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Abstract: This contribution concerns the modelling of fuzzy in-
formation in geographic databases. For this purpose, fuzzy regions
and fuzzy points have been defined in the past, along with a num-
ber of suitable operations. For numerical information - such as the
surface area of fuzzy regions, or the distance between fuzzy regions
and/or fuzzy points - the computation depends on the interpretation
given to the fuzzy regions or points. Consequently, it is important to
differentiate between the interpretation in order to obtain correct re-
sults. This article explains in detail the impact of the interpretation
in terms of both the surface area and the distance.
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1. Fuzzy regions

1.1. Introduction

Geographic information systems (GIS for short) are complex pieces of software,
in which a multitude of information from various sources is combined for view-
ing or analysis (Rigaux, Scholl and Voisard, 2002; Shekhar, Chawla, 2003). The
information can consist of data obtained through various sources, from mea-
surements in the field, over satellite or aerial images, to data derived from such
images. Most of these sources inherently introduce imperfection (e.g. missing
measurements, failure to extract data, etc.) and/or loss of accuracy (e.g. due
to conversions between coordinate systems, incorrect derivation of data). In
practice, however, most data is represented as crisp and certain, effectively los-
ing the inherent imperfection of the data in the subsequent computations. As
these systems are used to reflect reality, the currently used crisp data models are
sometimes inadequate (Morris, 2001); consider for example the soil composition:
where is the boundary between one type of soil and the neighboring type of soil?
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Several concepts have been developed to improve on the traditional model, by
allowing regions with undetermined boundaries to be modelled (Clementini and
Di Felice, 1994; Cohn and Gotts, 1994; Schneider, 1996). To better deal with
such information and perform richer analysis, we have introduced the concept
of fuzzy regions.

1.2. Fuzzy regions

A theoretical concept for dealing with fuzzy spatial information has been in-
troduced by a number of authors. Examples are, for instance, the works of
Burrough and Frank (Burrough, 1996) and Zahn (1998); most authors consider
aspects and properties of fuzzy regions at a theoretical level, without having an
effective model to represent fuzzy regions. We introduced our concept for fuzzy
regions in Verstraete et al. (2005); it was particularly developed as a first step
toward a solid theoretical foundation on which a usable fuzzy GIS can be con-
structed, and so, implementation limitations and practical considerations have
been integrated from the start. Based on the developed model, various aspects
and behaviours have been constructed. In traditional geographic information
systems, geographic data are often represented by means of basic geographic
structures: points are used to indicate locations, lines to indicate roads and
rivers and polygons are used to represent regions; this results in an outline be-
ing used as a representation of a region. Many extensions to generalize this
concept have been developed. Examples are the egg-yolk model (Cohn and
Gotts, 1994) and the broad boundary model (Clementini and Di Felice, 1994).
However, when considering a region, one can also consider it to be a subset of
the two dimensional space, containing all the points located inside the polygon
that represents the region. Using this approach, it becomes possible to extend
regions to fuzzy regions, quite similar to how sets have been extended in the past
to fuzzy sets (Zadeh, 1971). The definition of a fuzzy region, then, resembles
the definition of a fuzzy set, specified over the two dimensional numeric domain
R

2. This is illustrated in Fig. 1

Definition 1 Let A ⊆ U be the set of all the points that belong to the region
(this is a crisp set). The crisp set (or region) A is then generalized to a fuzzy
set (or region) Ã, defined as:

Ã = {(p, µÃ(p))|p ∈ U, µ(Ã)(p) > 0}

where

µÃ : U → ]0, 1]

p 7→ µÃ(p).

Here, U is the universe of all locations p; the membership grade µÃ(p) ex-
presses the membership grade of the region.
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Figure 1. Illustration of the concept of fuzzy regions. Greyscales are used to
indicate the membership grade (the outline is drawn for clarity), the shown
membership function can be seen as an example of the concept.

1.3. Interpretation of fuzzy regions

1.3.1. Interpretation of fuzzy sets

Membership grades can have a number of interpretations (Dubois and Prade,
2000). They can have a veristic interpretation, a possibilistic interpretation,
or an interpretation as degrees of truth. Other interpretations for membership
grades are possible, but it was shown in Dubois and Prade (2006) that these
are equivalent to one of these three interpretations.

In a veristic interpretation, each membership grade indicates a degree of
belonging to the set for the element it is associated with. In other words:
all elements with a membership grade greater than 0 belong to the set, but
some more than others; elements with membership grade 1 are said to fully
belong to the set. The higher the membership grade, the more the element
belongs to the set. Such an interpretation is also called conjunctive, and is
often illustrated with the example of “the languages a person speaks”; a GIS
example can concern the vegetation in a given region: there can be different
types of vegetation, but some types more prominently present than others. The
set {(grass, 1), (bushes, 0.8), (trees, 0.2)} indicates that there is a lot of grass,
less bushes, and only few trees.

In a possibilistic interpretation, there is uncertainty about which elements
belong to the fuzzy set. The membership grade indicates this possibility: a
value 0 indicates that the element does not belong to the set, a value 1 indicates
that the element certainly belongs to the set. The higher the membership grade,
the higher the possibility the element belongs to a given set; all elements with
a value greater than 0 can belong to the set. This is also called disjunctive.

The interpretation as degrees of truth can have meaning for fuzzy regions as
well, but to indicate degrees of truth, the concept of possibilistic truth values
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(De Tré, 2002) is used. As this extends beyond the scope of this article, we refer
to Verstraete, Hallez and De Tré (2006) for more details.

1.3.2. Different interpretations of fuzzy regions

In fuzzy regions, both the veristic interpretation as well as the possibilistic
interpretation can be applied.

The veristic interpretation will be used in the context of fuzzy regions to
represent regions. Every point belongs to some extent to the area, an example
is the region considered as “near” Ghent. This concept yields the region that
holds all locations more or less in the vicinity of Ghent; the fuzziness indicates
that some of these locations are more “near” than others.

The possibilistic interpretation can be used in the context of fuzzy regions to
represent fuzzy positions. An example would be the modelling of the position
of a person that is located “near” Ghent. The possible locations of this person
can be represented by a single fuzzy region, but the membership grade of a
position in this region now needs to be interpreted as an indication how possible
a position this is for the location of the person: a possiblistic interpretation. As
a person can only be in one place at one time, only one position is the valid
position; the fuzziness indicates that this one position is not known exactly or
with certainty.

These different interpretations provide for the concept of fuzzy regions to be
used both as regions and as points. This will not only impact on the meaning
of the regions, but also on the operations. For set operations, the difference is
minimal: the union, intersection or difference of two fuzzy regions yields a result
that carries the same interpretation. For operations such as surface area and
distance, matters are more complex. The surface area can be defined in different
ways, depending both on the desired result and the interpretation of the fuzzy
regions. The definition of the distance between fuzzy regions will depend on the
whether they carry a veristic or a possibilistic interpretation.

1.4. Preliminaries

1.4.1. α-cut

When working with fuzzy sets, it can be necessary to extract crisp sets from
the fuzzy information, which can for instance be used to process the data with
non-fuzzy techniques. This is often called “defuzzifying” a fuzzy set, for which
the α-cut operation is commonly used. The α-cut retains the elements for which
the membership grades are greater than a given value α (the α-level). As a fuzzy
region is fundamentally a fuzzy set, the α-cut is easily defined, along with its
special cases. These definitions are very straightforward, and are only repeated
here for completeness.
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Figure 2. Schematic illustration of the α-cut of fuzzy regions. For the illustrated
value α, only the points that satisfy the criterion are kept.

Definition 2 (weak α-cut)

Ãα = {x | µÃ(x) ≥ α}.

Definition 3 (strong α-cut)

Ãα = {x | µÃ(x) > α}.

1.4.2. Fuzzy numbers

A particular application of fuzzy set theory is the use of fuzzy numbers. Fuzzy
numbers are in essence nothing more than fuzzy sets defined over a numerical
domain. Using the Zadeh’s extension principle (Zadeh, 1965), various opera-
tions on numbers are extended, making arithmetic operations on fuzzy numbers
possible (Dubois and Prade, 2000; Klir and Yuan, 1995). Fuzzy arithmetic
allows working with numbers that are imprecise or uncertain; each number is
represented by a membership function that associates membership grades in
the range [0, 1] to crisp numbers. This membership function is a model for the
uncertainty or imprecision of the number: higher membership grades (up to
1) mean a high certainty or precision, lower membership grades (down to 0)
indicate a low certainty or precision. When determining numerical properties
of fuzzy regions, the concept of fuzzy numbers will also be applied.

2. Surface area

2.1. Introduction

The surface area of a crisp region is commonly calculated and defined using the
surface area of the geometric object (usually a polygon) that approximates the
region. For a region consisting of several disconnected regions, or a region con-
taining holes, appropriate solutions are available (Rigaux, Scholl and Voisard,
2002; Shekhar and Chawla, 2003). For fuzzy regions, calculating the surface
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area implies performing computations on fuzzily defined structures. Depend-
ing on how the fuzziness is dealt with, different definitions are possible: the
first definition will yield a fuzzy number, whereas the second will yield a crisp
number.

2.2. Fuzzy number as result

The fuzzy surface area S̃f of a fuzzy region Ã in the first interpretation will result
in a fuzzy number (indicated by f). This fuzzy number essentially represents all
the valid surface areas. The interpretation is meaningful in a system capable of
working with fuzzy numbers and fuzzy arithmetic. Current systems do not have
this functionality, but this interpretation is just one part of our model for fuzzy
regions leading towards a GIS with support for fuzzy information. Using a fuzzy
number to represent the area of a fuzzy region makes sense: any imprecision
or uncertainty in the region should be reflected in the number representing this
surface area.

To obtain the fuzzy result, first all possible surface areas for the given region
must be considered; these are obtained from all the possible α-cuts of the fuzzy
region. Both the the strong and the weak α-cuts are required, (2), (3). The
weak and the strong α-cut of a fuzzy region Ã both yield a crisp region, denoted
Ãα respectively Ãα. For these crisp regions and for every α ∈]0, 1]:

S(Ãα) ≤ S(Ãα)

where S is the notation for the calculation of the surface area of a crisp region.
The equality only occurs if S(Ãα − Ãα) = 0; this happens if the points p for
which µÃ(p) = α form a one dimensional object. This allows us to define the
surface area as follows.

Definition 4 (surface area) S̃f(Ã) = {(x, µS̃f (Ã)(x)), ∀α ∈]0, 1]}
where

µS̃f (Ã)(x) : R → [0, 1]

x 7→







1 if x = S(Ã1)

sup{α|S(Ãα) < x ≤ S(Ãα)}
0 elsewhere

.

Each surface area x between S(Ãα) and S(Ãα) is considered and assigned
an appropriate membership grade. This grade is the largest α for which the
x ∈ [S(Ãα),≤ S(Ãα)]. The reason for this is that this would result in the
fuzzy surface area being a fuzzy number, which allows for fuzzy arithmetic to
be applied in further computations. To verify that the result is a fuzzy number,
different properties must be fulfilled (Klir, Yuan, 1995).

• The result is always normalized.
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Figure 3. Illustration of the fuzzy surface area yielding a fuzzy number: (a)
fuzzy region Ã (illustrated using grey scales, and using some contourlines), (b)
the fuzzy surface area of Ã.

• The support is bounded.

• Every α-cut for α ∈]0, 1] yields a closed interval.

The first property is always fulfilled: if there are no points p for which µÃ(p) = 1,
then µSf (Ã)(0) = 1. The other two properties are automatically fulfilled if the
fuzzy region satisfies the property that every α-cut of the region is contained
within every α-cut with smaller α-values:

∀α1, α2 ∈]0, 1] : α1 < α2 ⇒ Ãα2
⊆ Ãα1

.

To clarify the origin and requirement of the supremum in the definition, con-
sider the examples in Fig. 4. The region represented by the image in Fig. 4a is
a fuzzy region that consists of two portions: both portions are squares, but all
points in the left portion have membership grade 1 whereas points in the right
portion have membership grade 0.5. This is a region in accordance with Defi-
nition 1; it can be called discontinuous as there is no continuity in membership
grades of the elements of the region (some points have membership grade 0.5,
others have membership grade 1, but no points have values in between).

If one were to simply associate the (crisp) surface area of points with a given
membership grade as a contributing element of the resulting fuzzy surface area,
the obtained surface area would be the fuzzy set {(s, 1), (s, 0.5)}, as illustrated
in Fig. 4b. This fuzzy set, however, is not a fuzzy number, as it does not satisfy
the aforementioned requirements (the support is not bounded). Consequently,
this result is not suited for future computations, even though this fuzzy set
could be a possible valid representation of a fuzzy surface area.

Consider now an application of Definition 4. An application of this definition
on the current example yields

S̃f(Ã) = {(x, µS̃f (Ã)(x)), ∀α ∈]0, 1]}.
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Figure 4. Illustration of the surface of a discontinuous fuzzy region: (a) the
fuzzy region, (b) the surface area as would be obtained without use of the weak
α-cut, (c) the surface area as obtained from the definition.

To determine the membership function, it is necessary to find out the mem-
bership grade that will be associated with each possible surface area. The
surface area of the portion with membership grade 1 is assigned membership
grade 1 (thus the element s contributes to the fuzzy surface area with degree 1.
The other occurring surface areas are all in the range ]s, 2s]. For every x in this
interval, an α level must be determined such that

S(Ãα) < x ≤ S(Ãα).

In this simple example, just one α level suffices for all x; the level 0.5. As a
result, all x are assigned the membership grade given by the equation

sup{α|S(Ãα) < x ≤ S(Ãα)} = 0.5.

Combining these results yields the fuzzy number for the example:

S̃f(Ã) = {(s, 1)} ∪ {(x, 0.5)|x ∈]s, 2s]}

with s the surface area of each of the squares.
This membership function is illustrated in Fig. 4c. The main difference with

the result illustrated in Fig. 4b is that now surface areas in between S(Ãα) and
S(Ãα) are also given membership grade α. By assigning the value α to each x

for which S(Ãα) ≤ x ≤ S(Ãα) holds, this result becomes a fuzzy number. The
support is now bounded and every α cut yields a closed interval: for α ∈]0, 0.5[,
the strong α-cut results in the interval [s, 2s]; for α ∈ [0.5, 1], the strong α-cut
yields the (degenerate) interval [1, 1].

Apart from the benefits of having a fuzzy number result, there is a valid
intuitive ground to accept this definition: the region in the example only has
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possible surface areas in this range, and membership grades of elements of a
fuzzy set are independent of one another: the fact that two points in the fuzzy
region have a possibility 0.5 does not imply that these points are both in the
region or both not in the region, just that they have an equal possibility.

2.3. Crisp result

In the second interpretation, the fuzziness is used to indicate the intrinsic vague-
ness of a region. The surface area, therefore, becomes a crisp number. This
number takes all points into consideration, where the membership grade for
each point determines how much it will contribute: a point with a membership
grade 0.5 will only contribute half of what a point with membership grade 1
will contribute. In a discrete set, this number resembles the fuzzy cardinality,
but for infinite sets this needs to be extended.

Definition 5 (fuzzy surface area S̃c)

S̃c(Ã) =

∫

(x,y)∈U

µÃ(p(x, y))d(x, y).

Definition 5 is easily illustrated using the example in Fig. 4a, where the
computation yields:

S̃c(Ã) =

∫

(x,y)∈U

µÃ(p(x, y)))d(x, y)

= 1S(Ã1) + 0.5S(Ã0.5)

= 1s + 0.5s

= 1.5s.

The example is a single region, which consists of two square sub-regions, one
with membership grade 1 and a second with membership grade 0.5. Following
the definition, the surface area of the square with membership grade 0.5 only
counts half the area of the square (as it is multiplied with the membership
grade). This interpretation always yields a crisp result, which does take into
account some aspects of the fuzziness, and can be used when the results need
to be processed by a non-fuzzy system.

2.4. Interpretation of the results

Different scenarios are now possible. First, consider a fuzzy region Ã with a
veristic interpretation; this means that all the points p with membership µÃ(p)
belong to some extent to the region. The surface area of this region can be
computed as a fuzzy number (Definition 4). However, as there is certainty
about all the elements of the fuzzy region, there is certainty about its surface
area: the resulting fuzzy number also needs to be interpreted in a veristic way.
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As there is certainty about the region (all points that belong to the region are
certain, as is the extent to which they belong to the region), the surface area can
also be computed as a crisp number (Definition 5). The choice regarding which
definition to use will depend on both the application (can it deal with fuzzy
numbers? is the crisp number sufficient?), but may also depend on the origin
of the fuzziness. If the fuzziness is an inherent part of the region (implying that
the fuzziness will not change), the crisp number might be more appropriate; if
the fuzziness is introduced (and thus able to change when more or better data
becomes available), the fuzzy number might be more suitable.

Now, consider a fuzzy region B̃ with a possibilistic interpretation: for each of
the points p it is known how possible it is (µB̃(p)) that it belongs to the region.
As there is no certainty regarding which points belong to the region, there can
be no certainty about the surface area. This uncertainty in surface area is
reflected when using Definition 4 to obtain a fuzzy number. However, contrary
to the previous example, the fuzzy number now needs to carry a possibilistic
interpretation, as the membership grades now represent the possibility of each
surface area. The need to express uncertainty about the surface area itself,
makes the use of Definition 5 less appropriate.

3. Distance

3.1. Introduction

The distance to a fuzzy region is a complicated concept. Consider for instance
the distance from Spain to the United Kingdom. Gibraltar is part of the United
Kingdom, but this distance might not always be desired: for a criminal evading
the Spanish police, Gibraltar might be the easiest way out, but most people will
refer to the distance to the main island of the UK. We propose two possible dis-
tance measurements that are related to the crisp concept of the shortest distance
between regions. Without having further information on how the membership
grades of the fuzzy region are interpreted, it is difficult to pinpoint the most
appropriate definition.

3.2. α-level approach

The first definition is based on α-levels. With this definition, the distance to
a fuzzy region is represented by a fuzzy number, which models all the possible
distances between the corresponding α-levels. To define the distance calculation,
consider two fuzzy regions Ã and B̃. The distance between crisp regions is
defined as the shortest distance between them (Rigaux, Scholl and Voisard,
2002; Shekhar and Chawla, 2003). The fuzzy distance d̃(Ã, B̃) is a fuzzy number
representing the possible distances between the α-cuts of A and B.
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Figure 5. Illustration of the fuzzy distance yielding a fuzzy number: (a) fuzzy
regions Ã and B̃ (illustrated using grey scales, and using some contourlines),
(b) the membership function representing the fuzzy distance between Ã and B̃.

3.2.1. In a veristic interpretation

In a veristic interpretation, all the different α-levels can be considered to be
crisp regions, thus the distance between crisp regions needs to be considered.
Consequently, only the shortest distance between any two points of the regions
need to be considered, as the distance between two fuzzy regions cannot exceed
the core of the regions.

Definition 6 (distance between fuzzy regions) (α-level approach)

d̃(Ã, B̃) = {(x, µd̃(Ã,B̃)(x)) | x ∈ R}

where

µd̃(Ã,B̃) : R → [0, 1]

x 7→ sup{α | d(Ãα, B̃α) ≤ x ≤ d(Ãα, B̃α)}.

In the case of fuzzy regions with discontinuous membership functions, the
definition provides for a result similar to the result obtained by the definition
of the fuzzy surface (Definition 4). The definition of the distance is illustrated
on Fig. 5. Two fuzzy regions are shown on Fig. 5a, as well as the distances
between some of their α levels. These α levels are combined (following the
above definition) to yield the single membership function, shown in Fig. 5b, to
represent the fuzzy distance.

In this definition, the distance to points with a membership grade 1 is the
only distance which obtains membership grade 1. Intuitively, one might won-
der about this: points with a membership grade greater than 0.5 already are
considered to belong more to the region than to be outside of it.

3.2.2. In a possibilistic interpretation

In a possibilistic interpretation, each individual α-level has to be considered as
a region of candidate locations. As the location itself is unknown, it can be
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anywhere in these regions. Consequently, all distances between any two points
of the regions need to be considered.

Definition 7 (distance d̃(p̃A, p̃B) between fuzzy points p̃A and p̃B)

d̃(p̃A, p̃B) = {(x, µd̃(p̃A,p̃B)(x))}

where

µd̃(p̃A,p̃B) : R → [0, 1]

x 7→ sup
α∈]0,1]

{α | p1 ∈ p̃A
α , p2 ∈ p̃B

α ∧ d(p1, p2) = x}.

p p0.5 p
p0.5

~~ ~
~

A A B
B
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Figure 6. Illustration of the fuzzy distance between fuzzy points: (a) fuzzy
points p̃A and p̃B (illustrated using grey scales, and using some contourlines),
(b) the fuzzy distance between p̃A and p̃B.

3.3. Topological approach

3.3.1. Fuzzy topology

The second approach for defining distance makes use of topological aspects of
fuzzy regions. Topology deals with relative positions of regions, for crisp regions,
these aspects are defined using the concepts of interior, exterior and boundary.
For crisp regions, the definitions are as follows:

∂A = A − A◦

where A is the closure, and A◦ is the interior of A in U . Simply put, the
boundary contains all points that form the outline of the region.

The interior A◦ of a region A is defined as the set of points p ∈ A such that
A◦ contains a neighbourhood of p:

A◦ = {p ∈ A | ∃B ⊂ A, B is a neighbourhood for p}.
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In practice, the interior of a region holds all the points that are inside the region.

A− = R
2 − ∂A

where “−” is the notation for set-minus. In practice, the exterior of a region
encompasses all the points that are not part of the region.

Using these concepts for two different crisp regions, a case study can be
performed to classify the relative positions based on the presence, or lack thereof,
of the intersection of the interior of the first region with the interior of the second
region, the boundary of the first with the interior of the second, ..., nine different
cases in total. These nine cases are grouped in a matrix, the nine-intersection,
by means of which a full case study can be performed.

For fuzzy regions, a similar case study using extended concepts for the in-
terior, exterior and boundary is in preparation. In this case, as the regions
themselves are defined in a fuzzy way, it stands to reason that these three con-
cepts will also yield fuzzy regions.

Definition 8 (boundary ∆Ã of a fuzzy region Ã) The boundary ∆Ã of
a fuzzy region Ã will be defined as a new fuzzy region such that points, for which
µÃ(p) = 0.5 are assigned the membership grade µ∆Ã(p) = 1, and membership
grades in the boundary decrease in a linear way to 0 as the membership grades
in the original region differ more from 0.5 and come closer to either 0 or 1.
This results in the definition:

∆Ã =
⋃

α∈]0,1]

{(p, 2(0.5 − |0.5 − α|)) | p ∈ ∂Ãα}

where ∂Ãα represents the crisp boundary of the α-cut at level α.

Similarly, the interior will hold all the points for which µÃ(p) > 0.5, with
decreasing membership grades in the boundary, i.e. as the membership grade in
the boundary of the original region nears 1.

Definition 9 (interior Ã◦ of a fuzzy region Ã)

Ã◦ = {(p, µÃ◦(p)}

Where

µÃ◦ : U → [0, 1]

p 7→

{

0 µÃ(p) ≤ 0.5
1 − µ∆Ã(p) elsewhere

.

The exterior is defined similarly to the interior; only points p for which
µÃ(p) < 0.5 are now considered, with decreasing membership grades as the
membership grades in the boundary of the original region near 1.
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Figure 7. Illustration of the fuzzy boundary: (a) represented using grey scales,
(b) represented using some contour lines, (c) an example of the membership
functions for both Ã and ∆Ã; this can be considered as a cross section of the
boundary of Ã, ranging from the inside to the outside.
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Figure 8. Illustration of the fuzzy interior (the outline of Ã is shown): (a)
represented using grey scales, (b) represented using some contour lines, (c) an
example of the membership functions for both Ã and Ã◦; this can be considered
as a cross section of the boundary of Ã, ranging from the inside to the outside.

Definition 10 (exterior Ã− of a fuzzy region Ã)

Ã− = {(p, µÃ−(p)}

Where

µÃ− : U → [0, 1]

p 7→

{

0 µÃ(p) ≥ 0.5
1 − µ∆Ã(p) elsewehere

A full case study regarding topology of fuzzy regions has been performed,
but this is in preparation to be published. This contribution introduces and
illustrates the concepts used.
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Figure 9. Illustration of the fuzzy exterior (the outline of the core of Ã is also
shown): (a) represented using grey scales, (b) represented using some contour
lines, (c) an example of the membership functions for both Ã and Ã−; this
can be considered as a cross section of the boundary of Ã, ranging from the
inside to the outside. The region does not end at the boundary Ã−

1 , but extends
infinitely.

3.3.2. Topological distance

To illustrate the topological approach for distances, one might consider, given
that it is boundary that matters most in determining distances, that points with
a membership degree greater than 0.5 already belong more to the region than
points with less than 0.5. This would imply that these points contribute less
to the distance of the region. Similarly, one might consider that as the mem-
bership grade of points is smaller than 0.5, the points belong less to the region,
thus contribute less to the distance. This can be accomplished by defining the
distance using both the distance to its (fuzzy) boundary and the distance to its
(fuzzy) interior.1

Definition 11 (distance between fuzzy regions) (topological approach)

d̃∆(Ã, B̃) = {(x, µd̃∆(Ã,B̃)(x))}

µd̃∆(Ã,B̃) : R → [0, 1]

x 7→

{

µd̃(∆Ã,∆B̃)(x) if x < d(∆Ã0.5, ∆B̃0.5)

1 − µd̃(Ã◦,B̃◦)(x) if x ≥ d(∆Ã0.5, ∆B̃0.5).

1This definition of distance should not be confused with the topological distance as defined
in Egenhofer and Sharma (1993), which expresses the distance between two different topology
cases in a conceptual neighbourhood graph.
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Figure 10. Illustration of the fuzzy distance yielding a fuzzy number: (a) fuzzy
regions Ã and B̃ (illustrated using grey scales, and using some contourlines),
(b) the fuzzy distance between Ã and B̃.

Note that the membership grade for the distance decreases as the member-
ship for the region increases from 0.5 to 1. This reflects the fact from the crisp
case where the distance between a point that belongs to a region is 0; points
with a membership grade greater than 0.5 are considered to be more inside the
region than outside the region. The distance between such points is therefore
assigned lower membership grade. The choice for 0.5 is in a sense arbitrary, but
it stands to reason to consider the halfway-point of the membership grades.

Note that the membership grade decreases as the membership differs 0.5, so
for the distance d3 in Fig. 10 the membership grade is 0. This is because the
distance is considered using the boundary as a reference, not the interior of the
regions. The main argument is that points with a membership grade greater
than 0.5 are more likely to belong to the region, so it is less likely that the
distance needs to be considered up to these points. In a more elaborate case
study, this also allows for a smooth transition from non-overlapping regions,
over touching regions, to intersecting regions.

This definition yields a nice intuitive result for regions that are represented
by normalized fuzzy sets (i.e. where the highest occurring membership grade is 1)
and that are simple fuzzy regions (i.e. the membership grade decreases from the
inside toward the outside), but also for regions that are a union of normalized,
simple fuzzy regions. Note that this topological definition for distance is not
appropriate for fuzzy points, as the topological concepts themselves can be
considered dubious. The definitions presented in Section 3.2 can, however, be
used for points.

3.4. Interpretation of the definitions

For the distance between regions with a veristic interpretation, there is a choice
between the α-level approach (Definition 6) and the topological approach (Def-
inition 11). Intuitively, we would suggest the choice based on the origin of
fuzziness, and applying the topological approach if the fuzziness is inherent to
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the region, as the boundary is known with certainty and will not change, and
consider the α-level approach for fuzziness that is introduced as the boundary
might change when additional information might impact the region (and thus
the boundary).

4. Conclusion

When extending a geographic system to work with fuzzy regions, it is interesting
to have operations that yield a crisp number for crisp regions and a fuzzy number
for fuzzy regions. In this paper, the intuitive definition for the surface area of
a fuzzy region has been considered, and it was shown that this not necessarily
yields a fuzzy number. Similar issues occur with other numeric properties,
such as the distance to a fuzzy region. To overcome this for the surface area,
an alternative definition has been presented. It was also illustrated that this
alternative definition yields result which in all cases is a fuzzy number.
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