
Control and Cybernetics

vol. 38 (2009) No. 1

Time complexity of page filling algorithms in
Materialized Aggregate List (MAL)

and MAL/TRIGG materialization cost∗

by

Marcin Gorawski

Silesian University of Technology, Institute of Computer Science
Akademicka 16, 44-100 Gliwice, Poland

Marcin.Gorawski@polsl.pl

Abstract: The Materialized Aggregate List (MAL) enables ef-
fective storing and processing of long aggregates lists. The MAL
structure contains an iterator table divided into pages that stores
adequate number of aggregates. Time complexity of three algo-
rithms was calculated and, in comparison with experimental results,
the best configuration of MAL parameters (number of pages, single
page size and number of database connections) was estimated. MAL
can be also applied to every aggregation level in different indexing
structures, like for instance the aR-tree.

Keywords: spatial data warehouse, materialization, indexing,
materialized aggregate list, time complexity of MAL algorithms.

1. Introduction

In the relational data warehouse the query processing time can be decreased
using adequate indexation and materialization methods. View materialization
consists of first processing and then storing partial aggregates, which later al-
lows the query evaluation cost to be minimized, performed with respect to a
given load and disk space limitation (see Theodoratos and Bouzehoub, 2000).
In Harinarayan, Rajaraman and Ullman (1996) the authors, for the first time,
use the spatial network for storing the relations between aggregated views. In
Baralis, Paraboschi and Teniente (1997), Gupta (1997), Gupta and Mumick
(1999) views materialization is determined with workload and disk space lim-
itation. Indices can be created on every materialized view, and in order to
decrease the problem complexity, materialization and indexation are often used
separately. This means that optimal indexation scheme is chosen for a given
space limitation, just after the perspective set for materialization is defined (see

∗Submitted: June 2008; Accepted: October 2008.

154 M. GORAWSKI

Golfarelli, Rizzi and Saltarelli, 2002). In Labio, Quass and Adelberg (1997) a
set of heuristic criteria is proposed for choosing data warehouse views and in-
dices. In Rizzi and Saltarelli (2003) authors present a comparative evaluation
of benefits resulting from applying views materialization and data indexing in
data warehouses, focusing on query properties. Next, an heuristic evaluation
method was proposed for a given workload and global disk space limitation.

The reminder of the paper is organized as follows: Section 2 briefly describes
the motivation for our work. In Section 3 the MAL architecture along with new
definitions for the MAL iterator are presented. Section 4 describes the details of
the proposed page-filling algorithms for the MAL iterator and, presented for the
first time, formulas for their time complexity. In this section we compare the
theoretical MAL algorithm graphs with the results obtained earlier (Gorawski,
Malczok, 2005). Finally, Section 5 concludes the paper.

2. Motivation

We are working in the field of spatial data warehousing. Our system (Dis-
tributed Spatial Data Warehouse, DSDW), presented in Gorawski and Malczok
(2004), is a data warehouse gathering and processing huge amounts of telemet-
ric information generated by the telemetric system of integrated meter readings.
The readings of water, gas and energy meters are sent via radio through the
collection nodes to the telemetric server. A single reading (measurement) sent
from a meter to the server consists of: precise timestamp, meter ID and a
measurement value. Periodically, the extraction system loads the data to the
database of the data warehouse system. In our current research we are trying
to find the weakest spots in the current system. After various test series (with
variations of aggregation periods, numbers of telemetric objects etc.) we found
that the crucial problem is to create and manage a long aggregate list. The
aggregate list is a list of meter readings, aggregated according to an appropriate
time window. A time window is a time period in which we want to investigate
utility consumption. The aggregate consists of a timestamp and aggregated
values. When there is a need of investigating the utility consumption, we have
to analyze consumption history. This is when the aggregate list comes useful.
Every aggregate belonging to the list, stores several values, so the memory usage
is rather high. To prevent the memory overflow problem, appropriate memory
managing algorithm was designed, presented in Gorawski and Malczok (2004).
However, even if aggregate value calculation is efficient in simple scenarios like
summing up several values, time needed to calculate a single aggregate, multi-
plied by the length of aggregates list results in a significant prolonging of the
aggregate values calculation process. This is why in many cases the decision is
made to store some or all of the already calculated aggregates - this process is
called materialization. We propose a new method for storing and materializing
aggregates. For this method of aggregate materialization we made the following
assumptions:

Time complexity of page filling algorithms in MAL 155

1. materialization eliminates memory restrictions, and
2. enables storing of any type of attributes and allows for various types of

data sources, and
3. bases on a well-known program structure.

The method is called the Materialized Aggregate List (MAL) (Gorawski and
Malczok, 2005).

3. Architecture of Materialized Aggregate List

The Materialized Aggregate List (MAL) was designed based on a scheme of a
list available in Java language (java.util.List (http://java.sun.com)). Fig. 1
presents the schema of the Materialized Aggregate List architecture.

client

Materialized
Aggregate List

Index
Aggregate
Retriever

Database
Aggregate
Retriever

Indexing structure

A
gg

re
ga

te
R

et
ri

ev
er

client

client

iterator

 Database
iterator

iterator

Data sources

Figure 1: Schema of the MAL architecture.

In comparison to java.util.List, MAL architecture is more complex. The
first significant difference is data source of a list. MAL elements are loaded di-
rectly from a data source (defined for a specific list and instance), not through
its clients. For a Materialized Aggregate List client (MAL client) the type of
list data source is transparent. The second aspect that strongly distinguishes
the materialized list from the ordinary list is the shift of functionality to itera-
tors. Clients can communicate with MAL only using iterators. Iterators have
quite complex structure, ensuring adequate cache and aggregate materialization
mechanisms. The last difference worth mentioning is the fact that the list ob-
ject stores no data (aggregates). Its role is limited to being a mediator between
iterators used by clients and a data source. The MAL client browses the list,
retrieves aggregates and processes them in a characteristic manner.

156 M. GORAWSKI

3.1. The MAL iterator

Iterators of Materialized Aggregate List (MAL iterators) allow only browsing
the list and retrieving aggregates stored in the list. According to the concept of
DSDW the delete operation is unavailable. Browsing and list element retrieval
is realized with two functions of the iterator:

1. hasNext() - the method returns a boolean type logical value. The function
returns value true if the list contains next element, or false if it does not
contain next elements.

2. next() - the method enables retrieving a current list element and auto-
matically moves iterator pointer (cursor) to the next list element.

In comparison with standard list iterator, the MAL iterator architecture is
much more complex. Every iterator contains memory structure - a table of
strictly defined size.

Definition 1 The table of the MAL B iterator (B) is a memory structure that
stores aggregates. The B table is a set of logical fragments called pages.
B := {Si : Si - i-th page of a MAL iterator, i ∈ 1, . . . , n}, where n - number of
pages.

Pages store a fixed number of aggregates. For every page the number of
aggregates is constant. Those logical pages find their usage during the aggregate
creation process. The value that describes a page of a table of MAL iterator is a
timestamp of the first aggregate, called border date. Fig. 2 presents the schema
of the Materialized Aggregate List iterator architecture.

Aggregates

table

Page

1

1

2

M

N

1

2

M

i
A

TS V1 Vn

Aggregates

i

Figure 2: Schema of a MAL iterator.

Time complexity of page filling algorithms in MAL 157

Definition 2 Page S of MAL iterator table (S) is a logical fragment of the B
table. Page S is a set of aggregates:
S := {Ai : Ai– i-th aggregate, i ∈ 1, . . . , M}, where M – number of aggregates.
Page S is defined with border date BD, which is equal to the timestamp of the
first aggregator in the page, decreased by this aggregate time window value.

The smallest structure stored in the table is an aggregate. The aggregate con-
sists of a timestamp and a value set. The aggregate values have certain types
(e.g. a floating point number, an integer). Aggregates are calculated for a
certain time span, called aggregate time window.

Definition 3 An aggregate A is the smallest structure stored in the MAL it-
erator table. Aggregate A is defined as: Ai = (TS, VAi) where:

1. TS is the timestamp of the aggregate,
2. VAi is the list of VAi aggregate element values such as: VAi := {Vi : Vi -

value of i-th Vi aggregate element, i ∈ 1, . . . , n} and ∀i∀Vi∃!tvi
, where tvi

is aggregate type.

The cardinality of a collection Va (|Va|) is not limited and is defined by the need
of using a definite aggregate. The type of an aggregate is defined by the number
of elements in the Va collection and the types of elements in the collection. The
list of values contains pre-processed data for aggregate calculation (e.g. the
utility consumption).

Definition 4 Aggregate type equality.Two aggregates Am, An are of the same
type if:

1. Cardinality of an Am value list equals the cardinality of An value list,
|VAm

|= |VAn
|,

2. Values of Am and An located under the same indices are of equal simple
types i = j ⇒ tVi

= tVj
; i, j = 1, ..., |VAm

|.

The MAL can be applied as a component of nodes in a hierarchical indexing
structure. In such a case, the data source for higher level nodes of the structure
is stored on lower levels. Aggregates in lists on higher levels are created by
summation of the aggregates from lists stored on lower levels. We can sum only
aggregates with identical timestamps and types.

Definition 5 Aggregate addition, As = Am + An. Two aggregates can be
added if:

1. They have equal timestamps: TSAm
= TSAn

,
2. They are of equal type according to Definition 1.

The resulting aggregate As has:

1. a timestamp TS equal to timestamps of aggregates Am and An: TSAs
=

TSAm
= TSAn

,
2. Va being the list of aggregate As values. The elements of VAs

are sums
of elements of VAm

and VAn
: Vi ∈ VAs

, Vi = Wi + Qi, i = 1|VAs
|, where:

Wi ∈ VAm
and Qi ∈ VAn

.

158 M. GORAWSKI

4. The MAL page filling algorithms and their time com-
plexity

The MAL iterator table includes aggregates that can be browsed and retrieved
by the MAL clients. The process of iterator table filling is executed using
specially designed algorithms. Those MAL algorithms operate basing on the
concept of a page as a logical part of the table. By the analysis of the table
fulfillment status and actual cursor position that is set by client (with iterator
next() function), the MAL algorithm triggers a process of filling the appropriate
page of the MAL iterator page.

Operation of a MAL client can be described by a single Ta aggregate con-
sumption (processing) time. This time depends on an analysis specific for client
operation. The analysis is conducted with regard to the page filling algorithm
choice and configuration, and it is easier with definition of two temporal values:

1. Tk - the consumption time of a single page that describes client process;
the Tk time is directly proportional to consumption time of a Ta aggregate,
and the proportionality factor is the page size: Tk = |S|Ta, where |S| is
the page size. If a page stores aggregates from one day and aggregates are
stored every 30 minutes, the page size equals 48.

2. Tw - the page filling time; page filling time directly depends on the used
page filling algorithm. Factors that have the biggest influence on Tw value
are presented below.

Our idea of MAL usage as a substitute for a memory list causes that client
functioning cannot be put on hold while browsing the list. Operation of the
client browsing the list can be halted only when a requested page does not
contain any aggregates, because they have not been calculated. Basing on the
MAL iterator idea and on definitions, which determine its structure, we can
specify when the client functioning will not be halted. In the MAL we assume
that every page filling is performed in a separate thread, which is independent
of the list client thread. Different approaches to the page filling problem in a
MAL iterator table are called MAL page filling algorithms or MAL algorithms.
Below we present three such algorithms. The MAL algorithm descriptions have
some parts in common and every one of them is characterized by:

1. The algorithm overhead, denoted as N . Before its actual functioning, the
algorithm fills a definite number of pages. This action protects the client
from a deadlock, in the case when the Tk time is too short. The unit of
an overhead is a table page of a MAL iterator.

2. The boundary ratio of a Tw page filling and a page consumption time Tk,
R = Tw

Tk
, above which the considered page filling algorithm is unable to

assure continuity of a MAL client functioning.

The T (n) time complexities of MAL algorithms, where n denotes the number
of aggregates retrieved from an iterator table, are quite similar, the differences
result only from the overabundance factor N , that is different for every algo-

Time complexity of page filling algorithms in MAL 159

rithm. As a dominant operation in terms of time we can assume the data source
access operations and aggregate calculation process. The time complexity of a
MAL algorithm is directly proportional to the number of pages that were filled
with aggregates. The S(n) memory complexity of those algorithms is identical
for all versions. The quantity of memory (space) used to deliver aggregates to
MAL client is strictly dependent on iterator list size, iterator table parameters
and parameters of iterator table set.

4.1. The SPARE algorithm

Two first pages of the table are filled when a new iterator is being created and
the SPARE algorithm is used as a page-filling algorithm. Then, during the list
browsing, the algorithm checks if the last aggregate is retrieved from n ·mod|B|
page. If so, the (n+2)mod|B| page is filled, while the client retrieves aggregates
from the (n + 1)mod|B| page. One page is always kept as a "reserve", being
a spare page. Algorithm usage is presented in Fig. 3. The SPARE algorithm
characteristics are:

1. The algorithm overhead is one page: NSPARE = 1
2. The time complexity T (n) is calculated for two cases, assuming that:

Assumption 1 The SPARE algorithm assures continuous functioning of a MAL
client, if the page filling time is less or equal to the page consumption time
Tw ≤ Tk. So, the boundary value is: R = Tw

Tk
= 1.

1. There are only two pages of a MAL iterator table available. The pages
are used as follows: one page is accessed at a moment (aggregate process-
ing), the second one is reserved for readout when the first page processing
finishes. The third page is needed to start filling it in a moment when the
last aggregate is retrieved from the first page.
With such assumptions we can present the time complexity of the SPARE
algorithm for the case when there are only two pages of MAL iterator
table available:

T (n) = (2 + p)Tw + pTa (1)

where

• Tw - the page filling time;

• Ta -the consumption time of a one aggregate;

• p - the number of pages read.

The Ta time results from the fact that when the last aggregate from the
first page is retrieved, the SPARE algorithm can not begin to fill the next
page, because no page is yet available. The algorithm has to wait for page
to be released by a thread that consumes aggregates - the waiting time is
the time Ta needed for consumption of the last aggregate.

160 M. GORAWSKI

2. There are three or more MAL iterator table pages available. In this case
the time complexity of the SPARE algorithm is

Tn = 2Tw + pTw = (2 + p)Tw. (2)

Greater number of available pages (more than three), from theoretical
point of view, has no effect on efficiency of this algorithm. The algorithm
does not assume usage of the greater number of pages.

1

client

SP ARE algorithm:
Retrievin g the last
aggre gate from page 1
triggers filling page 3

2

3

Le genda:

Key:

 U sed aggregate

 Va lid aggre ga te
Invalid aggregate

Page filling

A ggr egate retrieving

Figure 3: Schema of the SPARE page filling algorithm operation.

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6 7 8 9 10

T
im

e
[s

]

Number of pages

48 240
672 1488
2976 Theoretical plot for 672

Figure 4: Time of task execution using the SPARE algorithm as a function of
the number of pages and page size.

Time complexity of page filling algorithms in MAL 161

The experimental results (see Gorawski and Malczok, 2005) show that
the best times were obtained for a larger number of pages than it would
seem from theoretical analysis (Fig. 4.). This fact results from the thread
synchronization mechanism that cannot free the read pages fast enough.
For an additional page, the thread that fills a page does not wait for the
page to be made accessible. However, use of additional pages generates
memory management costs, which can be observed in Fig. 6 and decreases
the overall efficiency of the SPARE algorithm.

4.2. The TRIGG algorithm

The TRIGG algorithm fills only one page of a MAL iterator table before it starts
working. While browsing aggregates from the n · mod|B| page, the algorithm
checks if the second to last aggregate was retrieved. The fact of retrieving the
second to last aggregate from the n ·mod|B| page is a trigger for a thread that
fills the (n + 1)mod|B| page. The TRIGG algorithm does not fill additional
pages until MAL client requests it (Fig. 5).

 1

cli ent TRIGG algorithm:
Retrieving the one b efore
last a ggregate f rom pa ge
1 trig gers filling page 2.

3

2

Figure 5: Functioning of a TRIGG page filling algorithm.

The features of the TRIGG algorithm are as follows:

1. The TRIGG algorithm has no overhead, NTRIGG = 0.
2. The complexity of the TRIGG algorithm is: Tn = pTw

3. The TRIGG algorithm assures fluent functioning of a MAL client only if
the page consumption time is significantly greater than its filling time. So
the boundary value is: R = Tw

Tk
= 1

|S| .

When determining the time complexity of a TRIGG algorithm, the dominant
operation is retrieving data from a database (Fig. 6). The search for adequate

162 M. GORAWSKI

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10

T
im

e
[s

]

Number of pages

672 first run 672 second run
1488 first run 1488 second run
672 first run t 672 second run t
1488 first run t 1488 second run t

Figure 6: Positive influence of materialization on system operation.

data in a measurement table has the greatest influence on data retrieval. How-
ever, the materialized data are easily accessible and their number is significantly
lower than of raw data, so access to such data is more cost efficient. As an ex-
ample, the materialized data for one counter and one year will be stored in only
365 rows, not in 17520. So, the acceleration factor can be defined as a quotient
of time of materialized data retrieval and time of raw data retrieval. For the
TRIGG algorithm it is as follows:

Tn =
Tm

Tn

(pTw) (3)

where

• Tw – page filling time;
• Tm – materialized data retrieval time;
• Tn – raw data retrieval time.

4.3. The RENEW algorithm

The RENEW algorithm fills all pages of a MAL iterator table before it starts
working. Then, when aggregates are browsed and retrieved by the client, the
algorithm checks if the last aggregate was retrieved from page n · mod|B|. If
the client retrieved the last aggregate from n · mod|B| page and proceeded to
(n+1)mod|B| page, the algorithm starts a thread that fills n ·mod|B| page with
aggregates – the page is renewed to be browsed by the client process.

The features of the RENEW algorithm are as follows:

1. The RENEW algorithm has the highest overhead of the presented MAL
algorithms – the overhead depends on the number of pages in iterator
table and equals NRENEW = |B| − 1.

Time complexity of page filling algorithms in MAL 163

2. Time complexity is also the highest:

Tn = (|B| − 1)Tw + pTw = (|B| + p − 1)Tw. (4)

3. To define the values of the R factor we have to consider additional condi-
tions.

Each page of the MAL iterator table is filled using an independent thread.
In the case of two previous algorithms, this fact had no influence, however, in
the RENEW algorithm to precisely define conditions determining appropriate
usage of the algorithm there is a need to consider additional Assumption 2.

Assumption 2 The time Tw of page filling is independent of the number of
simultaneously functioning threads.

In the first approach to this problem we assumed that the system, where
MAL is implemented, has enough resources to start any number of parallel
threads that fill table pages and also that Tw time value for every thread will
not be prolonged. In this case the Tw time has to be lower or equal to the page
consumption time Tk and the number of pages minus one: Tw ≤ (|B| − 1)Tk.
The boundary value of the R ratio of times, in which list client functioning will
not be halted, equals : R = Tw

Tk
= |B|−1 . Further problem analysis shows that

Assumption 2 can not be satisfied. So, the assumption has to be modified.

Assumption 3 The time of page filling depends on the number of simultane-
ously functioning threads.

The change of assumption implies defining a new time value – an effective
time of page filling operation Twe. This time is directly proportional to the
number of simultaneously functioning page filling threads (minus the thread,
for which time is calculated). The value of Twe time equals:

Twe = (1 + k × w)Tw (5)

where:
• k - factor of mutual influence of threads;
• w - number of simultaneously functioning threads;
• Tw - page filling time.

The k factor determines the influence of other threads on the current thread,
for which the Twe value is calculated; the factor has values k ∈ [0, 1]. The value
of k enables to adequately modify formula (5), according to the capacity of
a definite system. To assure the continuous functioning of a MAL client, it
is obligatory to fulfill the condition: Twe ≤ (|B| − 1)Tk . The value of R

that determines the boundary value of a quotient of page filling time to page

consumption time for the RENEW algorithm equals R = (|B|−1)
(1+kw) .

164 M. GORAWSKI

4.4. The influence of the number of database connections on MAL

algorithms

The TRIGG algorithm utilizes only one database connection, so its time com-
plexity is:

Tn = pTw. (6)

The second algorithm, RENEW, can utilize all of the pages of MAL iterator,
so the Tn value equals:

Tn =

{

(|B|=p−1)(1+k(w−1))Tw

|C| for |C| ≤ |B|
(|B|+p−1)(1+k(w−1))Tw

|B| for |C| > |B|
. (7)

While creating graph of Fig. 7 for this algorithm we assumed that k = 0.85,
because this value adequately shows the mutual influence of threads in a single-
processor system.

Time complexity of the SPARE algorithm Tw equals:

Tn =

{

(2+p)(1+k(w−1))Tw

|C| for |C| < 3
(2+p)(1+k)Tw

2 for |C| ≥ 3
. (8)

50

51

52

53

54

55

56

57

58

59

1 2 3 4 5 6 7

T
im

e
[s

]

DB connections

SPARE RENEW TRIGG

RENEW theoretical TRIGG theoretical SPARE theoretical

Figure 7: The influence of the number of database connections on MAL algo-
rithms.

The results of experiments obtained in Gorawski and Malczok (2005) are
consistent with theoretical assumptions (Fig. 7). Different measurement values
in the function of the number of available connections for the TRIGG algorithm

Time complexity of page filling algorithms in MAL 165

are within the boundaries of the measurement error. The results for the SPARE
algorithm suggests that the MAL instance utilizes only one connection available
in a connection pool. Because the time complexity formula (8) does not take
into consideration this influence, there are some differences in the graph for
this algorithm. A graph for the RENEW algorithm shows that there is also
only one connection utilized by a MAL instance. The real (see Gorawski and
Malczok, 2005) and theoretical characteristics for the RENEW algorithm differ,
however, in the final point they become similar. The differences stem from a
random behavior of the Java environment (removal of unused objects in random
moments), thread waiting-time, imperfect synchronization.

5. The MAL/TRIGG materialization costs

One of MAL features is that once calculated and loaded to memory, aggregates
are not lost, but they are stored in a table specially prepared for this purpose.
This enables minimization of a page filling cost. Below, basing on the example
of the TRIGG algorithm, we present the analysis of the materialization influence
on data retrieving and processing. The following assumptions were considered:
page size equal 672 (the best value obtained in tests presented in Gorawski and
Malczok, 2004), aggregates will be retrieved for one counter for a time period
of 12 moths, a single aggregate has only one float value, and the database is
Oracle 10g.

Using (6) we can define time complexity of the TRIGG algorithm, when
there are materialized data available and when there are no materialized data
available. It is worth mentioning that the number of accesses to database for
the materialized data is |S| times less than the number of accesses to database
when querying the fact table; |S| is a single page size. The dominant operation
while page filling is data retrieval from a database so we can replace the Tw

factor with the Tm and Tnm parameters denoting data retrieval cost.

The value of T (n) for the immaterialized (materialized) data is given by (9)
(or (10)):

T (nnm) = pTnm = p(|S|DBCnm + PC) (9)

T (nm) = pTm = p(|S|DBCm + PC) (10)

where:

• T (n) – materialized data retrieval time;
• T (nm) – immaterialized data retrieval time;
• p – number of processed pages;
• |S| – single page size;
• PC – cost of a page creation from the application side;
• DBCm – query execution cost for materialized data;
• DBCnm – query execution cost for immaterialized data.

166 M. GORAWSKI

After several transformations we can present T (nm) using T (nnm)

T (nm) = pTmlz
T (nnm)

T (nnm)
) =

T (nm)

T (nnm)
(pT (nnm)) =

T (nm)

T (nnm)
T (nnm). (11)

So, the acceleration factor can be defined as a quotient of materialized data
retrieval time and raw data retrieval time:

T (nm) =
T (nm)

T (nnm)
(pT (nw)) (12)

where:
• Tw – page filling time;
• Tm – materialized data retrieval time;
• Tnm – immaterialized data retrieval time;
• p – number of processed pages.

The factor pTw denotes task competition time, when no materialized data is
available. It can be presented without accuracy loss as pTnm, however, because
of the earlier page filling the notation pTw and the former dependence are chosen.
To determine pTnm and pTm, we have to calculate the cost of materialized and
immaterialized data access. The materialized data table does not contain any
indices, which accelerates record search, so we have a full table scan (Table
Access (FULL)). The cost of such operation, presented with an I/O access count
is estimated as (see Wojciechowski and Zakrzewicz, 2002):

cost =

[

Km

blocks + 1

db_file_multiblock_read_coun

]

(13)

where:

• blocks – number of table blocks; by increasing this value by one we account
for one header block of a table segment;

• db_file_multiblock_read_count – system parameter that defines the
size of multiblock sequential readouts, number of blocks retrieved in a
single disc access;

• Km – correction factor, depending on the db_file_multiblock_read_count

value (Table 1), it represents the risk of a sequential readout prolongation
in the case of hitting the end of disc cylinder or the end of the extent; this
risk depends on the readout size;

The database table that stores materialized pages of an iterator table con-
sists of three columns. The first column stores the identifier of the object that
materialized data considers. The second column stores page boundary dates
and the third column stores materialized data in a binary format. The exam-
ple of such table is presented in Fig. 8a and a structure of a BLOB column is
presented in Fig. 8b.

Time complexity of page filling algorithms in MAL 167

Table 1: The Km correction factor values for the sequential readouts.

db_file_multiblock_read_count Km

1 0.596500
2 0.755967
3 0.868342
4 0.958064
5 1.033995
6 1.100481
7 1.160019
8 1.214190
9 1.264068
10 1.310419

1

T a ble stor in g m at eria l ize d pa g e s

2 0 0 4 -0 1 -0 1 0 0 :0 0 :0 0 1 0 0 10 0 1 1 1 ..

1 2 0 0 4 -0 1 -0 2 0 0 :0 0 : 00 1 0 1 11 0 1 0 1 ..

1 2 0 0 4 -0 1 -0 3 0 0 :0 0 : 00 1 1 1 01 1 1 1 1 ..

2 2 0 0 4 -0 1 -0 1 0 0 :0 0 : 00 1 1 0 00 1 0 1 1 ..

ID B O R D E _ D A T E B IN _ D A T A

(a)

 B LO B colu m n

M ea sur e d at e A gg r eg at es v alu es

M ea sur e d at e

M ea sur e d at e

M ea sur e d at e

A gg r eg at es v alu es

 A gg r eg at es v alu es

 A gg r eg at es v alu es

N um b er o f ag gr eg ates sto re d

(b)

Figure 8: (a) The table storing materialized aggregates; (b) The BLOB column
structure.

Measure_date (measurement date) is always created with 6 int-type num-
bers. The information on the number of stored aggregates fits in a single int-type
number. The size of Aggregate values field is dependent of MAL settings and
this information can be obtained in DWE application. The single aggregated
page size equals

MPS = n ∗ (date_size + agg_size) + 4 (14)

where:
• MPS – the size of single materialized page given in bytes
• n – the number of aggregates on a page
• date_size – the size of a single timestamp; now it equals : 6*4 = 24 bytes
• agg_size – the size of information about value(s) of a single aggregate,

depending on the MAL settings.

Number 4 was added to include the size of a field that contains information
about the number of stored aggregates on a materialized page. This number

168 M. GORAWSKI

does not have to be equal to the MAL page size, because there is not always
adequate number of aggregates available. As it was stated earlier, the page size
is 672 and a single aggregate contains only one float value (size - 4 bytes), so
the size of a materialized page is:

MPS=672*(24+4)+4=18820 B.

If we assume that a single block has 8192 B (standard Oracle setting), and one
year consists of 17856 readouts (12 months * 31 days * 48 readouts), then the
number of blocks filled with data equals:

• Page size - 672(14days)
• Row size [B] - 18820
• Number of rows for a single year - 17856

672 = 27
• Number of block needed to store one year’s data - 27∗18820

8192 = 63.

Assuming that the db_file_multiblock_read_count factor value equals 8
(default value at database creation), then a cost of a single materialized page
retrieval is, see (13):

Tm =

[

Km

MaterializedBlocks + 1

cd_file_multiblock_read_count

]

=

[

1, 21419 ∗
64

8
= 10

]

. (15)

Query retrieving data from a fact table proceeds as follows:

SELECT max(value) - min(value) as value FROM measure m

WHERE mts > start_date AND mts < end_date

AND meter_id = id

GROUP BY zone

ORDER BY zone

ID
METER_ID
DATE_ID
ZONE
VALUE
CONFIDENCE
MTS

Measure

Figure 9: The MEASURE table structure.

The schema of the fact table (MEASURE) is presented in Fig. 9. In this
table we created database index for meter_id, zone and mts columns. It is a
B*-tree type index.

The cost of an access to this table for the above-mentioned query equals 5.
This value is a sum of the following elements:

Time complexity of page filling algorithms in MAL 169

• the readout of a header of an index segment (cost = 1),
• the readout of an index root (cost = 1),
• the readout of an index leaves percentage, equal to a selection condition

selectivity (mts > start_date AND mts < end_date AND id = meter_id);
it depends on the number of readouts in a certain time period. It was
assumed that there are two readouts and they both are stored in the same
block (cost = 1),

• table blocks readout, pointed with index leaves pointers; only one block is
accessed (cost = 1),

• sorting of the obtained results (cost = 1).

To fill a singe page, there has to be a number of accesses to the database
available, which equals the size of an iterator table, so the cost of single page
filling with raw data is:

Tnm = |S|DBC_B ∗ tree = 672 ∗ 5 = 3360 (16)

where:
• |S| – number of aggregates on a page; page size
• B ∗ tree – cost of a database access with a B*-tree usage.

By putting together (12) with (15) and (16) we get the value of acceleration
caused by materialization:

Tn =
Tn

Tnm

pTw =
10

3360
pTw = 0, 003pTw (17)

where:
• Tw – page filling time
• Tm – materialized data retrieval time
• Tnm – immaterialized data retrieval time
• p – number of processed pages.

On the basis of the above presented calculations we can say that costs of
a database access for the materialized data are minimal. However, with the
increasing volume of materialized data the costs of retrieval will increase linearly,
and the cost of a fact table data retrieval, with usage of a B*-tree type index,
will increase logarithmically. That is why we have to assume that in the case of
whole fact table materialization (of a much greater size than presented in this
paper), the materialization benefits will decrease and in some pessimistic cases
the whole cost will even increase.

5.1. Optimization

It seems that additional materialization benefits can be obtained by decreasing
the data size that is stored in a BLOB column. The timestamp can be written
not in 6 integer type numbers but in a single long type number that will store

170 M. GORAWSKI

the number of milliseconds passed since 1970. It is connected with additional
overhead while processing a date stored in such a manner, however, arithmetical
operations are far less time consuming than data retrieval from a database. The
other manner of date storing can be coding the whole date in a bit form. In
such a case only one integer type number is sufficient: 6 bits - minutes, 5 bits -
day, 4 bits - month, 12 bits - year. The sum is 32 bits so the same as an integer
type number. With simple bitwise operations, adequate field can be identified.
Unfortunately, such approach will cause the code to be less legible. Moreover,
there is a possibility of materialized data size limitation, resulting from the MAL
characteristics. The aggregates defining utility consumption are calculated for
a certain time window, whose width is defined in a configuration file, separately
for each counter type. The timestamp of a next aggregate equals the timestamp
of previous aggregate + the time window width. So, the timestamp of an n-th
measurement is

TSn = BD + nTW (18)

where:
• TSn - the n-th aggregate timestamp
• BD - the page border date
• TW - the time window.

Using the MAL properties, there is a possibility of a complete removal of a
timestamp in a BLOB column of a materialized aggregates table. As a replace-
ment it is enough to store the size of a time window in the following manner:
unit type and a number of units. Both these pieces of information can be stored
in two single integer type numbers. It will cause a great decrease of volume of
stored information and simultaneously the cost of a next timestamp calculation
to be negligible, with insignificant overhead. The page border date is known on
the level of selection condition formulation for the next page of a materialized
list, hence there is no need to retrieve this information from a data base. The
size of such "clipped" record in a materialized data table, considering earlier
assumptions (672 aggregates, single float type value) equals:

MST = (673 ∗ 4) + 12 = 2700B. (19)

Number 12 stands for three int type numbers storing information about
number of aggregates on a page, the time windows time units and the number
of those units. As a result the size of materialized data decreased more than 6
times.

6. Conclusion

Three versions of a MAL page filling algorithm were presented. For a MAL client
those algorithms vary mainly in overhead and possibility of a fluent aggregate
delivery for different page consumption times. The first and most important

Time complexity of page filling algorithms in MAL 171

factor of an algorithm selection is the time of aggregate processing by a MAL
client process. In the case when the consumption time of a MAL iterator ta-
ble page is comparable with the page filling time, the SPARE algorithm that
can assure continuous client functioning with insignificant overhead is the best
choice. However, if the consumption times are small, or aggregate calculation
is time consuming, then RENEW algorithm should be used. Another feature
that determines the adequate algorithm selection is the character of the system,
in which MAL is implemented. If the system resources (mainly the available
throughput of I/O channels) are rather small, then the RENEW algorithm will
not guarantee fluent functioning of a MAL client. On the example of the TRIGG
algorithm we presented the analysis that confirms favorable influence of materi-
alization on data retrieval and processing. It was assumed that in case of whole
fact table materialization, the materialization benefits will decrease and in some
pessimistic cases the whole cost will even increase (research still in progress).
On a current designing stage the page filling algorithms as well as other MAL
parameters, are defined in an XML configuration file, so they are not dynam-
ically balanced with a DSDW load. The other manner of a MAL functioning
speed-up is to use the LRU buffer as a cache mechanism of a higher hierarchical
level.

References

Baralis, E., Paraboschi„ S. and Teniente, E. (1997) Materialized view
selection in multidimensional database. In: VLDB’97, Proceedings of 23rd
International Conference on Very Large Data Bases. Morgan Kaufmann,
156-165.

Golfarelli M., Rizzi S. and Saltarelli E. (2002) Index selection for data
warehousing. In: Proceedings of 4th International Workshop on Design
and Management of Data Warehouses, DMDW’2002, Toronto, Canada.
CEUR-WS 58, 33-42.

Gorawski M. and Malczok R.(2004) Distributed Spatial Data Warehouse
Indexed with Virtual Memory Aggregation Tree. Proceedings of 2nd Inter-
national Workshop on Spatio-Temporal Database Management, STDBM’04,
Toronto, Canada. Morgan Kaufmann, 25-32.

Gorawski M. and Malczok R.(2005) On Efficient Storing and Processing
of Long Aggregate Lists. 7th International Conference Data Warehousing
and Knowledge Discovery, DaWaK. LNCS 3589, Springer Verlag, 190-
199.

Gupta, H. (1997) Selection of views to materialize in a data warehouse. Pro-
ceedings of 6th International Conference ICDT’97, Delphi, Greece. LCNS

1186, Springer Verlag, 98-112.
Gupta, H.and Mumick, I.S.(1999) Selection of views to materialize under a

maintenance cost constraint. Proceedings of 7th International Conference
ICDT’99, Jerusalem, Israel. LCNS 1540, Springer Verlag, 453-470.

172 M. GORAWSKI

Harinarayan, V., Rajaraman, A. and Ullman, J. (1996) Implementing
data cubes efficiently. ACM SIGMOD Rec. 25 (2), 205-216.

Labio W.J., Quass D. and Adelberg B. (1997) Physical database design
for data warehouses. Proceedings of 13th International Conference on
Data Engineering, Birmingham, UK. IEEE Computer Society, 277-288.

Rizzi S. and Saltarelli E.(2003) View Materialization vs. Indexing: Bal-
ancing Space Constraints in Data Warehouse Design. Proceedings of 15th
International Conference on Advanced Information Systems Engineering,
CAiSE 2003, Klagenfurt, Austria. LCNS 2681, Springer Verlag, 502-519.

Sun Microsystems Sun Microsystems JavaTM 2 Platform Standard Edition
5.0 API Specification. http://java.sun.com.

Theodoratos, D. and Bouzehoub, M. (2000) A general framework for the
view selection problem for data warehouse design and evolution. Proceed-
ings of the 3rd ACM international workshop on Data warehousing and
OLAP, McLean, Virginia, US. ACM Press, 1-8.

Wojciechowski M. and Zakrzewicz M. (2002) Cost-based query optimizer
III PLOUG Oracle Seminar. Polish Oracle User Group, Warszawa, 5-16.

