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Abstract: Increasing significance and popularity of XML is the
main reason why many commercial object-relational database man-
agement systems (ORDBMSs) developed XML storage and process-
ing functionality. Additionally, there are new types of specialized
database systems known as ’native’ XML database systems. As we
know, concurrency control is one of the most important mechanisms
in DBMSs. Unfortunately, concurrency control mechanisms, which
have been used so far in commercially available native XML DBMSs,
offer very low degree of concurrency. The development of universal
and effective concurrency control protocol for accessing XML data,
with high degree of concurrency, is a necessary condition of the na-
tive XML database growth.

The aim of this paper is to propose a new concurrency control
protocol in XML document access. This protocol is based on prim-
itive operations, which can be treated as a unification platform for
any of the XML access methods.
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1. Introduction

Currently, XML document processing is one of the major areas in data process-
ing technology. The popularity of XML is a result of its simplicity and elasticity.
Due to these features, XML is the main standard in the complex, variable and
semi structured data exchange. Increasing significance and popularity of XML
is the main reason why many commercial object-oriented-relational DBMSs de-
veloped XML storage and processing functionality. Additionally, there are new
types of specialized database systems known as ’native’ XML database systems.
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Concurrent and uncontrolled access to XML database systems, like in re-
lational and object-oriented database systems, may lead to data inconsistency.
Concurrency control problem was widely considered in the literature. A variety
of correctness criteria for concurrency control in database systems and a variety
of concurrency control protocols were proposed. Conflict serializability is the
main, commonly accepted concurrency control criterion. Developed protocols
represent three main approaches: locking, time stamp ordering and optimistic.
Mechanisms used so far in commercially available native XML DBMS are based
on locking protocols and offer very low degree of concurrency and, thus, very
low processing performance. There is an obvious need to develop new methods
of concurrency control in XML database systems, which provide database con-
sistency and acceptable degree of concurrency. These methods should provide
acceptable performance, taking into account specific XML document features
and variety of modification methods. There have been few propositions to solve
this problem so far (Helmer, Kanne and Moerkotte, 2004; Haustein and Härder,
2003; Grabs, Böhm and Schek, 2002; Dekeyser and Hidders, 2002; Choi and
Kanai, 2003; Jea, Chen and Wang, 2002; Pleshachkov, Chardin and Kuznetsov,
2005). These solutions differ as to the degree of concurrency and assumed access
methods to XML documents.

In Jankiewicz (2006) we presented a brief survey of proposed concurrency
control protocols and their critical analysis. The protocol classification was also
presented. The criteria of evaluation were defined and protocol analysis was
made on the basis of proposed criteria. Concurrency control protocols which
were analyzed in Jankiewicz (2006) can be classified in several ways. For ex-
ample, according to the assumed access method to XML documents, we can
distinguish the following classes of protocols: based on DOM API and based
on XPath standard. There is no protocol unassigned to the particular access
method. The aim of this paper is to propose a new concurrency control pro-
tocol for XML database systems, which is independent of the access method.
We have to stress that different access methods coexist in various ‘native’ XML
databases. They are used depending on users preferences and needs. Due to
this fact the independence of concurrency control protocols from access method
has the key meaning for future development of XML database systems. Concur-
rency control mechanisms used so far in commercially available ’native’ XML
DBMS are based on locking protocols and offer very low degree of concurrency
and, thus, very low processing performance. There is an obvious need to develop
new methods of concurrency control for XML database systems, which provide
database consistency and acceptable degree of concurrency. These methods
should provide acceptable performance, taking into account specific XML doc-
ument features and a variety of modification methods.

The structure of this article is as follows. In Section 2 main XML processing
standards are presented. Section 3 presents the proposal of a new concurrency
control protocol. Section 5 concentrates on conducted experiments and analysis
of the results. Section 6 presents conclusions and directions for future work.
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Figure 1. Example of DOM tree

2. XML Interfaces

Extensible Markup Language (XML) (Clark and DeRose, 1999) is a simple
text format based on markups, derived from SGML (ISO 8879:1986). XML,
originally designed as an electronic standard for distribution of information,
was widely used as a data exchange format. An example of XML document is
presented in Fig. 2. The sample document is composed of one root element book,
which consists of three inner elements: title, year, authors. The element
authors consists of two author elements. Additionally, the book element has
an attribute named isbn. The content of the attribute, as well as of the four
elements (title, year, author), is a simple string–text node.

There are many standards for processing XML documents. DOM API and
XPath are the most important among them.

DOM (Document Object Model) API standard is one of the oldest standards
related to XML document access. It provides a set of objects to represent
XML documents and the interface to documents access and modifications. It
is independent of programming language. Because of DOM API, we can remap
XML documents to their object representation, read and modify their content,
navigate through their structure and modify them. DOM representation of an
XML document is similar to a tree structure, and, therefore, we call it DOM
tree. An example of DOM tree, which represents the XML document from Fig. 2
is given in Fig. 1.

In the DOM API interface we can distinguish between procedures and func-
tions to read XML document and procedures and functions to modify it.

The most important procedures and functions to read the structure of XML
document are: firstChild – reads first child element of a node, lastChild
– reads the last child element, previousSibling – reads previous sibling of a
node, nextSibling – reads next sibling of a node, getNodeById – reads node
with determined value of ID attribute, getElementByTagname – reads nodes
with determined tag name. The main methods to read the content of XML
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Table 1. Examples of XPath expressions

XPath expression (and its short form) Addressed XML

document fragments

/child::book/attribute::isbn (/book/@isbn) KD-12345-XY

/descendant-or-self::author (//author) <autor>Smith</author>

<autor>Wilder</author>

/child::book/child::year/child::text()

(/book/year/text())

1999

/child::book[child::year=’1999’]/_

descendant-or-self::autor[1]

(/book[year=’1999’]//author[1])

<autor>Smith</author>

document are: nodeValue – reads content of the text node, nodeName – reads
tag value of an element, getAttribute – reads attribute with determined name.

On the other hand, we have procedures and functions to modify the structure
of XML documents: insertBefore – inserts new node before the current node,
replaceChild – replaces current node with new a node, removeChild – removes
node, appendChild – inserts new node as the last node of child nodes. We have
methods to modify content, too: appendData – inserts text at the end of text
node, deleteData – deletes text node fragment, insertData – inserts text node
into current element, replaceData – replaces text in the node, setAttribute
– sets attribute value.

DOM API standard is a procedure interface, which means that user, which
uses it, defines modification or read operation in a procedural way. A different
approach to define modifications and reads is a rule-oriented approach. There
are many standards related to XML that use rule-oriented approach. One of
the most important of them is XPath.

XPath can be used to address XML document fragments. It uses XPath
expressions – locations path, which are similar to path expression used in file
systems. Each XPath locations path consists of one or more location steps, each
separated by a slash ’/’ symbol. Each location step consists of: (1) optional axis
specifier, which is used to set direction of tree navigation, (2) node test, which
is used to do some node tests dependent on the axis specifier, and (3) optional
predicate, which is a kind of condition of the additional selection of nodes. The
syntax for a location step is as follows:

axisname :: nodetest[predicate]

XPath expressions can use regular expressions, functions etc. Table 1 con-
tains some examples of XPath expressions that can be used to address the XML
document given in Fig. 2.

XPath is widely used in XML documents processing. For example, it is
a base for XML document transformation standards like XSLT (Extensible
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<book isbn=’KD-12345-XY’>

<title>XML</title>

<year>1999</year>

<authors>

<author>Smith</author>

<author>Wilder</author>

</authors>

</book>

Figure 2. XML document Figure 3. SXCCP+ data model

Stylesheet Language Transformations) and for query and modifications lan-
guages like XQuery (with update extensions) or XUpdate. In numerous in-
formation systems DOM API standard and XPath standard coexist like two
alternatives to XML document access.

3. SXCCP+

SXCCP+ protocol, presented in this section, is based on locking mechanism
and two phase locking protocol. The main idea of the SXCCP+ is concurrency
control, which will be independent of (and not assigned to) a particular XML
document access method. We assume that every access to XML document
can be translated into a set of primitive and indivisible equivalent operations.
Only these primitive operations are taken into account by the SXCCP+. For
example, we assume that every DOM API function, and every XPath operation,
performed on XML document, can be expressed in one, or in a sequence of
primitive low-level operations. The fact that protocol is founded on primitive
operations makes it autonomous from specific XML document access method.
In the further part of this section we describe the set of primitive operations of
the SXCCP+.

3.1. Data model

Data model used by the SXCCP+ for concurrency control is a simple DOM tree
extension. Original DOM tree is extended by text nodes of attribute nodes.
These additional nodes contain text value of attributes. In data model we
distinguish following node types: document nodes, element nodes, attribute
nodes and text nodes (which contain text value of elements and attributes).
For example, data model for XML document from Fig. 2 is given in Fig. 3.
Additional node types, like processing instructions and comments, are treated
in the same way as text nodes, and are therefore omitted in this paper.

The aim of introducing the new text node for attributes is to increase degree
of concurrency and unification of protocol rules, which take place in the attribute
and text node access. In the data model all nodes are lockable entities, on which
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Table 2. Conversion of DOM API methods to primitive operations

DOM API methods Equivalent primitive operations

n.firstChild C(n); T(first(n))

n.previousSibling T(previous(n))

n.getElementsByTagName C(n); C(desc(n)); R(desc(n))

n.nodeName R(n)

n.getAttribute(s) C(n); R(attrs(n))

insertBefore(n’,n) I(n’,parent(n),pos(n))

concurrency control mechanism, due to execution of primitive operations, can
acquire locks.

All primitive operations are performed transparently to users of DBMS by
the concurrency control mechanism on the data model of XML document.

3.2. Primitive operations

We defined a set of primitive operations based on analysis of existing interfaces
to XML document access. Before we introduce primitive operations, we define
the concept of the node content. Node content is (according to node type) a tag
(element node) or name of attribute (attribute node) or text value (text node)
or node value (other node types which cannot have children nodes). In the
SXCCP+ the following set of primitive operations is used: C(n) – test of child
node existence, T(n) – node access (without access to its contents), R(n) – node
content access, U(n) – node modification, it is an update of content of node,
D(n) – node deletion, I(n’,n,l) – insertion of n’ node into n node at lth
position of children of n node.

In order to use a SXCCP+ in a real XML database system, it is necessary to
define the method of assigning the sequence of primitive operations equivalent
to every operation existing in the used XML interfaces. In the case of procedural
interfaces we can use association matrix, where we define sequence of equivalent
primitive operations for each interface method. A fragment of such association
matrix for DOM API is presented in Table 2. In the case of declarative inter-
faces, the sequence of equivalent primitive operations can be obtained according
to the defined set of rules. We have defined such a set of rules for XPath-based
interfaces. These rules are based on semantics of XPath expressions. Before we
present these rules, we introduce some definitions partially based on definitions
introduced in Jea, Chen and Wang (2002). As we mentioned in Section 2, each
XPath location path Lj consists of location steps Si,j , 1 ≤ i ≤ |Lj |, where |Lj|
is the length of Lj.

The set of context nodes of a location step Si,j of location path Lj includes
nodes that Si,j begins with. Context nodes are denoted by C(Si,j). Context
node of the first location step S1,j is a root of the document.
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The set of opening nodes of a location step Si,j of location path Lj , denoted
by O(Si,j), includes nodes satisfying axisname in Si,j .

The set of mid-result nodes of a location step Si,j of location path Lj , denoted
by M(Si,j), is the selection of O(Si,j) satisfying nodetest in Si,j .

The set of result nodes of a location step Si,j of location path Lj, denoted
by R(Si,j), is the selection of O(Si,j) satisfying predicate in Si,j . In fact,
R(Si,j) = C(Si+1,j).

Let us notice that the predicate of a location step Si,j of location path Lj

can be expressed by another location path Li,j, which consists of other location
steps Sk,i,j , 1 ≤ k ≤ |Li,j |. C(S1,i,j) of location path Li,j is M(Si,j).

The destination nodes, denoted by Nd(Lj) of a locationpath Lj , areR(S|Lj|,j).

As an illustration of these definitions let us analyze the following example.
Assume that XPath location path has format
L1=/book[title/text()=’XML’]//author[1]. Location path L1 has two lo-
cation steps S1,1=child::book[title/text()=’XML’], and
S2,1=descendant-or-self::author[1]. Additionally, location step S1,1 has
predicate which uses location path L1,1=title/text(). Location path L1,1

has two location steps S1,1,1=child::title and S2,1,1=child::text(). Let
us analyze context, opening, mid-result and result nodes of these location steps.
Context node C(S1,1) of location step S1,1 is [r]. Opening node O(S1,1) of the
same location step is [1]. The same node ([1]) is an M(S1,1). Before we get
R(S1,1) of a location step S1,1, we have to evaluate its predicate. C(S1,1,1) of
location step S1,1,1 is [1]. Opening nodes O(S1,1,1) of the location step S1,1,1

are [2], [3], [5]. M(S1,1,1) and R(S1,1,1) of location step S1,1 is [2]. The
same node is a C(S2,1,1). Opening node O(S2,1,1) of the location step S2,1,1 is
[6]. M(S1,1,1) and R(S1,1,1) of the same location step is also [6]. Value of [6]
is XML, so predicate of S1,1 is fulfilled and [1] is R(S1,1) of the location step
S1,1. Node [1] is also the context node of the location step S2,1. According
to axisname format, the opening nodes O(S2,1) of the location step S2,1 are
[2], [3], [5], [9], [10], [6], [7], [11], [12]. According to testname format
of location step S2,1, the mid-result nodes M(S2,1) are [9] and [10]. Due to
predicate of S2,1 the result node R(S2,1) is [9]. Location step S2,1 is the last
step of XPath location path L1, therefore [9] node is also the destination node
Nd(L1) of the location path L1.

Now, we can present the set of rules, which assign the sequence of primitive
operations equivalent to XPath location path Lj. In SXCCP+ protocol the se-
quence of primitive operations results from evaluation of every location step. At
the beginning of the location step Si,j evaluation, operation T is performed on
C(Si,j). Then, if axisname has a child, descendant or descendant-or-self
format1, operation C is performed on C(Si,j). Then, according to nodetest

function, operation T or R is performed on O(Si,j). If nodetest function is ex-
pressed by *, then T operation is performed, otherwise R operation is performed.

1Axisname which has following or preceding format as not allowed in SXCCP+ protocol
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Table 3. Sequence of primitive operations equivalent to XPath-based update
operations in SXCCP+ protocol

update

operation

primitive operations update

operation

primitive operations

IB(n’,n) I(n’,parent(n),pos(n)-1) UT(n,t) U(text(n))

IA(n’,n) I(n’,parent(n),pos(n)+1) RN(n’,n) D(n);

I(n’,parent(n),pos(n))

IF(n’,n) C(n); I(n’,n,1) DN(n) D(n)

IL(n’,n) C(n);

I(n’,n,max(pos(childs(n)))

CN(n,t) U(n)

IU(n’,n,l) C(n); I(n’,n,l)

(1) doc = getDocument();

(2) node = doc.getFirstChild();

(3) node = node.getLastChild();

(4) node = node.getLastChild();

(5) node.getNodeName();

(6) node = node.getFirstChild();

(7) node.setNodeValue(’Speed’);

Figure 4. DOM API example

for $i in /book[title/text()=’XML’]//author[1]

do rename $i as writer

Figure 5. XQuery example

As mentioned in Section 2, XPath expressions are used in many XPath-based
interfaces which can read XML document fragments and also modify them.
XQuery and XUpdate are one of the most popular. XQuery and XUpdate
expressions allow modification of destination nodes Nd(Lj), of location path
Lj , by the following update operations: IB(n’,n) – inserts new node n’ before
node n, IA(n’,n) – inserts new node n’ after node n, IF(n’,n) – inserts new
node n’ as the first child of node n, IL(n’,n) – inserts new node n’ as the
last child of node n, IU(n’,n,l) – inserts new node n’ as lth child of node n,
UT(n,t) – updates text value of node n to t value, RN(n’,n) – replaces node
n to new node n’, DN(n) – deletes node n, CN(n,t) – changes node name n

to t value. The sequence of primitive operations equivalent to each of update
operations is presented in Table 3.

Let us analyze the following examples.
Exemplary DOM API operations are presented in Fig. 4. According to asso-

ciation matrix for DOM API, mentioned before, following primitive operations
are equivalent to each DOM operation: (1): T([r]); (2): C([r]), T(book[1]);
(3): C(book[1]), T(authors[5]); (4): C(authors[5]), T(author[10]); (5):
R(author[10]); (6): C(author[10]), T([12]); (7): U([12]). An exemplary
XQuery expression is presented in Fig. 5. XPath location path used in this
expression has format L1=/book[title/text()=’XML’]//author[1]. Its lo-
cation steps have been described above. At the destination nodes of location
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Table 4. Context, opening, mid-result, results nodes and corresponding primi-
tive operations

S C(S) O(S) M(S) R(S) primitive

operations

S1,1 [r] book[1] book[1] book[1] T([r]), R([1])

S1,1,1 book[1] title[2],

year[3],

authors[5]

title[2] title[2] T([1]), R([2]),

R([3]), R([5])

S2,1,1 title[2] [6] [6] [6] T([2]), R([6])

S2,1 book[1] title[2],

year[3],

authors[5],

author[9],

author[10],

[6], [7],

[11], [12]

author[9],

author[10]

author[9] T([1]), R([2]),

R([3]), R([5]),

R([9]), R([10]),

R([6]), R([7]),

R([11]), R([12])

CN Nd(L1): author[9] U([9])

path L1 XQuery expression changes node names – performs CN operations. Let
us analyze primitive operations assigned to location step S1,1. Operation T is
performed on C(S1,1) nodes – [r]. According to axisname format, C operation
is performed on [r] node. The opening node O(S1,1) of the location step S1,1 is
[1], and according to nodetest format R operation is performed on this node.
The same node ([1]) is an M(S1,1). Before we get R(S1,1), we have to evaluate
its predicate. C(S1,1,1) node of location step S1,1,1 is [1], and T operation and
then C operation are performed on this node. The opening nodes O(S1,1,1) of
the location step S1,1,1 are [2], [3], [5], and R operation is performed (accord-
ing to textnode format) on these nodes. M(S1,1,1) and R(S1,1,1) of location
step S1,1 is [2]. The same node is a C(S2,1,1), then T and C (according to
axisname format) operation is performed on this node. Opening node O(S2,1,1)
of location step S2,1,1 is [6], and R operation is performed on this node. Con-
text, opening, mid-result, results nodes and corresponding primitive operation
for analyzed XQuery expression are presented in Table 4.

3.3. Lock modes

Concurrency control mechanism of SXCCP+ is based on the two phase locking
method. For all the primitive operations, introduced in preceding subsection,
corresponding operational basic lock mode was defined. Thus, SXCCP+ uses the
following operational basic lock modes: LC – child test lock, LT – traversal lock,
LR – read lock, LU – update lock, LD – delete lock, LW – write lock, corresponding
to primitive operations: C, T, R, U, D, I, respectively.
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Additionally, we introduce the set of operational tree lock modes. These lock
modes prevent lock escalation when performed operation has descendant nodes
range. For example, in XQuery expression presented in Fig. 5, location step
S2,1=descendant-or-self::author implies R operation performed on all de-
scendant nodes of n ([1]) node. In such cases, instead of acquiring operational
basic locks on all descendant nodes of n node, SXCCP+ acquires operational
tree lock on n node only. SXCCP+ uses the following operational tree lock
modes: LCC – child test tree lock, LTT – traversal tree lock, LRR – read tree lock,
LUU – update tree lock, LDD – delete tree lock, LWW – write tree lock.

Additionally, for each operational basic lock mode as well as for each opera-
tional tree lock mode corresponding intentional lock mode was defined. There-
fore, we have the following intentional lock modes: LIC – intentional child test
tree lock, LIT – intentional traversal lock, LIR – intentional read lock, LIU –
intentional update lock, LID – intentional delete lock, LIW – intentional write
lock; for operational basic lock modes: LC, LT, LR, LU, LD, LW, respectively, and
LICC – intentional child test tree lock, LITT – intentional traversal tree lock,
LIRR – intentional read tree lock, LIUU – intentional update tree lock, LIDD –
intentional delete tree lock, LIWW – intentional write tree lock; for operational
tree lock modes: LCC, LTT, LRR, LUU, LDD, LWW, respectively. Additionally, SX-
CCP+ uses two intentional lock modes LICW and LICWW. Meaning of these lock
modes is presented in the next subsection.

3.4. Locking rules

Concurrency control mechanism controls every transaction, which performs ac-
cess to documents in XML database system. SXCCP+ for every primitive oper-
ation (implied by operations of transactions) acquires locks with corresponding
modes in two phases: the phase of intentional locks which is followed by the
phase of operational locks. When primitive operation is performed on n node,
during the phase of intentional locks, the intentional locks are acquired on all
ancestor nodes of n node. The intentional locks are acquired from root of doc-
ument to parent node order. When all required intentional locks are granted,
operational lock is acquired on n node. When any of required locks can not
be acquired due to incompatibility with other locks acquired by other transac-
tions, then transaction and its locking mechanism stop, and wait for the release
of incompatible lock. When locking mechanism stops, all previously acquired
locks are held. Mode of the intentional locks, as well as mode of the operational
locks, correspond to the type of primitive operation, which is performed on
XML document, and its range. For example, the XQuery update expression of
Fig. 5 implies U operation performed on the author[9] node. Thus, it requires
intentional LIU locks on: [r], book[1] and authors[5] node, then, it requires
LU lock on author[9] node.

There is slightly different situation when I operation is performed. In this
case, two intentional lock modes LIW and LICW (LIWW and LICWW, when operation
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Table 5. Locks acquired by SXCCP+ protocol

primitive

operation

range of

operation

acquired locks in SXCCP+ protocol

C n LIC(ancestor(n)), LC(n)

C desc(n) LICC(ancestor(n)), LCC(n)

T n LIT(ancestor(n)), LT(n)

T desc(n) LITT(ancestor(n)), LTT(n)

R n LIR(ancestor(n)), LR(n)

R desc(n) LIRR(ancestor(n)), LRR(n)

U n LIU(ancestor(n)), LU(n)

U desc(n) LIUU(ancestor(n)), LUU(n)

D n LID(ancestor(n)), LD(n)

D desc(n) LIDD(ancestor(n)), LDD(n)

I n LIW(ancestor(n)-parent(n)), LICW(parent(n)), LW(n)

I desc(n) LIWW(ancestor(n)-parent(n)), LICWW(parent(n)), LWW(n)

has descendant nodes range) are used. During the phase of intentional locks LIW
(LIWW) lock mode are acquired on all ancestor nodes except for parent node.
Then LICW (LICWW) lock mode is acquired on a parent node. Lock modes LICW
and LICWW are used to avoid phantom anomaly. Table 5 presents locks acquired
by SXCCP+ protocol according to primitive operations and their range.

3.5. Lock matrix compatibility

As a result of the analysis of commutation of primitive operations, the complete
compatibility matrix was built. It is presented in Table 6. As a result, the
analysis of the complete lock compatibility matrix gives the following equiva-
lence classes of lock modes: EQ1= {LT, LIC, LIT, LICC, LITT}, EQ2= {LTT,
LCC}, EQ3= {LIR, LIRR}, EQ4= {LIU, LIUU}, EQ5= {LIW, LID, LIWW, LIDD},
EQ6= {LW, LD, LDD, LWW}, EQ7= {LICW, LICWW}. Therefore, we introduce a
representative for each equivalence class. Let the representative of equivalence
classes EQ1, EQ2, EQ3, EQ4, EQ5, EQ6, EQ7 be lock modes LT, LTT, LIR,
LIU, LIW, LW and LICW, respectively. Lock modes not included in the presented
equivalence classes are, in fact, members of the one-element equivalence classes,
and they representatives of these classes. After this introduction we can present
in Table 7 the lock compatibility matrix of SXCCP+ with the use of the repre-
sentatives of equivalence classes.
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LC + + + + – – + + + + – – + + + + + – + + + + + + – +

LT + + + + – – + + + + – – + + + + + + + + + + + + + +

LR + + + – – – + + + – – – + + + + + + + + + + + + + +

LU + + – – – – + + – – – – + + + + + + + + + + + + + +

LD – – – – – – – – – – – – – – – – – – – – – – – – – –

LW – – – – – – – – – – – – – – – – – – – – – – – – – –

LCC + + + + – – + + + + – – + + + + – – – + + + + – – –

LTT + + + + – – + + + + – – + + + + – – – + + + + – – –

LRR + + + – – – + + + – – – + + + – – – – + + + – – – –

LUU + + – – – – + + – – – – + + – – – – – + + – – – – –

LDD – – – – – – – – – – – – – – – – – – – – – – – – – –

LWW – – – – – – – – – – – – – – – – – – – – – – – – – –

LIC + + + + – – + + + + – – + + + + + + + + + + + + + +

LIT + + + + – – + + + + – – + + + + + + + + + + + + + +

LIR + + + + – – + + + – – – + + + + + + + + + + + + + +

LIU + + + + – – + + – – – – + + + + + + + + + + + + + +

LID + + + + – – – – – – – – + + + + + + + + + + + + + +

LICW – + + + – – – – – – – – + + + + + + + + + + + + + +

LIW + + + + – – – – – – – – + + + + + + + + + + + + + +

LICC + + + + – – + + + + – – + + + + + + + + + + + + + +

LITT + + + + – – + + + + – – + + + + + + + + + + + + + +

LIRR + + + + – – + + + – – – + + + + + + + + + + + + + +

LIUU + + + + – – + + – – – – + + + + + + + + + + + + + +

LIDD + + + + – – – – – – – – + + + + + + + + + + + + + +

LICWW – + + + – – – – – – – – + + + + + + + + + + + + + +

LIWW + + + + – – – – – – – – + + + + + + + + + + + + + +
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Table 7. Lock compatibility matrix of SXCCP+

granted

requested LT LC LR LU LW LTT LRR LUU LIR LIU LIW LICW

LT + + + + – + + + + + + +

LC + + + + – + + + + + + –

LR + + + – – + + – + + + +

LU + + – – – + – – + + + +

LW – – – – – – – – – – – –

LTT + + + + – + + + + + – –

LRR + + + – – + + – + – – –

LUU + + – – – + – – – – – –

LIR + + + + – + + – + + + +

LIU + + + + – + – – + + + +

LIW + + + + – – – – + + + +

LICW + – + + – – – – + + + +

Lock modes, which are members of an equivalence class, are replaced in SX-
CCP+ by equivalence class representative. For example, D operation performed
according to XQuery update expression do delete /book/title, requires LIW
locks, instead of LID locks, on document node and book[1] node as well as LW
lock, instead of LD lock, on title[2] node. This is due to the fact that LID

lock mode is a member of EQ5, where LIW lock mode is the equivalence class
representative, and LD lock mode is a member of EQ6 where LW lock mode is
the equivalence class representative.

Additionally, SXCCP+ can use lock modes which are the combinational lock
modes, and which could be used with the conversion of locks. Due to page num-
ber limitation these lock modes, lock conversion matrix and lock compatibility
matrix of combinational lock modes are not presented in this paper.

Let us analyze the following example. Assume that transactions T1 and T2

are performed concurrently. Transaction T1 executes DOM API operations pre-
sented in Fig. 4, whereas transaction T2 executes XQuery expression presented
in Fig. 5. Table 8 presents an example of their realization and required locks.
Realization from 1 to 4 executes smoothly – only node access (T) and node
content access (R) operations are performed. Their locks are compatible. In the
fifth case, transaction T1 performs U operation on [12] node, which requires
LIU lock mode on [r], [1], [5], [10] nodes. Unfortunately, transaction T2 ac-
quired LRR lock mode on [4] node. According to compatibility matrix (Table 7)
LRR lock mode is incompatible with LIU lock mode. Therefore, transaction T1

stops until transaction T2 ends in 6.
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Table 8. Concurrent realization of transactions T1 and T2

no. operation acquired locks no. operation acquired locks

1 T1:

(1)–(3)

LT([r]), LC([r]),

LIT([r]), LT([1]),

LIC([r]), LC([1]),

LIT([1]), LT([5])

4 T2: S2,1 LT([1]), LRR([1])

2 T2: S1,1,

S1,1,1,

S2,1,1

LT([r]), LIR([r]),

LR([1]), LIT([r]),

LT([1]), LIR([1]),

LR([2]), LR([3]),

LR([5]), LIT([1]),

LT([2]), LIR([2]), R([6])

5 T1:

(6)–(7)

LIC([5]),

LC([10]),

LIT([10]),

LT([12]),

LIU([r],[1],[5],

[10]), LU([12])

3 T1:

(4)–(5)

LIC([1]), LC([5]),

LIT([5]), LT([10]),

LIR([5]), R([10])

6 T2: CN LIU([r],[1],[5]),

LU([9])

4. Correctness of SXCCP+

Before the formal proof we introduce some helpful definitions. The idea of the
proof is based on Pleshachkov, Chardin and Kuznetsov (2005).

Definition 1 Let P be the set of primitive operations used by the SXCCP+
algorithm and defined in subsection 3.2.

Definition 2 Let Z be a primitive operation, which completes the execution of
a transaction. It is the last operation of each transaction and it releases all locks
acquired by the transaction.

Definition 3 Let op be an operation of transaction, which is one of the P

operations, completed by Z operation – op ∈ {C, T, R, U, D, I}∪ {Z} .

Definition 4 Let action be a pair a(op, t); where t is a transaction identifier.

Definition 5 Let T be a transaction, which is a finite list of actions that have
the same identifier of transaction.

Definition 6 Let Q be a set of primitive operations, which do not change the
document – Q ∈ {C, T, R}.

Definition 7 Let schedule S be a sequence of actions, which belong to the set
of transactions.

Definition 8 Let LS
n be a set of locks obtained by transactions after processing

the n-th step of S.
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Definition 9 Schedule S is legal if and only if at any step n of schedule S, a
set of obtained locks LS

n contains only compatible locks.

Definition 10 Two schedules S and S′ are equivalent if following conditions
are fulfilled: (1) the schedule S is a permutation of S′, preserving the order
of actions in each transaction, (2) all the queries in the schedule S return the
same results as the corresponding queries in S′, (3) the resulting document in
the schedule S and in the schedule S′ is the same.

Definition 11 Schedule S is serializable, if it is equivalent to any of the serial
schedules Sserial.

The schedule S generated by SXCCP+ is serialized according to the following
partial order, transaction Ti precedes transaction Tj (Ti < Tj) when Z operation
of Ti precedes Z operation of Tj or there is no Z operation of Tj in S.

Let S′ be a schedule resulting from schedule S by swapping two subsequent
actions, which belong to different transactions – a(opn, Ti) and a(opn+1, Tj)
where Tj < Ti in schedule S.

Let lSn(opn) be a set of locks acquired or released by operation opn in S.

Let DS
n be a resulting document after opn (n − th step of S).

Let Nd(opn) be destination nodes of opn.

Let ChildOf(N) be child nodes of N nodes, let DescOf(N) be descendant
nodes of N nodes and let ParentOf(N) be parent nodes of N nodes.

Lemma 1 If S is a legal schedule then S′ is also a legal schedule.

Proof. S′ is a legal schedule if the following conditions are satisfied: (1) all locks
in LS′

n are compatible, (2) LS′

n+1 ⊆ LS
n+1

• opn, opn+1 ∈ P . Since operations which belong to P do not remove
locks, we have LS

n+1 = LS
n−1 ∪ lSn(opn) ∪ lSn+1(opn+1) and LS′

n+1 = LS′

n−1 ∪

lS
′

n (opn+1) ∪ lS
′

n+1(opn).
If opn, opn+1 ∈ Q. Operations do not change the document and locks
acquired by them are compatible. It follows that lS

′

n+1(opn) = lSn(opn) and

lS
′

n (opn+1) = lSn+1(opn+1).

If opn, opn+1 ∈ P . The only case lS
′

n+1(opn) 6= lSn(opn) (lS
′

n (opn+1) 6=
lSn+1(opn+1)) occurs when Nd(opn) (Nd(opn+1)) contains nodes inserted
or deleted by opn+1 (opn). This is the case when opn ∈ P, opn+1 ∈
{D, I}(opn+1 ∈ P, opn ∈ {D, I}). Since all locks LC, LT, LR, LU, LW are
not compatible with LW, and all locks LTT, LRR, LUU, LW (operations with
descending range) are not compatible with LIW and LW, and each of locks
LT, LIR, LIU, LIW, LICW is not compatible LW (operations with descending
range) we have contradiction.
We have LS′

n = LS
n and LS′

n+1 = LS
n+1. Thus, we proved (1) and (2).
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• opn+1 ∈ Z. Since Z removes locks, it follows that LS
n+1 = LS

n−1 ∪ lSn(opn) \

lSn+1(opn+1) and LS′

n =LS′

n−1 \ lS
′

n (opn+1). Due to lSn+1(opn+1)= lS
′

n (opn+1)

we have LS′

n ⊂ LS
n+1. Thus we proved (1).

The only case when LS′

n+1 6= LS
n+1 is when Z terminates transaction, which

removes Nd(opn). This is the case when S is not a legal schedule because
none of locks LC, LT, LR, LU, LW (LTT, LRR, LUU, LW; LT, LIR, LIU, LIW,
LICW) is compatible with LW (LIW, LW; LW). Thus, we proved also (2).

Lemma 2 If S is a legal schedule and opn ∈ Q or opn+1 ∈ Q, then their results
in S′ are the same.

Proof. Due to the fact that Q operations do not change the document, we have
to consider the combinations of Q operations and P \ Q operations.

• ({I, D}, T) → (T, {I, D}) (({I, D}, R) → (R, {I, D})). I or D changes the
results of T(R) in three cases:

– if Nd(opn) ∩ Nd(opn+1) 6= Ø then LW and LT(LR) are obtained by
different transaction on the same node. We have contradiction,

– Nd(opn+1) ⊆ DescOf(Nd(opn)). It is an impossible case, because
LT(LIR) and LW are incompatible,

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range. It
is an impossible case, because of incompatibility of LIW and LTT(LRR).

• (T, D) → (D, T) ((R, D) → (D, R)). See previous point.
• (T, I) → (I, T) ((R, I) → (I, R); (C, I) → (I, C)). Operation I can change

results of T (R; C) when I inserts nodes, which belong to destination nodes
of T (R; C) in S′. In SXCCP+ every access to child nodes of n node requires
LC lock on n node (C operation must be performed on n node). We have
to consider two cases:

– Nd(opn+1) are child nodes of node on which C (opn) operation was
performed. Due to incompatibility LC and LICW this case is impossi-
ble,

– Nd(opn+1) ⊆ DescOf(Nd(opn)) and opn has descendent range. LTT

(LRR; LTT) and LIW are not compatible – thus, it is an impossible
case.

• ({I, D}, C) → (C, {I, D}). I or D change the results of C in the following
cases:

– Nd(opn) ∩ Nd(opn+1) 6= Ø. LW and LC are not compatible, therefore
this case is impossible,

– Nd(opn+1) ⊆ DescOf(Nd(opn)). It is an impossible case, because
LT(LIR) and LW are incompatible,



SXCCP+: Simple XML concurrency control protocol for XML database systems 231

– Nd(opn) ⊆ ChildOf(Nd(opn+1)). Due to incompatibility of LC and
LICW this case is impossible.

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range. It
is an impossible case, because of incompatibility of LIW and LTT.

• (C, D) → (D, C). See previous point.
• (U, {C, T}) → (U, {C, T}). U operation does not change the number of nodes

in the document; therefore it can not change the outcome of the C and T

operations.
• ({C, T}, U) → ({C, T}, U). See previous point.
• (U, R) → (R, U). U operation can change the result of R operation in the

following cases:

– if Nd(opn) ∩ Nd(opn+1) 6= Ø, then LU lock and LR lock are obtained
by different transaction on the same node. We have contradiction,

– Nd(opn+1) ⊆ DescOf(Nd(opn)) and opn has descendent range. Im-
possible case due to LIR and LUU incompatibility,

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range.
LIU and LRR are not compatible, therefore this case is impossible.

• (R, U) → (U, R). See previous point.

Lemma 3 If S is a legal schedule, then DS
n+1 = DS′

n+1.

Proof. We have to consider combinations of P \Q operations. Operations Q do
not change the state of the document, therefore, when opn or opn+1 belongs to
Q, then DS

n+1 and DS′

n+1are the same.

• (U, U) → (U, U). U operations do not commute in the following cases:

– if Nd(opn) ∩ Nd(opn+1) 6= Ø, then LU locks are obtained by different
transaction on the same node. We have contradiction,

– Nd(opn+1) ⊆ DescOf(Nd(opn)) and opn has descendent range. It is
an impossible case due to LUU and LIU incompatibility,

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range. It
is an impossible case due to LIU and LUU incompatibility.

• (U, D) → (D, U) ((U, I) → (I, U)). U and D(I) operations do not commute in
the following cases:

– if Nd(opn) ∩ Nd(opn+1) 6= Ø, then LU lock and LW lock are obtained
by different transactions on the same node. We have contradiction,

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range. It
is an impossible case due to LW and LUU incompatibility,

– Nd(opn+1) ⊆ DescOf(Nd(opn)) and opn has descendent range. It is
an impossible case due to LUU and LIW incompatibility.



232 K. JANKIEWICZ

• (D, U) → (U, D) ((I, U) → (U, I)). Similar to previous point.
• (D, D) → (D, D). These operations commute.
• (D, I) → (I, D). Operations D and I do not commute in the following cases:

– if Nd(opn) ∩ Nd(opn+1) 6= Ø, then LW locks are obtained by different
transaction on the same node. We have contradiction,

– Nd(opn+1) ⊆ DescOf(Nd(opn)) and opn has descendent range. It is
an impossible case due to LIW and LW incompatibility,

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range. LW
and LIW are not compatible, therefore this case is impossible.

• (W, D) → (D, W). Similar to previous point.
• (I, I) → (I, I). I operations do not commute in the following cases:

– if ParentOf(Nd(opn)) ∩ ParentOf(Nd(opn+1)) 6= Ø, then LC and
LICW locks are obtained by different transactions on the same node.
We have contradiction,

– Nd(opn) ⊆ DescOf(Nd(opn+1)) and opn+1 has descendent range. It
is an impossible case due to LW and LIW incompatibility,

– Nd(opn+1) ⊆ DescOf(Nd(opn)) and opn has descendent range. LIW

and LW are not compatible, therefore this case is impossible.

• ({U, D, I}, Z) → (Z, {U, D, I}) – These operations commute.

We have considered all possible combinations of operations opn and opn+1. In
all of these combinations DS

n+1 = DS′

n+1.

Theorem 1 All schedules S generated by SXCCP+ are serializable.

Proof. Every legal schedule S can be reduced to serial schedule Sserial. It is
possible through multiple swapping of two subsequent actions a(opn, Ti) and
a(opn+1, Tj) where Tj < Ti. Schedule S is serial schedule Sserial if there are no
such pairs of actions.

Taking into account Lemmas 2 and 3, we obtain that schedules S and S′ are
equivalent. In Lemma 1 we proved that S′ is a legal schedule. Schedule S′ can
be used to obtain (S′)′. Taking into account the fact that schedule S is a finite
list of actions, we conclude that schedule S can be reduced to Sserial by finite
number of swaps of actions.

5. Experimental results

Our experiments were conducted with the support of XML database system pro-
totype, which was created at the Institute of Computing Science of the Poznan
University of Technology. This prototype was constructed for the purpose of re-
search on concurrency control mechanisms in XML database systems (Siekierski
and Siekierska-Wojnowska, 2005).
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5.1. Tested protocols

We conducted our experiments for the following concurrency control proto-
cols: NO2PL, Node2PL, OO2PL, taDOM and SXCCP+. Protocols NO2PL,
Node2PL, OO2PL, introduced in Helmer (2004) have two versions: basic and
extended. In extended versions of these protocols additional locks were intro-
duced. These additional locks correspond to the read content node and modi-
fication node operations. We performed experiments with extended versions of
these protocols. Protocol taDOM has a special lock mode U, which supports
read with potential write access and prevents granting further read locks. This
lock mode decreases deadlock probability, but also decreases the degree of con-
currency. Similar lock modes do not exist with other tested protocols, although
they could. Therefore, in our tests we use the version of taDOM protocol with-
out the U lock mode. Additionally, due to lack of lock conversion tables in
NO2PL, Node2PL and OO2PL protocols, we do not do such conversions. This
fact has an influence on the number of acquired locks, but in this way this
number is comparable among different protocols.

5.2. Characteristics of the XML document

Our experiments were performed on several types of XML documents. We
present results of experiments performed on one XML document bench0065.xml,
which was generated by xmlgen – The Benchmark Data Generator, created as
a part of XMark – An XML Benchmark Project (Schmidt, 2002).

5.3. Transaction classes

Access to XML documents was realized by the set of transactions, which were
concurrently started. Cardinality of the transactions set was changed from 1 to
49. Operations performed by transactions were based on DOM API. Each trans-
action was one out of four transaction classes. The choice of transaction class
for each transaction was random with the same probability. Each of transaction
classes has characteristics as follows:

• OneDocumentPointModify – transaction navigates from root node to one
of leaf nodes, and modifies its content. Traverse from one level of XML
document to a deeper one is realized by the choice of direction (Get-
FirstChild or GetLastChild), and then by the move through random num-
ber of sibling nodes. At the last node of each traverse, transaction performs
node content access (reads its tag). At the end, transaction performs node
content modification, which depends on node type.

• OneDocumentRandomLevelModify – transaction navigates from root node
to node on one of random levels, and modifies the node content. Traverse
from one level of XML document to a deeper one is realized in the same
way as in OneDocumentPointModify transaction class. For each document
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level, transaction can stop navigation with probability depending on the
average depth of the document.

• OneDocumentRandomLevelDelete – transaction navigates from root node
to node on one of random levels, and removes destination node. Navigation
is realized in the same way as in OneDocumentRandomLevelModify class.

• OneDocumentRandomLevelInsert – transaction navigates from root node
to node on one of random levels, and inserts a new node as a child or
neighbor of destination node. Navigation is realized in the same way as
in OneDocumentRandomLevelModify class.

5.4. Results

Presented figures reflect the results of performed experiments as the average
values of the following chosen measures: test times (Fig. 6) – the time required
to service all concurrent transactions as a function of cardinality of transaction
set, number of conflicts (Fig. 7) – the number of conflict situations as a function
of cardinality of transaction set. Each conflict situation was resolved by restart
or waiting of transaction because of the fact that WAIT-DIE algorithm was
used, number of locks held (Fig. 8) – the maximum number of locks held by the
transactions as a function of cardinality of transaction set.

5.5. Analysis of the results

Let us take a closer look at the results. As we can see in Fig. 8, number of locks
held by the OO2PL protocol is higher than in other protocols. This difference
is due to the number of node locks, which are acquired for every operational
lock in OO2PL. The number of locks held by SXCCP+ is not lower than in
other protocols. It is because of the intentional locks. These intentional locks
have crucial meaning because they enable SXCCP+ usage with other XML
interfaces and they enable operational tree lock mode usage, which can decrease
the number of locks in many cases (tree lock modes were not used in presented
experiments). Figs. 6 and 7 reflect the fact that the SXCCP+ has medium
ability to lead transaction to the successful realization, but SXCCP+ does not
allow for phantom anomaly, and gives serializable realizations, and therefore
it must be more restrictive than OO2PL, NO2PL or Node2PL, which allow
phantom anomaly to occur.

6. Conclusions and future work

In this paper we have presented a new locking protocol for concurrency control
access in XML database systems, named SXCCP+. It is the first protocol, which
is not assigned to any particular XML interface. It is based on primitive and
indivisible operations, which may be treated as components of any operations
of any XML access interface. It means that SXCCP+ is the protocol, which
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Figure 6. Test times Figure 7. Number of conflicts

Figure 8. Number of locks held

can be treated as general and neither assigned to nor dependent of a particular
XML interface. This fact has the key meaning for most XML database systems,
when different interfaces coexist. Moreover, presented results of conducted ex-
periments show that SXCCP+ is not worse than specialized protocols, assigned
to particular interface, like taDOM, OO2PL, NO2PL, and Node2PL.

Our experiments presented in this work are focused on DOM API based
protocols. Therefore, in our next work we will conduct series of experiments
which compare SXCCP+ with other concurrency control protocols, which are
based on XPath expressions. Then, we plan to introduce some modifications
into SXCCP+ which, as results, will give higher degree of concurrency.
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