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Abstract: This paper is concerned with the construction of
reduced–order models for high–order linear systems in such a way
that the L2 norm of the impulse–response error is minimized. Two
convergent algorithms that draw on previous procedures presented
by the same authors, are suggested: one refers to s–domain repre-
sentations, the other to time–domain state–space representations.
The algorithms are based on an iterative scheme that, at any step,
satisfies certain interpolation constraints deriving from the optimal-
ity conditions. To make the algorithms suitable to the reduction
of very large–scale systems, resort is made to Krylov subspaces and
Arnoldi’s method. The performance of the reduction algorithms is
tested on two benchmark examples.
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1. Introduction

Linear time–invariant models are often used to describe phenomena in physical
and economic contexts because many tools are available for their study. How-
ever, when the system complexity is high or its size is big, the number of state
variables may be too large for simulation and control purposes, and it is manda-
tory to approximate the original high–order model by means of a lower–order
one.

Many approaches to model reduction have been proposed over the past
decades. Among the most popular ones, we can mention the Padé-like methods
leading to the retention of some Markov parameters and time moments (Bultheel
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and Van Barel, 1986), the aggregation techniques retaining some modes of the
original system (Hickin and Sinha, 1980), the Hankel–norm optimization meth-
ods (Glover, 1984), the techniques based on principal component analysis and
balanced realizations (Moore, 1981), and the methods aiming at the retention of
suitable first–order information indices (Markov parameters or time moments)
and second–order information indices (impulse–response powers) (de Villemagne
and Skelton, 1987).

Recently, the techniques based on moment matching have been tackled with
the aid of numerically robust and reliable procedures such as the Arnoldi, Lanc-
zos or rational Krylov methods (see, for example, Gallivan, Grimme and Van
Dooren, 1996; Datta, 2003 and Antoulas, 2005), thus allowing the reduction of
very large–scale systems. On the other hand, the techniques based on the mini-
mization of an error norm still seem to be more appropriate to model reduction,
which is essentially an optimization problem.

This paper deals with the minimization of the L2 norm of the output er-
ror, defined as the difference between the impulse responses of the original and
reduced–order model. The L2 norm has an appealing physical interpretation
(power) which explains its wide-spread use (see, for example, Meier and Lu-
enberger, 1967; Wilson, 1974; Hyland and Bernstein, 1985 concerning the time
domain, and Spanos, Milman and Mingori, 1992; Krajewski et al., 1995; Fulcheri
and Olivi, 1998 concerning the frequency domain).

Finding the L2–optimal reduced–order model of a complex system is a hard
task that often requires the solution of an ill–conditioned mathematical pro-
gramming problem. Many of the available methods are therefore difficult to im-
plement and rather inefficient; in particular, gradient techniques are not always
satisfactory. Among the non–gradient approaches, the iterative–interpolation
algorithm first suggested in Lepschy et al. (1991) and further developed in
Krajewski et al. (1995) and Ferrante et al. (1998) with reference to the fre-

quency domain seems to be one of the most efficient procedures. This algo-
rithm, however, is not always convergent. To overcome this difficulty, a variant
of the method characterized by steps of shortened length has been proposed in
Ferrante et al. (1999). The iterative–interpolation approach has recently been
extended to time–domain state–space representations (Gugercin, Antoulas and
Beattie, 2006). In this paper we pursue the ideas from Ferrante et al. (1999) and
Gugercin, Antoulas and Beattie (2006) by suggesting two convergent algorithms
in frequency and time domain, respectively

The next part of the paper is organized as follows. Section 2 formulates
the L2–optimal model–reduction problem and recalls the iterative interpolation
method. Section 3 shows how convergence can be guaranteed and proposes
two algorithms for models in either input–output or state–space form. These
algorithms are applied in Section 4 to two benchmark examples that show the
efficiency of the proposed techniques.



Iterative-interpolation algorithms for L2 model reduction 545

2. Problem statement and iterative–interpolation method

Let the state–space equations of the original full–order linear time–invariant
asymptotically–stable system be

ẋ(t) = Ax(t) + b u(t) , (1)

y(t) = c x(t) , (2)

where x(t) ∈ R
n, y(t) ∈ R, u(t) ∈ R, and n is the order of a minimal realization

of the system. The input–output behavior of system (1)–(2) is characterized by
the transfer function

f(s) =
n(s)

d(s)
= c (s I − A)−1 b , (3)

where deg d(s) = n and deg n(s) ≤ n−1. Similarly, assume that the state–space
equations of the reduced–order model are:

˙̃x(t) = Ãx̃(t) + b̃u(t) , (4)

ỹ(t) = c̃x̃(t) , (5)

where x̃(t) ∈ R
ñ with ñ < n, ỹ(t) ∈ R, u(t) ∈ R. The related transfer function

is

g(s) =
m(s)

c(s)
= c̃ (s I − Ã)−1 b̃ , (6)

where deg c(s) = ñ and deg m(s) ≤ ñ − 1.

In frequency domain, the optimal model–reduction problem can be formu-
lated as follows: given an original transfer function f(s) of order n, find a
transfer function g(s) of preassigned lower order ñ < n in such a way that the
(squared) H2 norm of e(s) := f(s) − g(s), that is,

‖e‖2
2 =

1

2π

∫

∞

−∞

e(jω)e∗(jω)dω , (7)

is minimized (the star indicates complex conjugate).

The time–domain state–space version of this problem can be formulated
as follows: given a state–space model (A, b, c) of minimal dimension n, find a
model (Ã, b̃, c̃) of dimension ñ < n so as to minimize the (squared) L2 norm of
the output error e(t) := y(t) − ỹ(t), that is,

‖e‖2
2 =

∫

∞

−∞

e2(t) d t , (8)

where y(t) and ỹ(t) are the responses of the full–order and reduced–order model,
respectively, to a unit–impulse input u(t).
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Assuming for notational simplicity that all of the poles of g(s) are simple
(but not necessarily real) and denoting them by p1, . . . , pñ, function g(s) mini-
mizes (7) only if the following interpolation conditions are satisfied (Meier and
Luenberger, 1967):

f(−pk) − g(−pk) = 0 ,

f ′(−pk) − g′(−pk) = 0 ,

}

k = 1, 2, . . . , ñ . (9)

These conditions can be expressed more compactly in terms of the numerator
and denominator polynomials in (3) and (6) as

n(s) c(s) − m(s) d(s) = q(s) c2(−s) , (10)

where q(s) is a polynomial whose degree is, at the most, n − ñ − 1.
Equating the coefficients of the equal powers of s on both sides of the polyno-

mial identity (10), we obtain n+ ñ−1 equations in the 2 ñ unknown coefficients
of m(s) and c(s) as well as in the n− ñ− 1 unknown coefficients of the “auxil-
iary” polynomial q(s). These equations can be solved by means of an iterative
procedure based on the recurrence relation

n(s) c(h+1)(s) − m(h+1) (s)d(s) = q(h+1)(s) [c(h)(−s)]2 , (11)

which determines polynomials c(h+1)(s) and m(h+1) from the polynomial c(h)(s)
previously computed.

The resulting algorithm can be presented as follows:

Algorithm 1

1. Make a guess of the initial reduced–order denominator polynomial c(0)(s)
and set h = 0.

2. Given c(h)(s), evaluate c(h+1)(s), m(h+1)(s) and q(h+1)(s) on the basis of
(11).

3. If the stopping criterion is satisfied, form the reduced–order denominator
and numerator as c(s) = c(h+1)(s) and m(s) = m(h+1)(s), respectively.
Otherwise, set h = h + 1 and return to Step 2.

Step 2 requires the solution of a set of linear equations. The corresponding
system matrix is sparse with a structure that guarantees the efficiency of the
procedure, whose details are illustrated in Krajewski et al. (1995). Equation
(11) can be given an interesting interpretation; precisely, it states that function
g(h+1)(s) must interpolate the original transfer function f(s), with intersection

number 2, at the opposites of the poles p
(h)
1 , . . . , p

(h)
ñ

of g(h)(s), that is,

f(−p
(h)
k

) − g(h+1)(−p
(h)
k

) = 0 ,

f ′(−p
(h)
k

) − (g(h+1))′(−p
(h)
k

) = 0 ,

}

k = 1, 2, . . . , ñ . (12)
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In other words, the numerator of the current error function e(h+1)(s) := f(s)−
g(h+1)(s) must contain the factor [c(h)(−s)]2. This is the reason why the above
procedure has been called iterative–interpolation algorithm.

The idea of iterative interpolation has been recently extended to state–space
representations such as (4) and (5) in Gugercin, Antoulas and Beattie (2006),
where the interpolation problem arising at each iteration is solved by means of

Krylov–subspace methods. To this purpose, denoting by p
(h)
k

the ñ eigenvalues

λk(Ã(h)), k = 1, 2, . . . , ñ, of the reduced–order system matrix Ã(h) computed
in the preceding iteration, two matrices V and Z are formed in the current
iteration such that

Im(V ) = span{(−p
(h)
1 I − A)−1b, . . . , (−p

(h)
ñ

I − A)−1b)} , (13)

Im(Z) = span{(−p
(h)
1 I − AT )−1cT , . . . , (−p

(h)
ñ

I − AT )−1cT )} (14)

and ZT V = I. In this way the reduced–order model (4) and (5) with

Ã = Ã(h+1) := ZT AV , b̃ = b̃(h+1) := ZT b , c̃ = c̃(h+1) := c V (15)

satisfies the following interpolation conditions analogous to (12) (Grimme, 1997;
Antoulas, 2005):

c(−p
(h)
k

I − A)−1b = c̃(h+1)(−p
(h)
k

I − Ã(h+1))−1b̃(h+1) ,

c(−p
(h)
k

I − A)−2b = c̃(h+1)(−p
(h)
k

I − Ã(h+1))−2b̃(h+1) ,

}

k = 1, 2, . . . , ñ .

(16)

The corresponding algorithm can be presented as follows:

Algorithm 2

1. Make a guess of the eigenvalues p
(0)
1 , . . . , p

(0)
ñ

of the initial reduced–order

system matrix Ã(0) (often, the ñ dominant eigenvalues of A represent a
good starting point) and set h = 0.

2. Choose V and Z such that
Im(V ) = span {(−p

(h)
1 I − A)−1 b, . . . , (−p

(h)
ñ

I − A)−1 b} ,

Im(Z) = span {(−p
(h)
1 I − AT )−1 cT , . . . , (−p

(h)
ñ

I − AT )−1 cT } ,
Z = Z (ZT V )−T .

3. Compute Ã(h+1) = ZT AV .
4. If the stopping criterion is satisfied, form the reduced–order model ma-

trices as Ã = Ã(h+1), b̃ = ZT b and c̃ = c V . Otherwise, let p
(h+1)
k

=

λk(Ã(h+1)), k = 1, . . . , ñ, set h = h + 1 and return to phase 2.

To find V and Z, the rational Arnoldi method can conveniently be applied
(Gugercin, Antoulas and Beattie, 2006), which makes the above algorithm suit-
able to the reduction of very large–scale systems.
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Algorithms 1 and 2 have proven to be efficient (Krajewski et al., 1995;
Gugercin, Antoulas and Beattie, 2006), but are not always convergent. The
next section shows how these algorithm can be modified to ensure convergence.

3. Convergent variants of the iterative–interpolation algo-

rithms

Denoting by c(i) the vector formed from the coefficients of sñ−1, sñ−2, . . . ,
s0, in every monic polynomial c(i)(s) generated by (11), recursion (11) can be
reformulated as

c(h+1) = Φ(c(h)) , (17)

where Φ : R
ñ → R

ñ is a continuously differentiable function. In this way, the
reduced–order model minimizing (7) corresponds to a fixed point ĉ of Φ:

ĉ = Φ(ĉ) . (18)

It has been shown in Krajewski et al. (1995) and Ferrante et al. (1999) that:
(i) the eigenvalues of the Jacobian ∂Φ

∂c
at every fixed point ĉ are real,

(ii) at a fixed point ĉ corresponding to a saddle point of the objective function
at least one eigenvalue of the Jacobian is greater than 1, and
(iii) at a fixed point corresponding to a minimum of the objective function
every eigenvalue of the Jacobian is less than 1 but not necessarily greater than
−1, which explains why the iterative–interpolation algorithm does not always
converge.

To avoid this difficulty, it has been suggested in Ferrante et al. (1999) to
replace Φ by another continuously differentiable function with the following
properties:
(i) it has the same fixed points ĉ as Φ,
(ii) all the eigenvalues of its Jacobian at every ĉ have magnitude less than 1,
and
(iii) it can easily be obtained from Φ with no a priori information about ĉ.

These properties are satisfied for a suitably small value of the real parameter
α by the function Φα : R

ñ → R
ñ obtainable from Φ according to

Φα(c) = αΦ(c) + (1 − α)c . (19)

Therefore, the iterative procedure (17) can be replaced by

c̄(h+1) = Φα(c̄(h)) . (20)

Starting from c̄(h) = c(h), recursion (20) determines vector c̄(h+1) as a linear
combination of c(h) and c(h+1) = Φ(c(h)) according to the combination coeffi-
cients 1 − α and α, respectively.
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Denoting by λm the smallest eigenvalue of ∂Φ
∂c

(ĉ), if

0 < α < αm =
2

1 − λm

, (21)

then all the eigenvalues of ∂Φα

∂c
(ĉ) have magnitude less than 1 (Ferrante et al.,

1999), and the sequence of vectors {c̄(i)} generated by (20) converges to ĉ from
a suitable neighbourhood of ĉ.

From the above arguments the following algorithm is obtained:

Algorithm 3

1. Select α ∈ (0, 1), make a guess of the initial coefficient vector c̄(0), and set
h = 0.

2. Let c(h) = c̄(h) and compute c(h+1) = Φ(c(h)) on the basis of (11) as in
Algorithm 1.

3. Form c̄(h+1) = α c(h+1) + (1 − α) c̄(h).
4. If the stopping criterion is satisfied, form the reduced–order denominator

and numerator as c(s) = c(h+1)(s) and m(s) = m(h+1)(s), respectively.
Otherwise, set h = h + 1 and return to phase 2.

It follows that the steps made by Algorithm 3 at each iteration are α times
shorter than the steps made by Algorithm 1.

A similar approach can be followed to ensure the convergence of a variant
of the time–domain state–space iterative–interpolation procedure. It suffices
to introduce a few additional operations into Algorithm 2 for: (i) computing
the characteristic polynomial c(h+1)(s) associated with Ã(h+1), (ii) shortening
the step made at every iteration by a factor α, and (iii) evaluating the roots
p̄1, . . . , p̄ñ of the polynomial c̄(h+1)(s) formed from the vector c̄(h+1).

The resulting algorithm is outlined next:

Algorithm 4

1. Select α ∈ (0, 1), and form the coefficient vector c̄(0) by choosing the roots

p̄
(0)
1 , . . . , p̄

(0)
ñ

of the characteristic polynomial c̄(0)(s) associated with the

initial reduced–order system matrix Ã(0). Set h = 0.
2. Choose V and Z such that

Im(V ) = span {(−p̄
(h)
1 I − A)−1 b, . . . , (−p̄

(h)
ñ

I − A)−1 b} ,

Im(Z) = span {(−p̄
(h)
1 I − AT )−1 cT , . . . , (−p̄

(h)
ñ

I − AT )−1 cT } ,

Z = Z (ZT V )−T .
3. Compute Ã(h+1) = ZT AV .
4. If the stopping criterion is satisfied, form the reduced–order model matri-

ces as Ã = Ã(h+1), b̃ = ZT b and c̃ = c V . Otherwise:
(i) find the characteristic polynomial c(h+1)(s) associated with Ã(h+1) and
form the related coefficient vector c(h+1),



550 W. KRAJEWSKI, U. VIARO

(ii) compute c̄(h+1) = α c(h+1) + (1−α) c̄(h) and form the related polyno-
mial c̄(h+1)(s),

(iii) evaluate the roots p̄
(h+1)
k

, k = 1, . . . , ñ, of c̄(h+1)(s), and
(iv) set h = h + 1 and return to phase 2.

Shortening the steps by α ensures the convergence of Algorithms 3 and 4 also
when Algorithms 1 and 2 do not converge. However, if the latter algorithms
converge, which is not known a priori, their modified versions may require a
larger number of iterations to find a (locally) optimal solution, as shown by the
examples in the next section.

Remark As already pointed out at the beginning of this section, the previ-
ous algorithms for L2–optimal model–reduction can be considered as iterative
schemes for finding the fixed points of the mapping Φ in (17) and (18), im-
plicitly defined by the optimality conditions (10). The determination of fixed
points using suitable contractive mappings is a classical topic in mathemati-
cal analysis and has attracted continuous attention over the years. Among the
methods for fixed point search, the iterative scheme proposed by Mann in 1953
and the one developed by Ishikawa in 1974 seem to be the most popular ones
(Rhoades, 1976); their behaviour for different classes of nonlinear mappings is
still being studied extensively (see, for example, Miao, 2007, and Arandelovic,
2009). Using the above notation, Mann’s iteration can be written as

c(h+1) = αh Φ(c(h)) + (1 − αh) c(h) , h ≥ 0 , (22)

where 0 ≤ αh ≤ 1 for every h ≥ 0, and Ishikawa’s iteration as

c(h+1) = αh Φ
(

βh Φ(c(h)) + (1 − βh) c(h)
)

+ (1 − αh) c(h) , h ≥ 0 , (23)

where 0 ≤ αh ≤ βh ≤ 1 for every h ≥ 0. Therefore, (22) is a special case of
(23). The inspection of (17), (19) and (20) shows that Algorithm 3 corresponds
to Mann’s iteration scheme.

4. Examples

In the following, the modified iterative–interpolation approach is applied to two
meaningful examples. The purpose of this section is threefold, that is: (i) to
show that the modified algorithms can find an optimal solution also when the
original iterative–interpolation algorithms fail, (ii) to see how the convergence
of the modified algorithms depends on α, and (iii) to compare the speed of the
modified algorithms with that of the original ones when the latter converge.
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4.1. Model of a flexible structure

The full–order state–space model of a flexible structure is described by the
following matrices (Gawronski and Juang, 1990):

A =

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−5.4545 4.5455 0 −0.0545 0.0455 0
10 −21 11 0.10 −0.2100 0.1100
0 5.5 −6.5 0 0.0550 −0.0650

















,

bT =
[

0 0 0 0.0909 0.4 −0.5
]

, c =
[

2 −2 3 0 0 0
]

.

The characteristic equation has three pairs of complex conjugate poles, that is,
−0.0038 ±  0.8738, −0.0297 ±  2.4374 and −0.1313 ±  5.1217, which hinders
the construction of odd–order approximants. In fact, neither Algorithm 1 nor
Algorithm 2 allows us to determine an optimal reduced–order model of order 1,
3 or 5.

Instead, the iterative–interpolation Algorithms 3 and 4 with suitably short-
ened steps can find these odd–order approximants in a small number of itera-
tions starting from the same initial guesses (and stringent stopping criterion).
In particular, the optimal first–order model turns out to be:

˙̃x(t) = −0.6746x̃(t) − 0.1948u(t) ,

ỹ(t) = 1.8899x̃(t) .

The value of the squared error norm of the related output error is ‖e‖2
2 = 3.9758.

The number of iterations required to find this model is shown in Table 1 for
different values of α.

Table 1. Number of iterations vs. α for the optimal first–order approximant

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

number of iterations 54 24 14 9 6 11 20 41 184 ∞

In the case of even–order approximants, the original iterative–interpolation

Algorithms 1 and 2 converge too. For example, starting from p
(0)
1 = −1 and

p
(0)
2 = −2, Algorithm 2 arrives at the following optimal second-order solution

in 6 iterations only:

Ã =

[

−0.0063 0.7635
−0.9999 −0.0013

]

, b̃ =

[

−0.1258
0.0003

]

, c̃ =
[

0.0233 −1.6646
]

.

The value of the squared error norm of the related output error is ‖e‖2
2 = 0.2934.
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Algorithm 4 requires a greater number of iterations to find this model.
Table 2 shows how this number depends on α .

Table 2. Number of iterations vs. α for the optimal second–order approximant

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

number of iterations 125 84 52 36 28 21 17 13 10 6

4.2. Model of a CD player

The full–order state–space model describing the dynamic relation between the
lens actuator and the radial–arm position of a portable CD player is charac-
terized by 120 state variables (Chahlaoui and Van Dooren, 2002). Since all of
the poles of this system are complex (sixty complex conjugate pairs), it is again
difficult to find an optimal approximant of odd order. For example, starting
from the (arbitrary) initial guess p0

1 = −0.5, p0
2 = −1, p0

3 = −2, p0
4 = −3,

p0
5 = −4, p0

6 = −5, p0
7 = −6, p0

8 = −7, p0
9 = −8, Algorithm 2 can not find a

9th–order model. Instead, Algorithm 4 with α = 0.1 finds an optimal solution
of order 9 in 55 iterations starting from the same initial guess. The square norm
of the related output error is ‖e‖2

2 = 30.2335. Note, by comparison, that the
9th–order model obtained according to the popular TBR (Truncated Balanced
Realization) method (Moore, 1981) is characterized by ‖e‖2

2 = 35.149. With
α = 0.5 Algorithm 4 arrives at the optimal solution in 16 iterations only.

Algorithm 2 finds an optimal 10th–order approximant in 7 iterations starting
from p0

1 = −0.5, p0
2 = −1, p0

3 = −2, p0
4 = −3, p0

5 = −4, p0
6 = −5, p0

7 = −6, p0
8 =

−7, p0
9 = −8, p0

10 = −10. The corresponding square error norm is ‖e‖2
2 = 21.04.

As expected, Algorithm 4 requires a larger number of iterations to arrive at the
same solution. Table 3 shows how this number depends on α.

Table 3. Number of iterations vs. α for the optimal tenth–order approximant

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

number of iterations 48 30 22 22 21 17 15 12 9 7

5. Conclusions

The iterative–interpolation algorithms for L2–optimal model reduction have
proven to be very efficient compared to alternative procedures with the same
objective. Two algorithms operating in either the frequency or the time domain
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have been presented in Section 3. They always ensure convergence to an opti-
mal solution. Essentially, this result is obtained by shortening the steps made
at every iteration by the original algorithms outlined in Section 4. Two bench-
mark examples have been worked out in Section 4 to show how the algorithms
perform and how the speed of convergence depends on the step size.
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