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Abstract: Imprecision and uncertainty appear together in many
applications of soft computing. Imprecise and uncertain values are
usually expressed by means of linguistic terms, specially when they
have been provided by or for a human being. However, in many
applications it is desirable that both aspects are combined into a
single value that appropriately describes the intended information.
In this work, we extend our previous research on this topic and
we study how to combine imprecision and uncertainty when both
of them are expressed by fuzzy numbers and the final goal is to
obtain a normalized fuzzy value that provides the same amount of
information about the described fact.

Keywords: fuzzy certainty, uncertainty qualification, fuzzy
statements, fuzzy values, information measure.

1. Introduction

Imprecision and uncertainty coexist in many applications. More often than de-
sirable, a given numerical information is affected by imprecision and uncertainty
at the same time. In fact, this problem was early stated by Zadeh (1978) in his
description of quantification of truth, probability and possibility. For example,
optimization methods in fuzzy graphs (Delgado, Verdegay and Vila, 1990) have
to deal with certainty values associated to fuzzy values, which are combined
using the first ones to truncate the second ones. The same happens in problems
related to sensor reliability (Dubois, Prade and Yager, 1999) where imprecision
can be represented as a fuzzy value and uncertainty is a measure of the proper
sensor performance. Uncertain fuzzy databases (Bordogna and Pasi, 2000) or
the application of knowledge discovery techniques in data warehouses are other
examples of domains, where uncertainty and imprecision have to be managed
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at the same time. Thus, in many situations, if the reasoning system is based
on Possibility Theory, we have to transform all the available information (pos-
sibility distribution provided by the fuzzy value and the certainty value) into a
single possibility distribution.

Let us suppose that we have a fuzzy value A understood as acting as a fuzzy
restriction on the possible values of a variable X, and that this value is affected
by an uncertainty degree, say α. Then, the problem is to represent a qualified
statement like it is α-certain that X is A, that is, the problem of uncertainty
qualification of fuzzy statements already stated by Zadeh (1978). In Bouchon-
Meunier et al. (1999), the reader can find a good overview of proposals on how
to face the problem.

This situation was formulated in a previous paper (Gonzalez, Pons and Vila,
1999) as a conditional expression using the generalized modus ponens, in the
following terms:

• If the certainty level is 1, then the value is A.

• If the certainty level is α < 1, then the value is A′, where A′ is a joint
value of the original fuzzy set A and its certainty α.

In this way, the qualified statement it is α-certain that X is A is represented
as X is A′.

A natural way to solve the problem is to consider that the numerical infor-
mation we are handling is defined as:

A′(x) = I(α, A(x))

where I is a material implication function which reflects the previous interpre-
tation and A(x) and A′(x) are membership functions.

In the literature, two main approaches exist of dealing with imprecise and
uncertain data:

1. To Truncate: If the information is A with certainty α, then A′ is defined
by the membership function A′(x) = min(α, A(x)) which directly implies
that we are using Mamdani’s implication in our reasoning.

2. To Expand: If we assume that α is a necessity, then A′ is given by the
membership function A′(x) = max(1 − α, A(x)), which corresponds to
Kleene-Dienes’ implication as foundation of our reasoning.

In relation to the second idea, in Yager (1984) a new proposal for certainty
qualification is suggested

A′(x) = α⊗A(x) + 1− α

where ⊗ is a conjunction operator. Obviously, this model generalizes the use
of the Kleene-Dienes’ implication, but it maintains the same idea of expanding
the imprecision of the fuzzy value in order to incorporate the uncertainty value
in its representation.
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Although these proposals can be useful in many applications, unfortunately
they can also be inappropriate in many others. Mamdani’s implication obliges
us to work with non-normalized fuzzy values while Kleene-Dienes’ implication,
and the more general formulation of Yager, obliges to assign the same possibility
to all the points of the underlying domain independently of the distance to the
support set of the fuzzy value. Therefore, the proposed solutions give rise to
a series of inconveniences: the interpretability, in some cases, and those ones
derived from the use of non-normalized or non-trapezoidal fuzzy sets, in others1.

As an alternative proposal, in Gonzalez, Pons and Vila (1999) we propose
a certainty qualification method for trapezoidal fuzzy numbers that consists
in increasing the imprecision around the support set of value A depending on
an uncertainty value. That is, the imprecision is distributed according to a
metric that takes into account the nearness to the original information. This
proposal is based on the use of information measures that allow us to transform
the uncertainty of the fuzzy statement into imprecision. For example, when we
have the information that ”X is black” with certainty α, it is not very convenient
to assign a positive possibility to color white, as the expanding based method
proposes, but to colors near enough to black depending on value α.

Therefore, the process we proposed in Gonzalez, Pons and Vila (1999) was
to obtain A′ in two steps:

1. First, considering that the height of a fuzzy number is the certainty de-
gree associated to it (Dubois, 1983; Gonzalez, 1987), we use the certainty
degree α associated to the fuzzy value A to truncate it at level α. After
this operation, we obtain a non-normalized fuzzy set Aα. Nevertheless,
the resulting fuzzy value remains trapezoidal.

2. Since, in many applications, non-normalized fuzzy sets give rise to a series
of inconveniences, in a second step we normalize it. To do this, we assume
that uncertainty is being translated into imprecision under particular con-
ditions. The most important point to be considered is that the amount of
information provided by the fuzzy number remains equal before and after
the normalization process.

Therefore, with the above mentioned process the problem of uncertainty
qualification of fuzzy statements when the uncertainty is expressed by a number
in the interval [0, 1] was solved, Gonzalez, Pons and Vila (1999). However, till
now, data are expressed by means of an imprecise value A (e.g. represented by
a trapezoidal fuzzy number) together with a real certainty level α associated to
such fuzzy value.

Unfortunately, there exist many applications where certainty values are not
expressed in a precise numeric but in a linguistic way, using terms like not
likely, very possible, almost impossible, etc. This situation, called linguistic

1For example, when data are going to be stored (Pons et al., 2002), it is of great importance
that they be normalized for the sake of simplicity in the representation, management, and
understanding.
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possibility qualification by Zadeh (1978), is usual not only when data are directly
obtained from observations of human beings, but also in those problems where
instruments are not as precise and reliable as needed.

More concretely, this paper has been motivated by a problem that scien-
tists of the spatial mission ROSETTA (Colangeli et al., 2004) have been dealing
with. ROSETTA includes, among other components, a Grain Impact Analyzer
and Dust Accumulator (GIADA). One of the aims of the experiment is to mea-
sure the dust flows coming from the comet 67P/Churyumov-Gerasimenko and
to control the deterioration of the performance of the instruments on board
the orbital. The microbalances are used to weigh the comet dust that reaches
Rosetta. In this problem, data are affected by both imprecision and uncertainty:

• Imprecision: The computation of the mass of comet dust during a period of
time is made from the values given by the microbalances, whose precision
is 10−10 gr. This means that particles whose mass is less than this quantity
will not be detected by the instrument, until the accretion of them reaches
the sensibility limit, introducing in the resulting value some imprecision.

• Uncertainty: The surface of the microbalances and, in general, all the in-
struments and the solar panels are contaminated along the time with dust,
which is a source of uncertainty when a measurement is made. Moreover,
as the deposited mass increases, the measurement of the microbalance
goes to saturation; at this point, a cleaning of the device is carried out.
Unfortunately, after this action, the response of the system will not be the
original one because some dust will not be removed. As a consequence of
this, the uncertainty level increases with time.

According to the above description and due to the fact that uncertainty af-
fecting the obtained measures varies with every cleaning, it is very important for
the performance of the method adopted to combine imprecision and uncertainty.
Fig. 1 describes evolution of certainty along the process.

All these considerations claim for a mechanism similar to the one used in
Gonzalez, Pons and Vila (1999) that permits us:

• To represent certainty in (linguistic) imprecise terms.

• To combine such certainty with the imprecision of the numerical informa-
tion.

• To transform the resulting value into an equivalent fuzzy normalized one2.

More formally, the problem we are tackling is to consider that the certainty
value is also an imprecise value represented by a trapezoidal fuzzy set C. Thus,
C is now a certainty measure given by a possibility distribution, that is, Π(α) =
C(α) where α ∈ [0, 1]. We extend the case X is A with certainty α to the case
X is A with certainty C and the idea is to give an equivalent expression as X
is A′′. Therefore, our problem is to study how to obtain the A′′ and to verify
which properties are fulfilled.

2Here, the meaning of equivalent will be understood as providing the same information.
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Figure 1. Certainty evolution of the microbalance measurements along time.
tj represents a period of time between two cleaning processes. At any moment
tji , the core point of certainty is estimated using a probabilistic model which
takes into account the growing presence of dust in the microbalance, and, thus,
its value decreases with time within the period tj . The spread of the certainty
label depends on the repetitions on the period tj and is estimated using another
probabilistic model that is built according to the effect that the residual damage
produced in the microbalance during the cleaning process (e.g. some impurities
cannot be removed) produces in the estimations of the certainty core. This
spread increases with every cleaning process until the microbalance is considered
to be useless.
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Figure 2. Fuzzy number.

The paper is organized as follows. First, we present a brief summary of the
previous results on which our transformation is founded. Then, in Section 3,
as the first contribution of this paper, we give the explicit expression of the
transformation for LR fuzzy numbers, proving that the transformation of any
LR fuzzy number produces also an LR fuzzy number with the same functions.
After this, Section 4 addresses the problem of fuzzy uncertainty as the main
contribution of the paper. We base our approach on the use of Sugeno’s integral
together with the possibility and necessity measures (associated to the certainty
value C) in order to obtain the joint value of certainty and imprecision. This
basic approach generates four possible combinations, which are deeply explained
in both mathematical and graphical ways. A study of their properties will
give us some criteria for choosing among them. Some concluding remarks and
guidelines for further work end the paper.

2. Preliminary concepts and notation

In this section we will introduce some preliminary concepts and notation neces-
sary for the understanding of this paper.

2.1. Fuzzy numbers and LR fuzzy numbers

A fuzzy number is a fuzzy representation of the real value of a property (at-
tribute) when it is not precisely known.

Each interval [aα, bα], with α ∈ (0, 1] (see Fig. 2) is called the α-cut of A.
The set Supp(A) = {x ∈ IR | A(x) > 0} is called the support set of A. In this
paper, we will assume that a fuzzy number is every fuzzy set of the real line that
verifies that its α-cuts are convex sets, its membership function is a continuous
function and its support set is a bounded set of IR. Therefore, fuzzy numbers
are fuzzy quantities whose α-cuts are closed and bounded intervals. We will use
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Figure 3. Trapezoidal fuzzy number.

∼

IR to denote the set of fuzzy numbers, and h(A) to denote the height of the
fuzzy number A. For the sake of simplicity, we will use capital letters from the
beginning of the alphabet to represent fuzzy numbers. If there is, at least, one
point x verifying A(x) = 1, we say that A is a normalized fuzzy number.

Usually, a trapezoidal shape is used in order to represent fuzzy numbers.
This representation is very practical as the fuzzy number is completely charac-
terized by four parameters (m1, m2, a, b) and the height h(A), as Fig. 3 shows.
Other parametrical representations for fuzzy numbers can be found in Delgado,
Vila and Voxman (1998). The interval [m1, m2] (i.e, the set {x ∈ Supp(A) |
∀ y ∈ IR, A(x) ≥ A(y)}) will be called modal set. The values a and b are called
left and right spreads, respectively.

A generalization of the idea behind a trapezoidal fuzzy number was intro-
duced by Dubois and Prade (1987). Let us remind their parametric definition
of an LR fuzzy number:

Definition 1 Let us consider a function L : IR+ −→ [0, 1]. We say that L(.) ∈
L iff L verifies:

1. L is a decreasing function, that is: ∀x, y ∈ IR+ ; x ≤ y ⇒ L(x) ≥ L(y)

2. L(0) = 1

3. ∀u|u > 0, L(u) < 1

4. L(1) = 0, or ∀u, L(u) > 0 and L(+∞) = 0.

Some examples of L functions are:

- L(u) = max{0, (1− u)}

- L(u) = max{0, (1− u)p} p > 0

- L(u) = max{0, (1− up)} p > 0

- L(u) = e−up

p > 0
- L(u) = max{0, 1

1+up } p > 0 .
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Definition 2 Let us consider a fuzzy number A. We say that A has an LR-
representation iff there are four real numbers, m1, m2, a, b (with a > 0 and b > 0)
and two functions L, R ∈ L such that:

∀x ∈ IR, A(x) =






0 if x ≤ m1 − a
L(m1−x

a
) if m1 − a ≤ x ≤ m1

1 if m1 ≤ x ≤ m2

R(x−m2

b
) if m2 ≤ x ≤ m2 + b

0 if x ≥ m2 + b

We will denote this fact as A ≡ (m1, m2, a, b)LR.

It is easy to prove that any fuzzy number with continuous membership func-
tion admits an LR-representation. In this paper, we will consider LR-fuzzy
numbers with finite support set.

The basic idea underlying this work is that when a fuzzy number is not
normalized, the situation can be interpreted as a lack of confidence in the in-
formation provided by such a number (Dubois, 1983; Gonzalez, 1987). In fact,
the height of the fuzzy number could be considered as a certainty degree of the
represented value, and this implies that normalized fuzzy numbers represent
imprecise quantities on which we have complete certainty.

Since the first step in our proposal is to truncate, we can consider that the
truncated fuzzy number represents the imprecise information together with the
original uncertainty.

In Gonzalez, Pons and Vila (1999), we show how uncertainty can be trans-
lated, using a suitable transformation, into imprecision, taking into account
that reducing uncertainty about a fuzzy number implies increasing imprecision
of the number. This transformation is made in such a way that the amount
of information provided by the fuzzy number is the same before and after the
modification. Our idea is to transform the truncated fuzzy number in order to
obtain a completely certain fuzzy number. The next sections summarize these
transformation process.

2.2. Information measure on fuzzy values

As pointed out in the previous section, we are going to translate fuzzy uncer-
tainty into imprecision under given conditions. The most important of these
conditions is that the amount of information provided by the fuzzy number re-
mains equal after the transformation. Therefore, the first step is to define an
information function for fuzzy numbers.

In Gonzalez, Pons and Vila (1999), we proposed an axiomatic definition of
information, partially inspired by the generalized information given by Kampé
de Fériet (1974) and that can be related to the precision indexes (Dubois and
Prade, 1985) and the specificity concept introduced by Yager (1981).
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Definition 3 Let D ⊆
∼

IR | IR ⊆ D; we say that I : D −→ [0, 1] is an informa-

tion function on D if it verifies:

1. I(A) = 1, ∀ A ∈ IR.

2. ∀ A, B ∈ D | h(A) = h(B) and A ⊆ B =⇒ I(B) ≤ I(A).

The information about fuzzy numbers may depend on different factors, in
particular, on imprecision and certainty. In this work, we focus on general types
of information related only to these two factors.

Definition 4 The imprecision (Gonzalez, 1987) of a fuzzy number is defined
as follows:

∀ A ∈
∼

IR, imp(A) =

∫ h(A)

0

(bα − aα )dα.

That is, the imprecision function f coincides with the area below the mem-
bership function of the fuzzy value, and can also be expressed as follows:

∀ A ∈
∼

IR, imp(A) =

∫ m2+b

m1−a

A(x) dx.

There are many ways to build information functions but, for our purpose,
we use an information that depends only of the height (certainty) and the im-
precision of the fuzzy number. This information will permit, subsequently, the
definition of transformations that keep constant the amount of information a
fuzzy number provides.

In Gonzalez (1987) we defined the function:

I :
∼

IR−→ [0, 1]

∀ A ∈
∼

IR, I(A) =
h(A)

k · imp(A) + 1

where h(A) is the height of A, imp(A) is the imprecision associated to A and
k 6= 0 is a parameter that depends on the domain scale. The interpretation and
selection of this parameter was studied in Gonzalez, Pons and Vila (1999). This
is the simplest function that verifies the mentioned properties of information
functions.

2.3. Transformation under precise certainty

Once we have an information function on fuzzy numbers, we can use it to define
transformations that preserve the information amount it provides. The idea is
to find an equivalent representation of the considered fuzzy number in such a
way that we change uncertainty by imprecision keeping constant the balance
between them, which is determined by the information function.
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The aim of the transformations we are proposing in this section is, basically,
to be able to modify the height of a fuzzy number keeping the information
contained in it.

The definition of transformation will be obtained from the condition of equal-
ity in the information. As a first step, we must establish what we understand

as transformation of a fuzzy number on a subset of
∼

IR.

Definition 5 Let us consider α ∈ (0, 1] and the class of fuzzy numbers D ⊆
∼

IR.
We say that

Tα : D −→
∼

IR

is a transformation for an information function I on D, if it verifies that:

1. Tα(A) ∈ D

2. h(Tα(A)) = α

3. I(Tα(A)) = I(A), ∀ A ∈ D.

We will note by λ the class of trapezoidal fuzzy numbers on IR. Given a fuzzy
number A ∈ λ, we are looking for the conditions that another fuzzy number
Tα(A), with fixed height α ∈ (0, 1], must satisfy to have the same information
amount as A. Assuming the following conditions:

1. modal imprecision is preserved,

2. the increase/decrease of imprecision is equally distributed in the right and
left sides of the fuzzy number independently of its shape,

we proposed in Gonzalez, Pons and Vila (1999) the following transformation:

Definition 6 Let A ∈ λ such that

A = {(m1, m2, a, b), h(A)}

where m1, m2, a and b are shown in Fig. 3 and h(A) is the height of A.

Take α ∈ (0, 1]. We will denote ∆ = α−h(A)
α·h(A) and define transformation

Tα(A) = {(m1, m2, a +
∆

k
, b +

∆

k
), α}

for α, for which the transformation makes sense (notice that some values of α
lower than h(A) could produce negative spreads).

In Fig. 4 we have graphically represented the behavior of Tα when the height
is decreased and, therefore, imprecision is also decreased. On the other hand,
in Fig. 5 it is shown how an increment of height produces an increment of
imprecision. This result agrees with the following assertion: ”Imprecision and
uncertainty can be considered as two antagonistic points of view about the same
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Figure 4. Transformation that decreases imprecision (k=1).
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T

h(A)

Figure 5. Transformation that increases imprecision (k=1)

reality, which is human imperfection.... and if the contents of a proposition is
made more precise, then uncertainty will have to be augmented” (Dubois, 1983),
which is a way to enunciate the principle of incompatibility between certainty
and precision, established by Zadeh (1973).

For a deeper study of this transformation and its properties see Gonzalez,
Pons and Vila (1999).

This transformation can be directly used to define the joint value that com-
bines imprecision and certainty in a single value.

Definition 7 Let A ∈ λ and α ∈ IR. The joint value of A with certainty α
preserving the information is called i-⊲⊳(A, α) and is computed as

i-⊲⊳(A, α) = T1(A
α),

where Aα is the truncation at level α of the original value A, and T1 is the
transformation that normalizes this truncated fuzzy number.

As we intended, the obtained i-⊲⊳(A, α) remains a normalized trapezoidal
fuzzy number.
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Figure 6. Computation of i-⊲⊳(A, α).

Fig. 6 depicts the process of obtaining i-⊲⊳(A, α) with both the truncation
and transformation steps.

3. The transformation for LR fuzzy numbers

In the previous section, we have briefly introduced an approach to combine
imprecision and certainty for trapezoidal fuzzy numbers. As we have previously
mentioned, the proposed transformation was introduced in Gonzalez, Pons and
Vila (1999). The first contribution of this paper is to analyze the previous
approach in the more general case of LR fuzzy numbers.

As we will see, an interesting property of the proposed approach is that
it keeps the LR representation of fuzzy numbers; that is, given an LR fuzzy
number the result obtained after the combination of imprecision and certainty
is another LR fuzzy number.

Property 1 Let A ≡ (m1, m2, a, b)LR with a certainty value h, then the trans-
formed i-⊲⊳(A, h) has also an LR representation (mT

1 , mT
2 , aT , bT )LR.

Let A ≡ (m1, m2, a, b)LR be any LR fuzzy number and let us consider that
we have truncated A at the level h ∈ [0, 1]. Then the imprecision associated to
A is:

imp(A) =

∫ h

0

(bα − aα)dα

where

[aα, bα] = {x|A(x) ≥ α}

and the information it provides is:

I(A) =
h

k · imp(A) + 1
.
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Let us consider that A is transformed into i-⊲⊳(A, h) with height 1, both
providing the same amount of information. We will prove that i-⊲⊳(A, h) also
admits an LR-representation (mT

1 , mT
2 , aT , bT )LR with the same L and R func-

tions as A.
This proof consists of finding the four parameters of i-⊲⊳(A, h), taking into

account that:

I(i-⊲⊳(A, h)) =
1

k · imp(i-⊲⊳(A, h)) + 1
=

h

k · imp(A) + 1
= I(A)

with

imp(i-⊲⊳(A, h)) =

∫ 1

0

(bTα − aT
α )dα

and

[aT
α , bTα ] = {x|i-⊲⊳(A, h)(x) ≥ α}.

According to the LR-representation we have:

aα = m1 − aL−1(α) and bα = m2 + bR−1(α),

aT
α = mT

1 − aT L−1(α) and bTα = mT
2 + bT R−1(α).

Moreover, since i-⊲⊳(A, h) is the result of transforming the truncation of A,
we have:

mT
1 (h) = m1 − aL−1(h) and mT

2 (h) = m2 + bR−1(h).

According to the information equality, we have:

h + h · k · imp(i-⊲⊳(A, h)) = 1 + k · imp(A),

and, if we denote

l =

∫ 1

0

L−1(α)dα, r =

∫ 1

0

R−1(α)dα

using the previous expression we obtain the following result:

hk(bT r + aT l) =ak(

∫ h

0

L−1(α)dα − hL−1(h))

+ bk(

∫ h

0

R−1(α)dα − hR−1(h)) + 1− h.

According to the properties of Riemann’s integral we have

∫ h

0

L−1(α)dα = hL−1(p) being 0 ≤ p ≤ h.
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The same reasoning can be applied to
∫ h

0

R−1(α)dα = hL−1(q) being 0 ≤ q ≤ h,

and finally we have:

bT r + aT l = a(L−1(p)− L−1(h)) + b(R−1(q)−R−1(h)) +
1− h

kh

with p, q ∈ [0, h].
In relation to bT and aT we can assume that:

aT = a
L−1(p)− L−1(h)

l
+

1− h

2lhk

bT = b
R−1(q)−R−1(h)

r
+

1− h

2rhk

and the equality of information is verified for A and i-⊲⊳(A, α).
It should be remarked that, by the L definition we can assume that both

L−1 and R−1 are non increasing functions, and, therefore, the above formula
can be expressed as:

aT = aγ(h) + δ(h)

bT = bζ(h) + η(h)

with γ(h) > 0 and ζ(h) > 0.
In summary, we can conclude that i-⊲⊳(A, α) has an LR representation, which

is given by

(mT
1 , mT

2 , aT , bT )LR.

In the case of trapezoidal fuzzy numbers, where L(u) = R(u) = 1 − u, we

have l = r =
∫ 1

0
(1− u)du = 1/2 and

γ(h) = ζ(h) =
(1− h/2)− (1− h)

1/2
= h.

Therefore, aT = ha + (1 − h)/h and bT = hb + (1 − h)/h, which coincides
with the results presented in the previous Section.

According to these results, we can conclude that Definition 7 can be extended
to the more general case in which A is an LR-fuzzy number.

4. A new approach to linguistic possibility qualification

rules

Once we know how to solve the qualification problem when the uncertainty is
represented as a real value, the problem is to suitably generalize this process for
the case where the uncertainty is represented as a fuzzy value.
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4.1. Approach

The linguistic qualification of certainty is not a new problem and has already
been addressed by some authors under different names.

In López de Mántaras (1990), the concept of an ordered family of fuzzy truth
values is introduced. In that paper, fuzzy truth values act as modifiers of the
fuzzy (trapezoidal) values, to which they are applied. From the composition of
the two membership functions, a new trapezoidal fuzzy set is obtained (which
is a very important property from the storage point of view). However, the
support set of the original fuzzy value is not extended (moreover, sometimes it
is reduced) as a consequence of the presence of uncertainty. This is a counter-
intuitive result as the set of possible values is expected to be larger after addition
of uncertainty.

In Bordogna and Pasi (2000) linguistic qualifiers of uncertainty were also
studied from a similar point of view. The qualifier acts as a modifier of the
original fuzzy value (also trapezoidal) but considering a maximum violation
level associated to every qualifier. As a consequence of the composition of the
two functions (together with the maximum violation value), the support set of
the original fuzzy value is extended (as expected from the semantic point of
view) but the resulting fuzzy set is not a trapezoidal one. This is an important
drawback as the four-parameters representation cannot be used.

Our approach starts from a different point of view: the membership function
of the fuzzy certainty C(.) will be used in a similar way as we did in the crisp
certainty case. Thus, we want to translate the information X is A is C, when
C is modelled by a normalized fuzzy trapezoidal number, into X is A′′.

The difficulty is now to give a suitable procedure for computing A′′. We will
consider that, for any possible truncation level α, the membership function of
the linguistic label modifies in a particular way the certainty level. In fact, we
can assume that:

It is C that X is A ←→ ∀α ∈ [0, 1], it is C(α)-certain that X is A.

Fig. 7 depicts the general problem we are trying to explain.

A possible way to solve this problem is to define A′′ in such a way that
it summarizes the right side of the above sentence by means of some average.
It should be remarked that the membership function C(.) induces two fuzzy
measures (possibility/necessity) on the [0,1] interval and that the membership
function of any fuzzy number transformed at certainty level α can be considered
as a function depending on both α ∈ [0, 1] and x, which ranges over another
real interval.

In the literature, we can find two main ways for computing the mean value
of a function on any kind of fuzzy measure. These two methods are Sugeno
integral (Sugeno, 1974; Murofushi and Sugeno, 1989) and Choquet’s integral
(Huber, 1973; Murofushi and Sugeno, 1989).
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Figure 7. Fuzzy uncertainty on a fuzzy value: the scale used in both axes is not
the same for the sake of clarity.

It is well known that the first one is particularly suitable in the case the
fuzzy measure is a possibility/necessity measure, which is our case. Therefore,
we are going to use Sugeno’s integral in all the possible approaches to find A′′.

4.2. Mean-based proposals

Sugeno (1974) introduced the concept of fuzzy integral of a fuzzy measure as
a way to compute some kind of average value of a function in terms of the
underlying fuzzy measure. Obviously, fuzzy measures formally include possi-
bility/necessity measures as special cases. Fuzzy integrals are interpreted as
subjective evaluations of objects where subjectivity is represented by means of
fuzzy measures.

The fuzzy integral over a referential set X of a function f(x) with respect
to a fuzzy measure g is defined as follows:

∫

X

f(x) ◦ g(.) = supα∈[0,1]{α ∧ g(Fα)}

where Fα = {x|f(x) ≥ α}.

In the case that the measure is a possibility defined by means of the mem-
bership function of a fuzzy set µ(x) with referential X , the Sugeno’s integral
has the following expression (Vila and Delgado, 1983):

∫

X

f(x) ◦ g(.) = supx∈X(f(x) ∧ µ(x)).

On the other hand, if we assume that the considered fuzzy measure is a
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necessity induced by the fuzzy set µ(x), then we have the following expression:

∫

X

f(x) ◦ g(.) = infx∈X(f(x) ∨ (1 − µ(x))).

This expression can be proved from the fact that Sugeno’s fuzzy integral is
a semiconormed fuzzy integral (Suárez Garćıa and Gil Alvarez, 1986).

As we have stated above, the basic idea of our approaches is to use the fuzzy
measures (possibility, necessity) induced by the membership function C(.) of
the linguistic evaluation of certainty, to compute the average of the transformed
fuzzy number, by means of Sugeno’s integral.

At this point, it is necessary to remind that the transformation process of
any fuzzy number A with crisp certainty value α has two steps:

(i) Truncating the fuzzy number at the level α, obtaining a non-normalized
fuzzy number Aα.

(ii) Transforming Aα into a normalized fuzzy number i-⊲⊳(A, α) with the same
information amount, that is, i-⊲⊳(A, α) = T1(A

α).

Consequently, depending on the step where the average is computed, we
have two different approaches. If we denote as avgC

α the operator of average
(Sugeno’s integral) in α with respect to a measure generated by C, then both
methods can be described as:

Mean of truncated values. In this case, after step i, we apply Sugeno’s integral
to the function Aα(x) with respect to the α variable, obtaining a possibly
non-normalized fuzzy number. This fuzzy number will be transformed
into a normalized one in step ii, that is,

A′′ = T1(avgC
α (Aα)).

Mean of transformed values. In this case we perform the averaging procedure
after step ii, applying the Sugeno’s integral to the membership function
of i-⊲⊳(A, α), that is,

A′′ = avgC
α (i-⊲⊳(A, α)) = avgC

α (T1(A
α)).

Both approaches have, in turn, two different versions, depending on whether
we use the possibility or the necessity measures to apply the integral. This
fact will lead us to the definition of four new joint values, namely, i-⊲⊳1

P (A, C),
i-⊲⊳1

N (A, C), i-⊲⊳2
P (A, C), and i-⊲⊳2

N (A, C), according to the four possible combi-
nations we can perform, that is,

• i-⊲⊳1
P (A, C) being the joint value of A with certainty C, using the mean of

truncated values approach and the interpretation as possibility measure.

• i-⊲⊳1
N(A, C) being the joint value of A with certainty C, using the mean of

truncated values approach and the interpretation as necessity measure.
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• i-⊲⊳2
P (A, C) being the joint value of A with certainty C, using the mean of

transformed values approach and the interpretation as possibility measure.
• i-⊲⊳2

N(A, C) being the joint value of A with certainty C, using the mean of
transformed values approach and the interpretation as necessity measure.

In the following paragraphs we will offer the detailed development of each
approach as well as a comparison between them.

4.3. Mean of truncated values

Let us begin with the mean of truncated values.

4.3.1. Upper measure: possibility

Let ΠC(.) be the possibility measure induced by the fuzzy number C and Tp(.)
be the mean of the truncated fuzzy numbers. Then we have:

Tp(x) =

∫

[0,1]

Aα(x) ◦ΠC(α) = supα∈[0,1](A
α(x) ∧ C(α)) =

= supα∈[0,1]((A(x) ∧ α) ∧ C(α)) = A(x) ∧ supα∈[0,1](α ∧ C(α))

If Cp = supα∈[0,1](α ∧ C(α)), then we finally have:

Tp(x) = A(x) ∧ Cp

which indicates that, in the case of the possibility measure, the mean of trun-
cated values is the result of truncating with a specific value which only depends
on the linguistic label C(.).

4.3.2. Lower measure: necessity

Let NC(.) be the necessity measure induced by the fuzzy number C and Tn(.)
be the mean of the truncated fuzzy numbers. Then we have:

Tn(x) =

∫

[0,1]

Aα(x) ◦NC(α) = infα∈[0,1](A
α(x) ∨ (1− C(α))) =

= infα∈[0,1]((A(x) ∧ α) ∨ (1− C(α))) =

= infα∈[0,1]((A(x) ∨ (1− C(α))) ∧ (α ∨ (1− C(α)))) =

= infα∈[0,1](A(x) ∨ (1 − C(α))) ∧ infα∈[0,1](α ∨ (1 − C(α))).

As C is a normalized fuzzy number then

infα∈[0,1]((A(x) ∨ (1 − C(α))) = A(x) ∨ (infα∈[0,1](1− C(α))) = A(x)

since

infα∈[0,1](1− C(α)) = 0.
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Therefore

Tn(x) = A(x) ∧ infα∈[0,1](α ∨ (1− C(α))).

If Cn = infα∈[0,1](α ∨ (1 − C(α))), then we finally have:

Tn(x) = A(x) ∧ Cn

which indicates that, also in the case of the necessity measure, the mean of
truncated values is the result of truncating with a specific value which only
depends on the linguistic label C(.)

4.3.3. Interpretation of the results

In the two previous subsections, we have shown that the upper and lower mea-
sures permit us to obtain a mean truncated value that will be used to truncate
finally the original fuzzy value. Therefore, at this point, we have got two levels
for making this truncation or, what is the same, we obtain two different fuzzy
values with the following associated functions:

Tp(x) = A(x) ∧ Cp,

which corresponds to the interpretation of certainty from the possibility point
of view, and

Tn(x) = A(x) ∧ Cn,

which corresponds to the interpretation of certainty from the necessity point of
view.

As it happens with all dual measures, the expert can choose either to work
with both of them or to decide which one is the most suitable for the purpose
of the system considered. In Fig. 8 we graphically show the results obtained,
considering that the linguistic label C has a trapezoidal membership function.

After the truncation, it is necessary to perform the corresponding transfor-
mations in order to obtain a normalized fuzzy number. TN (.), TP (.) will stand
for the transformed Tn(.) and Tp(.).

Taking this into account, we can introduce the two following definitions.

Definition 8 Let A, C ∈ ĨR. The joint value of A with certainty C as mean of
truncated values with the certainty interpreted as possibility is called i-⊲⊳1

P (A, C)
and is computed as follows:

i-⊲⊳1
P (A, C) = TP = T1(Tp).

Definition 9 Let A, C ∈ ĨR. The joint value of A with certainty C as mean of
truncated values with the certainty interpreted as necessity is called i-⊲⊳1

N (A, C)
and is computed as follows:

i-⊲⊳1
P (A, C) = TN = T1(Tn).
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Figure 8. Upper and lower measures.

It should be remarked that these approaches finally lead to a crisp cer-
tainty process. Therefore, the property concerning LR fuzzy numbers, given in
Section 3, also holds in theses cases. This is the formal expression of such a
property.

Property 2 If A = (m1, m2, a, b)LR then TP = (mT
1 (Cp), m

T
2 (Cp), a

T (Cp),
bT (Cp))LR and TN = (mT

1 (Cn), mT
2 (Cn), aT (Cn), bT (Cn))LR where the concrete

expressions of mT
1 (.), mT

2 (.), aT (.), bT (.) can be found in Section 3 and obviously
depend on Cp and Cn, respectively.

Consequently, the transformation of any LR fuzzy number is also an LR
fuzzy number with an explicit and easy computational representation. This is
particularly important for the sake of simplicity in representing the transforma-
tion of any fuzzy quantity in any intelligent information system.

4.4. Mean of the transformed values

In this case, for each α we calculate Aα, that is, the truncated fuzzy number
at level α, next we transform it and we obtain i-⊲⊳(A, α), a normalized fuzzy
number with the same information as the original one, but in order to include
the fuzzy certainty C we calculate the average of the i-⊲⊳(A, α) using the two
induced measures associated to C. Let us denote the membership function of
i-⊲⊳(A, α) as TA(α, x), and then we have two options to define the membership
function of A′′:
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Upper mean SP (x)

SP (x) =

∫

[0,1]

TA(α, x) ◦ΠC(α) = supα∈[0,1](TA(α, x) ∧ C(α)).

Lower mean SN (x)

SN(x) =

∫

[0,1]

TA(α, x) ◦NC(α) = infα∈[0,1](TA(α, x) ∨ (1 − C(α))).

According to these, we can complete our approach with the two last defini-
tions:

Definition 10 Let A, C ∈ ĨR. The joint value of A with certainty C as mean
of the transformed values with the certainty interpreted as possibility is called
i-⊲⊳2

P (A, C) and is computed as follows:

i-⊲⊳2
P (A, C) = SP .

Definition 11 Let A, C ∈ ĨR. The joint value of A with certainty C as mean
of the transformed values with the certainty interpreted as necessity is called
i-⊲⊳2

N (A, C) and is computed as follows:

i-⊲⊳2
P (A, C) = SN .

The main problem of this option is that now we cannot have algebraic ex-
pression of the transformed fuzzy numbers as in the previous case, but we can
study some interesting properties of both transformations.

4.5. Some properties of the transformations

Once the new approaches are established, it is necessary to carry out some
comparisons between these new ones and the previous ones in order to have
criteria for choosing one of them in practical cases.

The first property associated to the mean of truncated values is straightfor-
ward, since Cn ≥ Cp.

Property 3 ∀x ∈ Supp(A) we have that TP (x) ≤ TN (x), that is, TP ⊆ TN .

We can conclude that TN offers us a transformed fuzzy number more impre-
cise than TP .

In relation to the properties of the mean of the transformed values, and to
obtain some more concrete expressions, we will first analyze some properties of
TA(., .).

Property 4 ∀x TA(α, x) = 1 if α ≤ A(x).
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Proof. This property is a direct consequence of definition of T (α, x) which im-
plies truncating A(x) at the α level and obtaining a new fuzzy value, whose
height is equal to one and which carries the same information. Let us suppose
that A = (m1, m2, a, b)LR; then:

∀x if m1 − aL−1(α) ≤ x ≤ m2 + bR−1(α) then TA(α, x) = 1;

therefore:

α ≤ L(
m1 − x

a
) and α ≤ R(

x−m2

b
)

and the property holds.

Property 5 ∀x TA(1, x) = A(x).

Property 6 If the LR functions, which define the fuzzy number A have the
shape L(u) = max{0, (1 − u)p}, then ∀x and ∀α, α′ ∈ [0, 1] such that α ≤ α′,
TA(α, x) ≥ TA(α′, x). That is, TA(α, x) is non increasing with respect to α.

Proof. Let us consider x belonging to the left side of A (we can proceed with
the right side in a similar way). With this assumption:

TA(α, x) = L(
m1 − aL−1(α) − x

aT (α)
)

and to prove TA(α, x) ≥ TA(α′, x) we must assure:

m1 − aL−1(α)− x

aT (α)
≤

m1 − aL−1(α′)− x

aT (α′)
,

since L(.) is decreasing. There is no problem with respect to the numerator of
the fraction:

∀x m1 − aL−1(α) − x ≤ m1 − aL−1(α′)− x

because L−1(.) is decreasing too and α ≤ α′.
Regarding the divisor, we have to prove that aT (α) ≥ aT (α′) if α ≤ α′ ,

i.e., that aT (.) is a decreasing function. To do it, we will prove that its first
derivative is negative.

In the case of that L(u) = (1− u)p we have:

aT (α) = aα
1

p + (p + 1)
1− α

2α

and

a′T (α) =
1− p

p
aα

1

p
−1 −

1

2h2

which proves the property.
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It is important to note that Property 6 does not hold for fuzzy numbers
whose LR functions are not of type L(u) = max{0, (1 − u)p}. Nevertheless,
we have to take into account that most usual LR fuzzy number classes (e.g.
trapezoidal, triangular,...) rely on this type. From now on, we will consider
that LR functions are of this kind.

Once we have got the main properties of TA(α, x), we can analyze those of
SP (x) and SN (x)

Property 7 Let C = (c0, c1, d0, d1)LR. If A(x) ≥ c0, then SP (x) = 1.

Proof. Let us remember that TA(α, x) = 1 if A(x) ≥ α and C(α) = 0 if α ≤
c0 − d0 or α ≥ c1 + d1.

Therefore

SP (x) = supα∈[0,A(x)](1 ∧ C(α)) ∨ supα∈[A(x),c1+d1](TA(α, x) ∧ C(α)) .

In the case that A(x) ≥ c0, we have c0 ∈ [0, A(x)] and then sup[0,A(x)](1 ∧
C(α) = 1. Finally, SP (x) = 1.

This is a very interesting property, because what we intend is to soften the
uncertainty value c0 (lower modal value of the linguistic label) and the behavior
of the combination is coherent with the intuition that those values of x, whose
membership in A is greater or equal to 0 will have a membership degree 1, the
same as the case of a fixed value α. That is, the modal value is the limit to put
up the new fuzzy value and this one does not depend on the shape of the fuzzy
number.

Property 8 Let C = (c0, c1, d0, d1)LR. If A(x) ≥ c1 + d1, then SN (x) = 1.

Proof. Let us remember that TA(α, x) = 1 if A(x) ≥ α and 1 − C(α) = 1 if
α ≤ c0 − d0 or α ≥ c1 + d1.

Therefore:

SN (x) = infα∈[0,A(x)](1 ∨ 1− C(α))
∧

∧
infα∈[A(x),c1+d1](T (α, x) ∨ 1− C(α))

∧
∧

infα∈[c1+d1],1(T (α, x) ∨ 1) =

= 1
∧

infα∈[A(x),c1+d1](T (α, x) ∨ 1− C(α)) = 1

since A(x) ≥ c1 + d1.

Property 9 Let C = (c0, c1, d0, d1)LR. If TA(., x) is non increasing and con-
tinuous, then

SP (x) =

{
1 if A(x) ≥ c0

TA(α̂, x) otherwise
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or, equivalently,

SP (x) =

{
1 if A(x) ≥ c0

C(α̂) otherwise

since TA(α̂, x) = C(α̂); α̂ ∈ [A(x), c].

Proof. The first part of the expression is the Property 7. To prove the second
part we assume that A(x) ≤ c0 and we have:

SP (x) = supα∈[A(x),c1+d1](TA(α, x) ∧ C(α)) =

= supα∈[A(x),c0](TA(α, x) ∧C(α))
∨

∨
supα∈[c0,c1](TA(α, x))

∨
∨

supα∈[c1,c1+d1](TA(α, x) ∧ C(α)).

Taking into account that TA(., .) is non increasing, the second and third
terms of the expression are upper bounded by TA(c0, x) and TA(c1, x), respec-
tively, and TA(c0, x) ≥ TA(c1, x). Thus, we finally obtain:

SP (x) = supα∈[A(x),c0](TA(α, x) ∧ C(α)).

Since TA is non increasing and continuous and C is increasing and continuous
in [A(x), c0], we can assure that:

∃α̂ ∈ [A(x), c0] such that SP (x) = C(α̂) = TA(α̂, x)

and, therefore, the property holds.

From the above proof, it is also straightforward to deduce:

If A(x) ≤ c1 − d0 then α̂ ∈ [c0 − d0, c0].

Property 10 Let C = (c0, c1, d0, d1)LR. If TA(., x) is non increasing and con-
tinuous, then

SN(x) =

{
1 if A(x) ≥ c1 + d1

TA(ᾱ, x) otherwise

or, equivalently,

SN(x) =

{
1 if A(x) ≥ c1 + d1

C(ᾱ) otherwise

since TA(ᾱ, x) = C(ᾱ) ; ᾱ ∈ [c1, c1 + d1].
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Proof. The first part of the expression is the Property 8. To prove the second
part we assume that A(x) ≤ c0. Then, we have:

SN (x) = infα∈[A(x),c1+d1](TA(α, x) ∨ 1− C(α)) =

= infα∈[A(x),c0](TA(α, x) ∨ 1− C(α))
∧

∧
infα∈[c0,c1](TA(α, x))

∧
∧

infα∈[c1,c1+d1](TA(α, x) ∨ 1− C(α)).

Since both TA(., .) and 1−C(.) are non increasing in [A(x), c0], the first and
the second terms of the expression are lower bounded by TA(c0, x) and TA(c1, x),
respectively, and TA(c0, x) ≥ TA(c1, x). Thus, we finally obtain:

SN(x) = infα∈[c1,c1+d1](TA(α, x) ∨ C(α)).

Since TA is non increasing and continuous and 1− C is increasing and con-
tinuous in [c1, c1 + d1], we can assure that:

∃ᾱ ∈ [c1, c1 + d1] such that SN (x) = 1− C(ᾱ) = TA(ᾱ, x)

and, therefore, the property holds.

From the above proof, it is also straightforward to deduce:

If A(x) ≥ c1 then ᾱ ∈ [A(x), c1 + d1].

These properties allow us to make comparisons between the different ap-
proaches, since for all x in the support of C:

TP (x) = T (Cp, x) with Cp ∈ [c1, c1 + d1]

SP (x) = T (α̂, x) with α̂ ∈ [c0 − d0, c0]

TN (x) = T (Cn, x) with Cn ∈ [c0 − d0, c0]

SN (x) = T (ᾱ, x) with ᾱ ∈ [c1, c1 + d1].

Finally, for all x in the support of C we have:

TN(x) ≥ max(SN (x), TP (x))⇒ SN ⊆ TN and TP ⊆ TN

SP (x) ≥ max(SN (x), TP (x))⇒ SN ⊆ SP and TP ⊆ SP .

From the previous results, we have that TN and SP produce less precise
values (i.e. they are pessimistic), while SN and TP deliver more precise values
(i.e. they can be considered optimistic). Thus, according to the amount of
imprecision we are able to accept (or how optimistic/pessimistic we are), we
can choose the appropriate method.

Additionally, taking into account that TN and TP are easier to compute
because they have a defined algebraic expression, we can conclude that these
two methods based on the mean of truncated values are preferable to the two
methods based on the mean of the transformed values (i.e. SN and SP ).
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5. An example

Using the four proposals presented in this paper, we can transform the original
measure so that it incorporates the given fuzzy certainty value. In order to
illustrate the application of these results, let us return to our example of the
ROSETTA spatial mission and the GIADA instrument. As we know, the micro-
balance gives us a measure of the grain weight, that is subject to some impre-
cision due to the balance threshold sensitivity (around 10−10 g.). On the other
hand, the balance accumulates some dust from one weighting to another, un-
til the cleaning-by-heating process is triggered. According to the micro-balance
status, the measurement has to be done with the uncertainty due to the cleaning
process that, as we explained in the introduction, does not guarantee a perfect
result. Fig. 9 shows the behavior of our four approximations, starting from an
almost clean balance.

In Fig. 9(a) shows the certainty value, associated to the current status of
the instrument. In Fig. 9(b) the initial weight is shown with the attached
imprecision, and in Figs. 9(c), 9(d), 9(e), 9(f) we show the results obtained by
applying the mean of truncated values considering the possibility, the mean of
truncated values considering the necessity, the mean of the transformed values
considering the possibility, and the mean of the transformed values considering
the necessity, respectively.

In Fig. 10 we present the same example but at some later, when the balance
is not as clean as in the previous case.

As can be seen in the figures, the results obtained after the application
of the four approaches fulfill the constraints of shape posed in the previous
sections. The choice between the possibility and the necessity approaches must
be done depending on the imprecision we can admit in the system. Methods
based on necessity are more restrictive and, in consequence, they produce more
imprecise results. On the contrary, the use of the possibility measure leads us to
a more precise result, since it is a more optimistic approach. In our case, for the
ROSETTA mission, we have opted for the application of TP (joint value based
on the use of the mean of truncated values approach and the interpretation as
possibility measure) since the system requires the use of fuzzy numbers as precise
as possible to be used in the deduction process that follows this transformation.

6. Conclusions

We have addressed the problem of dealing with linguistic uncertainty associ-
ated with a fuzzy quantity. With the basic idea of transforming uncertainty
into imprecision, four possible approaches have been presented; all of them give
transformations of the initial fuzzy number that lead to normalized fuzzy num-
bers. We have also studied the properties of the different approaches and, from
the attained results, a rule for a possible choice has been developed.



Fuzzy certainty on fuzzy values 337

(a)
1

0 0.5 1
0

(b)
1

3 5 7
0

(c)
1

0

(d)
1

0

(e)
1

0

(f)
1

0

3 5 7

3 5 7 3 5 7 3 5 7

Figure 9. Results obtained by our approaches considering an initial certainty
value near to 1.
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Figure 10. Results obtained by our approaches considering a certainty value
obtained just before the cleaning.
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One of the significant achievements of our approach is that, if the initial fuzzy
number has an LR representation, the final result gives us transformed fuzzy
numbers which keep the LR shape of the initial one. Explicit expressions of
such transformed fuzzy numbers have also been obtained. This is a particularly
useful property from the storage point of view (e.g. within the database world
or in a data warehousing context), since it provides us with a simple and unified
representation for both original and transformed fuzzy values.

References

Bordogna, G. and Pasi, G. (2000) Modeling Linguistic Qualifiers of Uncer-
tainty in a Fuzzy Database. Int. Journ. of Intelligent Systems 15, 995–
1014.

Bouchon-Meunier, B., Dubois, D., Godo, L. and Prade, H. (1999) Fuz-
zy sets and possibility theory. In: J.C. Bezdek, D. Dubois, H. Prade, eds.,
Fuzzy Sets in Approximate Reasoning and Information Systems. Kluwer
Academic Publishers, 15–190.

Colangeli, L. et al. (2004) The GIADA Experiment for the Rosetta Mis-
sion. In: L. Colangeli, E. Mazzotta-Epifani and P. Palumbo, eds., The
new Rosetta Targets. Observations, Simulations and Instrument Perfor-
mances. Astrophysics and Space Sciences Library, 311, 271–280.

Delgado, M., Verdegay, J.L. and Vila, M.A. (1990) On Valuation and
Optimization Problems in Fuzzy Graphs: A General Approach and Some
Particular Cases. ORSA Journal on Computing 2, 74–83.

Delgado, M., Vila, M.A. and Voxman W. (1998) On a Canonical Repre-
sentation of Fuzzy Numbers. Fuzzy Sets and Systems 93, 125–135.
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