ι

C ← A ∩B

∀x ∈ C : ι(x) = x

A← A\C
B ← B\C
∀(a, b) ∈ A×B : M [r(a), c(b)] = EU (a, b)

In the second step, we want to iteratively find the largest PTV p̃ in M , add
the couple (x, y) to the mapping for which EU (x, y) = p̃ and then remove the
row and column corresponding to x and y.

This process is equivalent to Algorithm 2, which is explained in the following.
For each row in M , the “largest” PTV is located with the understanding that
comparison of PTVs is based on generalized order relations as explained in
Section 2. This means that the largest PTV is the one with the lowest µ(F ).
If two rows, say r1 and r2, exist with the same location of the largest PTV,
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Algorithm 2 Element mapping

Require: (|A| × |B|)-matrix M of PTVs
Ensure: Injective mapping ι

∀a ∈ A : m[r(a)]← arg maxb∈B M [r(a), c(b)]
while ∃(x, y) ∈ A2 : x 6= y ∧m[r(x)] = m[r(y)] do

p̃1 ←M [r(x), c(m[r(x)])]
p̃2 ←M [r(y), c(m[r(y)])]
if p̃1 = p̃2 then

decision←choose(M [r(x)], M [r(y)])
end if

if p̃1<̃p̃2 ∨ decision = r(x) then

m[r(x)] ←search(M [r(x)])
else

m[r(y)]←search(M [r(y)])
end if

end while

∀a ∈ A : ι(a) = c−1(m[r(a)])

a mapping conflict is present. These conflicts are resolved one at a time as
follows. If the conflicting PTVs are different, a sub procedure called search

disables the position of the current maximum on the row with the smallest
current maximum and searches for a new maximum for that row. In doing so,
disabled positions are not taken into account. If the PTVs are equal on both
rows, a sub procedure called choose will identify which row should be passed to
procedure search for relocation of its maximum. The procedure choose selects
the remaining PTVs from each row (i.e. enabled positions on the row) which
results in two multisets of PTVs, say M1 and M2. Now, if M1 = M2, both rows
contain the same PTVs on enabled positions. By convention, in this case we
choose r1. If M1 ⊂ M2 or M2 ⊂ M1, obviously the row corresponding to the
largest multiset is chosen, because it contains all PTVs of the smaller multiset.
If neither of these cases yield, we subtract M1 ∩M2 from both multisets and
the multiset containing the largest PTV after subtraction is chosen. In this way
the largest possible PTVs are left for future maximum relocation.

An example of the element mapping described by Algorithm 2 is shown in
Fig. 3. For convenience, the PTVs are shown in couple notation. Further on,
the current maxima are marked as the location where the PTV is underlined.
When a position is disabled, the corresponding PTV is deleted. From step (a)
to (b) the conflicts between the three rows are resolved. Because row 1 contains
the largest PTV, the maxima on row 2 and 3 are relocated. From step (b) to (c)
the conflict between row 2 and 3 is resolved on column 2. Both PTVs are equal,
so choose will select row 2 for maximum relocation because (1, 0.4)>̃(1, 0.8).
In situation (c), no conflicts occur and the algorithm stops. It can be proved
that Algorithm 2 always converges.
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Figure 3. Example of element mapping

Theorem 2 Given an (r× c)-matrix M of possibilistic truth values with r ≤ c,
Algorithm 2 converges.

Proof. Assume first r = c and consider an (r × r)-matrix M ′ with:

∀(i, j) ∈ {1, .., r}2 : M ′[i, j] ∈ {0, 1}

where a 1 in M ′ indicates the position of the current maximum on a row during
the algorithm, which means that:

∀i ∈ {1, .., r} :

r∑

j=1

M ′[i, j] = 1

during the entire algorithm execution. After initial maximum selection, let
n denote the number of columns for which

∑r
i=1 M ′[i, j] = 0, with j being

column index. By induction on n, the convergence can be proved. In the
base case, n = 1, which means that there is one column, say k, for which∑r

i=1 M ′[i, k] = 2, and one column, say l, for which
∑r

i=1 M ′[i, l] = 0. The
algorithm will choose a row on which the current maximum is disabled and a
new maximum is searched, which means that the elements of k sum up to 1
and the elements of a new column, say k′, either sum up to 1 or 2. If k′ = l,
all columns sum up to 1 and the algorithm stops. If not, the previous situation
remains with k′ instead of k and one location disabled. Due to the finite number
of locations in the matrix, the algorithm must eventually choose k′ = l, which
stops the algorithm. In the inductive case, the induction hypothesis states that
for n− 1 < r it is known that the algorithm will converge. If it can be proved
for n ≤ r, the inductive case is also proved. We have that there are n columns,
for which elements sum up to 0 and r − n columns, for which elements sum up
to at least 1. The first set of columns is called A and the second set of columns
is called B here. We have that A ∩ B = ∅. Again, as the algorithm starts, it
will change the position of 1 on some row, while disabling the previous position
of 1 on this row. If the new column position of this 1 is on a column from
A we can use the induction hypothesis to conclude the proof. If not, the new
column position must be a column in B, which is the same situation as before
the 1 has been replaced, with one position extra disabled. Due to the finite
number of positions in the columns of B, it is certain that at a given time the
algorithm must replace a 1 to a column from A, which, by use of the induction
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hypothesis, guarantees convergence. It can easily be seen that the foregoing
proof also proves the case where r < c, because it simply increases the number
of columns with elements that sum up to 0.

For each couple of elements from the created injection, EU provides a PTV
expressing uncertainty about the element co-reference. Note that |B| − |A|
elements from B have no image under the created injection, which implies that
|B| − |A| PTVs in the final generated sequence are (0, 1). The generation of a
sequence of PTVs is equivalent to Algorithm 3, which represents κ.

Algorithm 3 κ

Require: A, B ⊂ U ∧ |A| ≤ |B|
Ensure: Sequence seq of PTVs

ι←Element mapping(Matrix generation(A,B))
∀k ∈ ι :add(seq, EU (k))
∀i ∈ {1, .., |B| − |A|} :add(seq, (0, 1))

Another important topic next to the convergence of Algorithm 2 is the
uniqueness of image of κ.

Theorem 3 Given an (r× c)-matrix M of possibilistic truth values with r ≤ c,
the multiset of PTVs implied by the mapping provided by Algorithm 2, is unique,
regardless of the order in which the mapping conflicts are resolved.

Proof. The uniqueness of the resulting multiset of PTVs depends on two parts
of the algorithm: search and choose. The first procedure locates the maxi-
mum PTV, based on a total order relation on PTVs. Hence, the choice of PTV
is guaranteed to be consistent. The multiset of PTVs, in which the maximum is
relocated, is determined by choose. In doing so, a partial order on multisets of
PTVs is used. If two multisets are indistinguishable under this order (i.e. multi-
sets are equal or one is a subset of the other), the choice does not affect the out-
put of Algorithm 3. Consequently, when Algorithm 2 resolves conflicts between
rows, the order in which the conflicts are resolved, does not affect the eventual se-
quence of PTVs.

After discussing the construction of an injective mapping between two sets,
the complexity of the presented method is analyzed. Algorithm 1 constructs a
matrix M , which has complexity O(|A\B|·|B\A|·C(EU )) and is hence quadratic
in terms of cardinality of the asymmetrical set differences. Next, Algorithm 2
constructs ι based on M . Assume an (r × c)-matrix M . The initial search to
locate maxima on each row is O(r.c) on average, hence quadratic. Procedures
search and choose are O(c) on average and thus linear, which means the com-
plexity of the iterations after initialization are linear. The number of iterations

after initialization is r.(r−1)
4 on average. Algorithm 3 has linear complexity
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Table 2. A mapping example

c d
a (1,0.1) (1,0.3)
b (1,0.3) (1,0.7)

O(|B|). Hence, our method requires quadratic time to construct M , quadratic
time to construct ι and linear time to construct the PTVs.

In conclusion, a brief comparison of the proposed algorithm with existing
algorithms is given. As an alternative for the injective mapping, the assignment
algorithm used to provide an optimal mapping in optimization problems could
be considered. The reason why a new algorithm is introduced here is because
the assignment algorithm (Silver, 1960) optimizes a global criterion, whereas
here we are looking for optimization of a local criterion rather than a global
one. By local criterion it is meant that the mapping must represent the couples
of elements that are most possibly co-referent. For example, consider Table 2
which contains a matrix M with four PTVs (again shown in couple notation).
Assume as global criterion for the selected set of PTVs S that minS(∧̃s∈Ss). The
global criterion would map b to c and a to d, whereas our algorithm maps a to c

and b to d because it selects the couples that are most possible to be co-referent
first. A consequence of this, which is also elaborated in the construction of the
algorithm, is that equal elements across both sets should always be mapped onto
each other. The reason why the proposed method is preferred is because the
PTVs reflect (un)certainty and not some degree of preference. Indeed, when
dealing with preferences, it makes sense to maximize the overall preference.
However, the PTVs represent knowledge about reality, rather than preference,
which leads to different semantics. In Table 2, with a and c very possibly co-
referent, it would be semantically incorrect if these elements were not mapped
to each other, just to maximize the possibility that the sets are co-referent.
For this reason, global optimization in a setting of uncertainty or belief is not
the correct solution. An alternative strategy for comparison of sets is given in
Matthé et al. (2006). In contradiction to the algorithm for mapping proposed
in Matthé et al. (2006), it is proved that the sequence of PTVs generated by
the novel algorithm is always unique, which is considered a major benefit. In
current literature, no algorithm that delivers a unique sequence of PTVs could
be found.

5.2.3. Construction of φ

A second important part of Definition 3 is the aggregation function φ, which is
an extension of a boolean connective for PTVs. The most obvious examples of
such PTV-functions are (weighted) conjunctive and disjunctive operators (see
De Cooman, 1995; De Tré and De Baets, 2003; Matthé, De Tré and Hallez,
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2007). When using weighted operators it should be emphasized that the pro-
vided algorithm ensures only uniqueness of the image of κ, not the uniqueness of
the injection ι. However, when using an ordered weighted aggregation function
with a weight vector that is independent of the input values, only the gener-
ated PTVs determine output of φ. Therefore, the use of an ordered weighted
extension of ∧̃, defined in Section 2, is studied. The key benefit of such an
ordered weighted conjunction, is the use of a quantifier. A regular conjunction
of n propositions is true if all propositions are true, whereas ordered weighted
conjunction of n propositions is true if L propositions are true. Here, L is a lin-
guistic label like “most”, “some”,“all”,... Such a linguistic label is modeled (in
a conjunctive setting) by a non-increasing quantifier function qL, where for each
x ∈ dom(q), 1− qL(x) expresses the maximum compatibility of a fixed quantity
y < x with the linguistic quantity L. As an additional boundary condition,
supx∈dom(qL)(x) is fully compatible with L. Hence, the function qL can provide
n-dimensional weight vectors w by considering n − 1 equal length intervals on
dom(qL). Applied to the case of set comparison, 1 − wi represents the neces-
sity that the two sets are co-referent under the assumption of i− 1 co-referent
elements and max(|X |, |Y |) − i + 1 non co-referent elements. In addition, if all
elements are co-referent, so are the sets (due to reflexivity). Although a differ-
ent approach is used, the idea of using fuzzy quantifiers in combination with
PTVs, was first elaborated in Hallez et al. (2004). Functions to combine the
necessities with PTVs are provided in De Tré and De Baets (2003), Matthé, De
Tré and Hallez (2007), and Bronselaer and De Tré (2008). Ordered weighted
conjunction can now be formally defined:

Definition 4 (Ordered weighted conjunction) Let p̃ denote a vector of
PTVs and w a non-increasing vector of [0, 1]-values weights, with maxi wi = 1.
Ordered weighted conjunction is formally defined as:

∧̃
ow

: [0, 1]n × ℘̃(I)n → ℘̃(I) : (w, p̃) 7→
∧̃

ow
(w, p̃)

where
∧̃

ow
(w, p̃) = T ∗

c (w1, q̃1)∧̃...∧̃T
∗

c (wn, q̃n)

and q̃ is a vector containing all elements of p̃ but with ∀i, j ∈ {1, ..., |q̃|} : i <

j ⇒ q̃i ≥̃ q̃j .

Note that ordered weighted conjunction is a different operator than ordered
weighted average (Yager, 1988) because the weights have different constraints
and different semantics. When dealing with the comparison of sets, the fuzzy
quantifier used can be parameterized by the cardinalities of both sets. Assume
two sets X, Y with |X | ≤ |Y | and consider the following function:

qα,β,δ(x) =






1, x < α|X |
δ, x > |X |+ β (|Y | − |X |)

1 + (δ−1)(x−α|X|)
(1−α−β)|X|+β|Y | , else
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with (α, β, δ) ∈ [0, 1]3. When comparing X and Y , the corresponding weight
vector w can be calculated based on the parameterized quantifier as follows:
∀i ∈ {1, .., |Y |} : wi = qα,β,δ(i). The function q has three parameters. The first
two, α and β, determine the shape of the quantifier based on the set cardinalities.
The third parameter δ determines the lower limit of the output of q and thus
the upper limit of OWC in case the objects are non-equal. In most cases, δ is a
number close to 0. If we consider a soft set evaluator that uses q to calculate w

and δ = 0, strong reflexivity of the evaluator is no longer satisfied.

A visual representation of the defined quantifier is shown in Fig. 4. The
lower panel shows the special case where α = 1 and β = 0. The parameters
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Figure 4. Parameterized fuzzy quantifiers for set comparison

of q, i.e. < α, β, δ > can be trained by applying a learning algorithm on a
training set. In more advanced applications, the shape of the fuzzy quantifier

can variate in function of the cardinality ratio |X|
|Y | ∈]0, 1]. If this ratio is close

to 1, the relevance of β is less significant than when dealing with a small ratio.
From this point of view, a more advanced learning algorithm learns a matrix P

of parameters, where each row of P represents a parameter vector, indexed by
an interval of cardinality ratios. In this way, different quantifiers are learned for
different situations.

An important question in such a strategy is the number of rows to consider in
P . A first solution is to make a row for all the ratios encountered in the training
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set. However, for some ratios, the number of examples can be extremely low, so
that insufficient samples are given to train the parameters. Further on, in cases
where one quantifier is sufficient, the multiple quantifier approach might be a
severe overkill. Finally, learning one quantifier for all different ratios, can cause
overfitting of the model. Hence, a better approach would be to start by learning
one quantifier. If the accuracy on the training set with one quantifier is insuf-
ficient, two quantifiers can be considered, where the first quantifier is trained
for samples with a ratio in [min, split] and the second quantifier is trained for
samples with a ratio in [split, 1]. Hereby, min is the minimal cardinality ratio
and split is chosen such that the number of samples available for each quantifier
is approximately equal. This process continues until some stop criterion is met,
for example if the accuracy does not increase significantly. When specifying the
stop criterion it should be emphasized and taken into account that using too
many quantifiers can result in overfitting.

Algorithm 4 Multiple quantifiers learner

Require: Training set T with < X, Y, coreferentF lag >-samples and stop
threshold thr

Ensure: (r × c)-matrix containing r parameter vectors
(i, ∆)← (1, 0)
repeat

dim(P)=(i,c)
v ←divideSamples(T, i)
for j = 1 to i do

P [i]←optimalParameters(vj)
end for

∆←evaluate(T, P )−∆
i← i + 1

until ∆ < thr

Algorithm 4 provides the pseudo code of the algorithm for learning multiple
quantifiers q as defined before. Note that in this code the number of parameters
for q is unspecified, which implies that any quantifier can be used, rather than
just the one we introduced. Procedure optimalParameters(vi) is an optimiza-
tion strategy that finds optimal parameters for one quantifier qi on a subset vi

of the original training set.

6. Multiset evaluation

After explaining some principles about set evaluation in the previous section,
we will focus now on a well known extension of sets called multisets (Section 2).
Yager pointed out that multisets can be useful in relational databases, more
specifically - to extend some relational operators (Yager, 1986). In a more
recent setting, the popular standard XML for the exchange of documents on
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the Internet, uses a tree structure in which the children of a node are a multiset
of nodes, rather than a regular set of nodes. Further on, multisets can be used
by a string evaluator if tokenization is used, resulting in a multiset of strings.
In the light of these applications, it is useful to investigate the evaluation of
multisets. As with sets in the previous Section, we will give two approaches
for evaluation, quite similar to the case for regular sets. The first uses multiset
functions and is called hard multiset evaluation, while the second one benefits
from evaluation on element level and is called soft multiset evaluation.

6.1. Hard multiset evaluation

Elaborating the first approach similar to the case of regular sets requires the
computation of union and intersection of multisets, which are introduced in
Section 2, and the symmetrical difference (A⊖B) ∪ (B ⊖A). An important
problem to tackle is the use of fuzzy measures. Dubois and Prade (1982) sug-
gested fuzzy set mappings onto the unit interval as an extension of regular fuzzy
measures. However, given a universe U , the largest fuzzy set in terms of scalar
cardinality that can be drawn from U , is U . Hence, formulating the condition
γ(U) = 1, makes sense in the case of fuzzy sets, in contradiction to the case
of multisets. It is easy to construct multisets that are larger than the original
universe in terms of scalar cardinality of multisets. In fact, as the count func-
tion of multisets is mostly assumed to have an infinite image, it is impossible to
construct the largest multiset. So, there is no use in defining direct extensions
of fuzzy measures for multisets. It follows that multiset measures need to be
formally defined to solve this issue. The need for such measures was pointed out
by Rebai (1994) for the first time, who suggested the use of a reference multiset,
which can be interpreted as a surrogate universe.

Definition 5 (Multiset Measure) Assume a universe U and let M(U) be
the set of all multisets drawn from U . For A ∈M(U), a multiset measure based
on A is a multiset function γA defined as:

γA : A → [0, 1] : B 7→ γA(B)

with A being the set of all multisubsets of A and satisfying γA(∅) = 0, γA(A) = 1
and B ⊂ C ⇒ γA(B) ≤ γA(C).

The key idea is that we will evaluate a multiset with respect to a supermultiset.
Consider two multisets A and B for evaluation. As the relative universe can
alter, it is sufficient to express the estimations relative to A ∪ B, which serves
as a limited universe that is large enough. Using such multiset measures, a hard
possibilistic multiset evaluator is defined as follows.
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Definition 6 (Hard multiset evaluator) Assume the universe U . A hard
multiset evaluator Eh

M(U) is a strong reflexive evaluator, with:

µEh
M(U)

(A,B)(T ) = s · γT
A∪B(A ∩B)

µEh
M(U)

(A,B)(F ) = s · γF
A∪B((A⊖B) ∪ (B ⊖A))

where γT and γF are multiset measures and s is a scaling factor to ensure
normalization.

Again, as with set evaluation, we allow different measures for estimation of
possibility of T and F . Examples of multiset measures are:

γA(B) =

∑
u∈U CB(u)

∑
u∈U CA(u)

and γA(B) =

∑
u∈U CB(u)wu∑
u∈U CA(u)wu

.

The first measure simply compares the scalar cardinalities. The second uses
a set of weights defined in the original universe U to assign a preference to
elements. These weights must satisfy

∑
u∈U wu = 1. It is also possible to

extract a multiset measure from a regular fuzzy measure γ defined over the
original universe U . There are several possible ways to define such extractions.
For instance, consider the function:

g(A) = max⊕
i Si=A

(
∑

i

γ(Si)

)

with A ∈M(U), Si ∈ ℘(U) and ⊕ the sum operator for multisets as defined in
Section 2. This function g divides a multiset A into regular sets Si that sum up
to A and that result in a maximal evaluation sum. Another possibility is the
function:

h(A) =
∑

S∈D(A)

CD(A)(S)γ(S)

with D being the decomposition function for multisets that transforms a multiset
A into a minimal multiset of sets

D(A) = arg min
L={(i,Si)|A=

⊕
i
Si}

(|L|) .

This later approach is more intuitive. Assume that the original universe of U

is a multisubset of A, with minu∈U CA(u) = n. This results in n “occurrences”
of U in D(A). As γ(U) = 1 by definition, the n occurrences of the universe are
evaluated as nγ(U) = n. Using g or h we have:

γA(B) =
g(B)

g(A)
or γA(B) =

h(B)

h(A)

as multiset measures.
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6.2. Soft multiset evaluation

As with sets, a second approach for multiset evaluation can be obtained by
generalizing element equality to element co-reference. Most of the discussion
of soft set evaluation can be translated directly to the case of multisets. The
algorithms introduced in Section 5 do not require adaptation, but an important
topic in the case of multisets is the low level evaluator used. A first option is to
consider EU , just as with the case of sets. It follows then, that each occurrence
of an element is treated separately. A second approach is to consider EU×N.
In this case, groups of elements are considered as one entity and the possibility
of co-reference of groups of elements is expressed. In this second approach, the
number of occurrences of an element is considered an implicit property of the
element, which is taken into account to determine the co-reference possibilities.
The first approach is called element based evaluation, the second approach is
called support based evaluation.

Definition 7 (Element based soft multiset evaluator)
Assume a universe U and two multisets A and B drawn from U , with |A| ≤ |B|.
An element based soft set evaluator is a strong reflexive evaluator defined as:

Es
M(U)(A, B) = φ(κ(A, B)) = φ(p̃1, ..., p̃|B|)

with κ(A, B) = p̃1, ..., p̃|B| being a function that generates |B| PTVs and φ an
aggregation function.

Here, construction of κ and φ is equivalent to the case of sets in Section 5.

Definition 8 (Support based soft multiset evaluator)
Assume a universe U and two multisets A and B drawn from U , with |A| ≤ |B|.
A support based soft set evaluator is a strong reflexive evaluator defined as:

Es
M(U)(A, B) = Es

℘(U×N)(Â, B̂)

with

∀X ∈M(U) : X̂ = {(u, n)|u ∈ U ∧ n = CX(u)} .

The element based evaluator is useful when dealing with situations where multi-
ple occurrences of the same element can be assumed independent of each other.
Such is the case when using a soft multiset evaluator in the context of estimating
the co-reference of two strings that are tokenized into multisets of strings. The
support based evaluator is useful when the multiple occurrences are related to
each other. For example, when dealing with musical scores, each score contains
lines for groups of musical instruments used in a particular song. In this case,
it is more convenient to consider the groups of instruments as a whole.
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7. Future work

The current paper discusses the concept of evaluators and defines such evalua-
tors for sets and multisets. As mentioned before, finding co-referent multisets
has a very interesting application in finding co-referent strings. Clearly, the
string-datatype is used often in databases and OO-environments. As knowledge
extraction from (textual) web sources into (semi)-structured data has become
an important topic in current research, the importance of detecting co-referent
strings has increased even more. Hence, applying the presented work in an ap-
plication for detecting co-referent strings, is an urgent topic for future research.
From this point of view, it can be beneficial to improve the presented work in
some points. For example, it can be interesting to examine if the complexity of
the mapping algorithm can be optimized if the low level evaluator EU is con-
sistent. Further on, having n possibilistic variables that are min-independent,
ordered weighted conjunction has some interesting properties regarding calcu-
lation (Bronselaer and De Tré, 2008). Next to the complexity, the quantifier
function could be studied more. The algorithm for dynamical adaptation of the
used quantifier to a given situation is the first step in this direction. Finally, the
study of evaluators should result in a study of the global possibilistic system for
finding co-referent objects of arbitrary complexity.

8. Conclusion

In the presented research the object matching problem has been tackled from a
possibilistic point of view, leading to a possibilistic solution for the co-reference
problem. In order to further elaborate this model, a formal definition of evalu-
ation operators is introduced in the domain of possibilistic truth values. These
operators estimate possibilities concerning co-reference of (sub)-objects. As an
application, evaluation operators for sets and multisets are presented, due to
their practical applications in checking co-reference of many-valued attributes
and strings. In both cases, two approaches are given. The first class of evalu-
ators are an extension of existing work based on equality of elements and are
called hard evaluators. The second and novel approach considers element co-
reference, resulting in soft evaluators. An algorithm that creates an injection
to be used by soft evaluators is given and the benefits of the algorithm are
discussed. Next, it is shown how parameterized fuzzy quantifiers can be used
in the aggregation step of the soft evaluators. A strategy to learn the optimal
number of fuzzy quantifiers and their parameters is presented. In the case of
multisets, two types of soft evaluators are distinguished: element-based, treat-
ing each element occurrence as a separate element and support based, treating
the element count as a property of the element.
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de la Société de Vaud des Sciences Naturelles, 44–223.

Jaro, M. (1989) Advances in record linking methodology as applied to the
1985 census of Tampa, Florida. Journal of the American Statistical Society
84 (406), 414–420.

Koyuncu, M. and Yazici, A. (2001) A fuzzy database and knowledge base
environment for intelligent retrieval. In: Proceedings of the IFSA/NAFIPS
World Congress, Vancouver, Canada. IEEE, 2311–2316.



366 A. BRONSELAER, A. HALLEZ, G. DE TRÉ
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