
Control and Cybernetics

vol. 38 (2009) No. 1

Schema mapping and query reformulation in

peer-to-peer XML data integration system∗

by

Tadeusz Pankowski

Institute of Control and Information Engineering
Poznań University of Technology, Poland

Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań, Poland

Abstract: In the paper we discuss the problem of XML data
integration in a P2P environment. In this setting each peer stores
schema of its local data, mappings between the schema and schemas
of some other peers (peer’s partners), and schema constraints. The
goal of the integration is to answer the queries formulated against
arbitrarily chosen peers. The answer consists of data stored in the
queried peer as well as data of its direct and indirect partners. We
focus on defining and using mappings, schema constraints, and query
reformulation in such scenario. We discuss a strategy that allows
us to obtain a complete answer with the possibility of discovering
missing values. The method is the theoretical foundation of the
implementation of SixP2P system (Semantic Integration of XML
data in P2P environment).

Keywords: semantic data integration, XML schema mapping,
XML functional dependencies, query reformulation, query answering
in peer-to-peer systems.

1. Introduction

Information integration and data exchange play central role in building of large
scale systems of P2P data management and a new generation of internet based
applications such as e-commerce systems, scientific grids or EAI (Enterprise
Application Integration) and EII (Enterprise Information Integration) systems
(see Calvanese et al., 2004, Bernstein et al., 2002, Haas, 2007, Tatarinov and
Halevy, 2004). In such systems user is interested in accessing data available at
many different peers in many different schemas (see Arenas and Libkin, 2005,
Madhavan and Halevy, 2003, Rahm and Bernstein, 2001, Yu and Popa, 2004).
To overcome syntactic heterogeneity, schema mappings are used to specify how

∗Submitted: June 2008; Accepted: October 2008.

174 T. PANKOWSKI

data structured under one schema (the source schema) can be transformed into
data structured under another schema (the target schema) (see Fagin et al.,
2004, Fuxman et al., 2006). The user issues queries against an arbitrarily chosen
peer and expects the answer to include relevant data stored in all P2P connected
data sources. The data sources are related by means of schema mappings. A
query must be propagated to all peers in the system along semantic paths of
mappings and reformulated accordingly. The partial answers must be merged
and sent back to the user peer (see Madhavan and Halevy, 2003, Tatarinov and
Halevy, 2004).

Contributions. This paper describes a formal framework underlying a class
of XML data integration systems. The main contributions of the paper are:

• Formal framework: XML schemas are represented by means of a class
of tree-pattern formulas. This formalism is used to specify schema map-
pings, schema constraints (functional dependencies), and queries. Some
formal properties have been proven, in particular we show the relationship
between functional dependencies defined over a schema and the strategy
of propagation of queries and merging answers. This is significant both
for the amount of information in the answer (some missing data can be
discovered) and efficiency of query evaluation.

• Translation algorithms: We developed and implemented a number of
algorithms reformulating queries and translating formal specifications into
XQuery programs (queries). The demanded XQuery programs are gener-
ated automatically from high level specifications. Such programs are used
for: data transformation, query evaluation and discovering missing data.

Related work. Commonly, source-to-target dependencies were used to
specify schema mappings, where both the source and target schemas are rela-
tional (see Abiteboul, Hull and Vianu, 1995, Fagin et al., 2002, 2004, Fuxman et
al., 2006, Xiao and Cruz, 2006). In Arenas (2005) the relational source-to-target
dependencies were adapted to XML data exchange problem by replacing rela-
tional atoms with tree-pattern formulas. We follow this approach and enrich it
significantly, by adding schema constraints (XML functional dependencies) (see
Arenas, 2006). There is an extensive literature on P2P data integration (see
Halevy, 2005, Koloniari and Pitoura, 2005, Koubarakis et al. 2003, Tatarinov
and Halevy, 2003, 2004), where some applications and optimization issues are
discussed.

In this paper we are mainly interested in the impact of the relationship
between schema constraints and the query on the way of query execution (i.e.
query propagation and merging answers delivered by interrogated peers). In
data integration, one can face the problem of inconsistent data (see Arenas,
Bertossi and Chomicki, 2003, Chomicki, 2007, Staworko, Chomicki and Marcin-
kowski, 2006). Then, a process of repairing can be performed (see Arenas et al.,
2005, Staworko, Chomicki and Marcinkowski, 2006). We propose a process of
discovering missing values (denoted by null) which is a way for increasing both

Schema mapping and query reformulation in peer-to-peer XML data integration system 175

the information content of the answer (see Pankowski, 2006) and the quality of
the data integration system.

The paper is organized as follows. Section 2 introduces a running example
and gives motivation of the research. Basic definitions of XML schemas and
XML trees are introduced in Section 3. Schema mappings are discussed in
Section 4. In Section 5 schema constraints, functional dependencies and keys
are investigated. Queries and query reformulation, and some problems related
to merging are considered in Sections 6 and 7, respectively. In Section 8 we
describe some solutions implemented in SixP2P system. Section 9 concludes
the paper.

2. XML schemas, schema constraints and XML trees

In this section we introduce some fundamental notions used in this paper and
relevant to query answering in XML data integration systems. We assume that
XML data are stored in local data repositories located on autonomous peers.
We will focus on properties of data (schemas and constraints), and – in the
following sections – also on schema mappings and queries. Problems concerning
peers and communications between peers are beyond the scope of this paper.

In Fig. 1 there are three peers, P1, P2, and P3, along with XML schema trees,
S1, S2, S3, and schema instances I1, I2, and I3, respectively. Further on, we
will assume that XML attributes are represented by elements. We also assume
that no element in XML schema has recursive definition. Then, XML schemas
can be represented by trees, which, in turn, enable us to specify schemas in a
form of tree-pattern formulas.

����
���

�����
�����

	��
��
	��
����	�

���������
�
��

���

	��
��
	��
��		�

���������
����

����
����

����� ��	�� 	��
���
	�� ����������

�����
����
����

����� 	��
���
	�� ����������

�����
	��
���
	��
���

	�� �	����
����� ��	��

�����

������� 	��
���
	��
��

	��
��		�

�	���
�����
�����

��	�
�����

���

Figure 1. XML schema trees S1, S2, S3, and their instances I1, I2 and I3,
located in peers P1, P2, and P3

176 T. PANKOWSKI

2.1. XML schemas

In this paper an XML schema (a schema for short) will be understood as a
tree-pattern formula (see Arenas and Libkin, 2005, Pankowski, Cybulka and
Meissner , 2007, Xu, 2005). Schemas will be used to specify structures of XML
trees. Other properties of XML trees are defined as schema constraints.

Definition 1 A schema over a set L of labels and a set x of variables is an
expression conforming to the syntax:

S ::= /l[E]
E ::= l = x | l[E] | E ∧ ... ∧ E,

(1)

where l ∈ L, and x is a variable in x. If variable names are significant, we will
write S(x).

Schemas in the above definition are fragments of XPath 2.0 predicates (see
XPath 2.0, 2006) of the class XP {/,[],=,var}. These fragments consist of label
tests, child axes (/), branches ([]), equality symbol (=), and variables.

Example 1 The schema S1 in Fig. 1 can be specified as follows:

S1(x1, x2, x3, x4) := /pubs[pub[title = x1 ∧ year = x2∧
author[name = x3 ∧ university = x4]]]

Definition 2 Let S be a schema over x and let an atom l = x occur in S.
Then, the path p starting in the root and ending in l is called the type of the
variable x, denoted typeS(x) = p.

Example 2 The type of x1 in schema S3 is
typeS1

(x1) = /pubs/pub/title.

2.2. XML functional dependencies

An important class of schema constraints consists of XML functional dependen-
cies (XFD).

Definition 3 An XML functional dependency (XFD) over a set L of labels
and a set x of variables is an expression with the syntax:

fd ::= /P [C]/.../P [C],
P ::= l | P/P,
C ::= TRUE | P = x | C ∧ ... ∧ C,

(2)

where l ∈ L, and x is a variable in x. If variable names are significant, we will
write fd(x).

Schema mapping and query reformulation in peer-to-peer XML data integration system 177

In the same way as for schemas, we define types of variables for XFD. If

fd = /P1[C1]/.../Pi[· · · ∧ Pij = xj ∧ · · ·]/.../Pn[Cn],

is an XFD, then typefd(xj)=/P1/.../Pi/Pij . Additionally, we assume type(fd)=
/P1/.../Pn.

We will say that an XFD fd over L′ and x′, is defined on a schema S over
L and x, if:

• x′ ⊆ x, L′ ⊆ L,
• typefd(x) = typeS(x), for each x ∈ x′,
• type(fd) is a path in S.

Let pi be the type of variable xi ∈ x′, pi = type(xi), and p = type(fd). Then
the fd can be written in the form (see Arenas, 2006)

{p1, ..., pn} → p

and it can be said that a tuple of text values (a1, ..., an), where ai is the text
value of the path pi, 1 ≤ i ≤ n, uniquely determines the text value of the pathp.

Example 3 XFD over S3 is

fd(x2) := /authors/author/paper[title = x2]/year,

meaning that the value of fd(x2) is uniquely determined by the values of x2.

2.3. XML trees

An XML database consists of a set of XML data. We define XML data as an
unordered rooted node-labeled tree (called XML tree) over a set L of labels
(used to label element nodes), a set Str ∪ {⊥} of strings, and the distinguished
null value ⊥ (used as values of text nodes).

Definition 4 An XML tree I is a tuple (r, Ne, N t, child, λ, ν), where:

• r is a distinguished root node, Ne is a finite set of element nodes, and N t

is a finite set of text nodes;
• child ⊆ ({r} ∪ Ne) × (Ne ∪ N t) – a relation introducing tree structure

into {r} ∪Ne ∪N t; the root has exactly one child (the top element); each
element node must have a child;

• λ : Ne → L – a function labeling element nodes;
• ν : N t → Str ∪ {⊥} – a function labeling text nodes with text values from

Str or with the null value ⊥.

In order to define a relation of satisfaction between XML trees and schemas
we need the notion of variable valuation. A valuation ω of variables from a set
x to the set Str∪{⊥} is a function assigning values from Str∪{⊥} to variables
in x, i.e. ω : x → Str ∪ {⊥}.

178 T. PANKOWSKI

By Ω a set of valuations will be denoted. A pair (S, ω) denotes the formula
(sentence) created from S by replacing any occurrence of variable x with its
value ω(x).

Definition 5 Let S be a schema over x, and ω be a valuation for variables in
x. An XML tree I satisfies S by valuation ω, denoted I |= (S, ω), if the root r
of I satisfies S by valuation ω, denoted (I, r) |= (S, ω), where:

1. (I, r) |= (/l[E], ω), iff ∃n ∈ Ne child(r, n) ∧ (I, n) |= (l[E], ω);
2. (I, n) |= (l[E], ω), iff λ(n) = l and

∃n′ ∈ Ne(child(n, n′) ∧ (I, n′) |= (E, ω));
3. (I, n) |= (l = x, ω), iff λ(n) = l and

∃n′ ∈ N t(child(n, n′) ∧ ν(n′) ⊑v ω(x)), where the subsumption relation
⊑v on values is defined as follows: a′ ⊑V a ⇔ a′ = a ∨ a = ⊥;

4. (I, n) |= (E1 ∧ ... ∧ Ek, ω), iff (I, n) |= (E1, ω) ∧ · · · ∧ (I, n) |= (Ek, ω).

In Definition 5 we use the subsumption relation ⊑v instead of the regular
equality symbol =. In the rule 3 we assume that the relation of satisfaction
holds also when the text value in XML tree is subsumed by (is more specific
than) the value determined by the valuation. For example, for I3 and S3, we
have:

I3 |= (S3(x1, x2, x3), (Ann, XML, 2005)),

but also

I3 |= (S3(x1, x2, x3), (Ann, XML,⊥)).

For a set Ω of valuations, we assume

I |= (S, Ω) ⇔ ∀ω ∈ Ω(I |= (S, ω)), (3)

i.e. an XML tree satisfies Ω if it satisfies any valuation ω in Ω. If Ω is the
maximal set of valuations, which is satisfied by I, then it is said to be the
description for I.

The value of a path expression exp in an XML tree I, denoted by [[exp(x)(I)]],
is a sequence of strings, or a sequence of nodes. We assume that evaluation of
exp in I is performed according to the XPath semantics (see XPath 2.0, 2006,
Wadler, 2000, Gottlob, Koch and Pichler, 2002).

Definition 6 An XFD constraint fd(x1, ..., xk) holds in an XML tree I, or I
satisfies fd(x1, ..., xk), denoted I |= fd(x1, ..., xk), if the following formula holds

∀x1, ..., xk, x, x′(x ∈ [[fd(x1, ..., xk)(I)]] ∧ x′ ∈ [[fd(x1, ..., xk)(I)]] ⇒ x = x′).

3. Schema mappings

The key issue in data integration is the one of schema mapping. Schema map-
ping is a specification defining how data structured under one schema (the source

Schema mapping and query reformulation in peer-to-peer XML data integration system 179

schema) is to be transformed into data structured under another schema (the
target schema). In the theory of relational data exchange, source-to-target de-
pendencies (STDs) (see Abiteboul, Hull and Vianu, 1995) are usually used to
express schema mappings (see Fagin et al., 2004).

A schema mapping specifies the semantic relationship between a source
schema and a target schema. We define it as a source-to-target dependency
adapted for XML data (see Arenas and Libkin, 2005, Pankowski, Cybulka and
Meissner, 2007).

Definition 7 A mapping from a source schema S to a target schema T is an
expression of the form

m := ∀x(S(x) ⇒ ∃yT (x′,y)), (4)

where x′ ⊆ x, and y ∩ x = ∅.

Further on, the quantifications within mappings will be often omitted. Map-
pings are special cases of queries (see Definition 11), where the query qualifier
is TRUE. The result of a mapping is the canonical instance of the right-hand
side schema, where each variable y ∈ y has the ⊥ (null) value.

The semantics of mappings is defined as follows:

Definition 8 Let I be an instance of a source schema S and Ω be the descrip-
tion of I. The result of a mapping m := S(x) ⇒ T (x′,y) is an instance J of T
such that its description Ω′ is

Ω′ = {m(ω) | ω ∈ Ω},

where the valuation m(ω) = (ω[x′],⊥y) is composed of: ω[x′] – the restriction
of the valuation ω to variables in x′, and ⊥y – the valuation assigning ⊥ to each
variable y ∈ y. Then we write J = m(I) and Ω′ = m(Ω).

Example 4 The mapping m31 from S3 to S1 is specified as:

m31 := ∀x1, x2, x3(S3(x1, x2, x3) ⇒ ∃x4S1(x2, x3, x1, x4)).

Then, for I3 |= (S3(x1, x2, x3), (Ann, XML, 2005)),
m31(x1, x2, x3, x4)(x1 : Ann, x2 : XML, x3 : 2005) =
(x1 : Ann, x2 : XML, x3 : 2005, x4 : ⊥). Thus, a valuation has

been created, which is satisfied by an instance J of schema S1, i.e.
J |= (S1(x2, x3, x1, x4), (x1 : Ann, x2 : XML, x3 : 2005, x4 : ⊥)).

In SixP2P, mappings are implemented by means of XQuery programs. For
a mapping mik the corresponding program is generated by Algorithm 1.

180 T. PANKOWSKI

Algorithm 1 (translating a mapping to XQuery program)
Input: A mapping mik := ∀x(Si ⇒ ∃ySk), where:

Si := /l′[E′], Sk := /l[E], y = (y1, ..., ym).
Output: Query in XQuery over Si transforming an instance of Si

into the corresponding canonical instance of Sk.

mappingToXQuery(∀x(/l′[E′] ⇒ ∃y1, ..., ym/l[E]))=
<l>{

let $y1 := ”null”, ..., $ym := ”null”
for $v in /l′,

τ(v, E′)
return

ρ(E)}
</l>

where:
1. τ(v, l = x) = $x in if ($v[l]) then string($v/l[1]) else ”null”,
2. τ(v, l[E]) = $v′ in if ($v[l]) then $v/l else /,

τ(v′, E),
3. τ(v, E1 ∧ · · · ∧ Ek) = τ(v, E1), · · · , τ(v, Ek),
4. ρ(l = x) = <l>{$x}</l>
5. ρ(l[E]) = <l>ρ(E)</l>
6. ρ(E1 ∧ · · · ∧ Ek) = ρ(E1) · · · ρ(Ek)

For the mapping m31 (Example 4), the XQuery program generated by Al-
gorithm 1 is:

Query 1:

<pubs>{

let x_4:="null"

for $_v in /authors,

$_v1 in if ($_v[author]) then $_v/author else /,

$x_1 in if ($_v1[name]) then

string($_v1/name[1]) else "null",

$_v22 in if ($_v1[paper]) then $_v1/paper else /,

$x_2 in if ($_v22[title]) then

string($_v22/title[1]) else "null",

$x_3 in if ($_v22[year]) then

string($_v22/year[1]) else "null"

return

<pub>

<title>{$x_2}</title>

<year>{$x_3}</year>

<author>

<name>{$x_1}</name>

Schema mapping and query reformulation in peer-to-peer XML data integration system 181

<university>{$x_4}</university>

</author>

</pub> }

</pubs>

The program creates a canonical instance of S1, i.e. elements are not grouped
and all missing values are replaced by nulls.

4. Operations on XML trees

In XML data integration, XML trees are first transformed into trees of a common
schema, and then two trees with the same schema are merged (see Pankowski
et al., 2005). The transformation can be performed using schema mappings,
as was described in the previous section. Merging consists in many operations
which include union, repairing inconsistencies (see Greco et al., 2003), duplicate
discovery and elimination, and finally grouping and nesting with respect to given
keys (see Pankowski, Cybulka and Meissner, 2007). In this section we will focus
on the two first of these operations, union and a simple case of repairing that
will be understood as discovering missing values, i.e. we will discuss a method
for replacing some null values with non-null values. The process of repairing
will be controlled by a given set of XML functional dependencies.

4.1. Union of XML trees

Definition 9 Let
J1 = (r1, N

e
1 , N t

1, child1, λ1, ν1), and
J2 = (r2, N

e
2 , N t

2, child2, λ2, ν2)
be two XML trees satisfying a schema S. The XML tree

J = (r, Ne, N t, child, λ, ν)
is called the union of J1 and J2, denoted J = J1 ∪ J2, if there are two functions
(embeddings) h1 : J1 → J , and h2 : J2 → J such that:

• h1(r1) = h2(r2) = r – root nodes r1 and r2 are mapped to the root node r;
• h1(top1) = h2(top2) = top, where child1(r1, top1), child2(r2, top2), and

child(r, top), i.e. the outermost elements (top elements) of J1 and J2 are
mapped to the outermost element of J ;

• h1(N
e
1) ∪ h2(N

e
2) = Ne – union of images of Ne

1 and Ne
2 is equal to Ne;

• h1(N
e
1) ∩ h2(N

e
2) = {top} – the only common element node in images of

Ne
1 and Ne

2 is top ∈ Ne;
• h1(N

t
1) ∪ h2(N

t
2) = N t – union of images of N t

1 and N t
2 is equal to N t;

• h1(N
t
1) ∩ h2(N

t
2) = ∅ – images of N t

1 and N t
2 are disjoint;

• hi(childi(n, n′)) = child(hi(n), hi(n
′)), i = 1, 2 – the embeddings preserve

childhood relationships;
• hi(λi(n)) = λ(hi(n)), i = 1, 2 – the embeddings preserve labeling;
• hi(νi(n)) = ν(hi(n)), i = 1, 2 – the embeddings preserve text values.

182 T. PANKOWSKI

The union of J1 and J2 is illustrated in Fig. 2 (root nodes are, as usual, not
depicted in the figure).

�������
������

��	

�����

���
�
���

�����

�
��
��		
�

��� �������
������

��	

�����

���
�
���

�����

�
��
�

���

�������
������

��	

�����

���
�
���

�����

�
��
��		
�

������ ���
������

��	

�����

���
�
���

�����

�
��
�

�������
������

��	

�����

���
�
���

�����

�
��
��		
�

��������� ����
������

��	

�����

���
�
���

�����

�
��
��		
�

Figure 2. Illustration of merging two instances J1 and J2 with discovering
missing values

Lemma 1 If J |= (S, Ω) and J ′ |= (S, Ω′) then J ∪ J ′ |= (S, Ω ∪ Ω′).

Example 5 The XML tree J in Fig. 2 is a tree with description Ω = Ω1 ∪ Ω2,
and we write:

J = J1 ∪ J2,
J |= (S3, Ω), where
Ω = Ω1 ∪ Ω2 = {(Ann, XML, 2005), (John, XML,⊥)}.

The above union operation, ∪, is defined on two XML trees of the same
schema. The description of the union is the union of descriptions of both argu-
ments.

4.2. Repairing inconsistent XML trees

In general, in data integration systems (especially in P2P data management,
see Madhavan and Halevy, 2003) violations of consistency constraints cannot be
avoided (see Greco et al., 2003, Staworko, Chomicki and Marcinkowski, 2006).
Data could violate consistency constraints defined over the target schema, al-
though they satisfy constraints defined over source schemas considered in sepa-
ration. An XML tree that does not satisfy an integrity constraint will be referred

Schema mapping and query reformulation in peer-to-peer XML data integration system 183

to as inconsistent XML tree. In this paper we discuss a class of weak inconsis-
tencies, in which XML functional dependencies are violated, and all violations
are caused by null values. So, we assume that non-null values are consistent.

For example, both J1 and J2 in Fig. 2 satisfy the XFD from Example 3, but
its union, J = J1 ∪ J2, does not. We see that there are two different values of
year, 2005 in the first subtree and ⊥ in the second, for the same value XML
of title.

Now, we can define the repairing operation over a set Ω of valuations with
respect to an XML constraint fd, denoted by ⊕fd. The XFD will be used to
discover missing data.

Definition 10 Let S(x) be a schema, fd(y) be an XFD over S(x), type(fd) =
type(z), and I be an XML tree such that I |= (S(x), Ω). An XML tree I ′ is called
the repairing of I with respect to fd, denoted I ′ = ⊕fd(I), if

• I ′ |= (S(x), Ω′), and
• Ω′ = ⊕fd(Ω), where

⊕fd(Ω) = { ω | ∃ω1 ∈ Ω∧
if ω1(z) = ⊥ ∧ ∃ω2(ω1(y) = ω2(y) ∧ ω2(z) 6= ⊥)
then ω = ω1[z 7→ ω2(z)]
else ω = ω1},

where ω1[z 7→ ω2(z)] is the valuation ω identical to ω1 except for ω(z) =
ω2(z).

The repairing operation can be easily generalized to an arbitrary set of XFDs.
If F = {fd1, ..., fdm} is a set of XFDs, then:

⊕F (I) = ⊕fdm
(... ⊕fd1

(I)...),
⊕F (Ω) = ⊕fdm

(... ⊕fd1
(Ω)...),

(5)

and ⊕F (I) and ⊕F (Ω) are called repairing of I and Ω with respect to F , re-
spectively.

The following Algorithm 2 generates an XQuery program for a given schema
S and a set F of XFD constraints over this schema. For every XML tree of
schema S the program produces the repairing of the tree with respect to F .

Algorithm 2 (generating XQuery program performing the repairing operation)
Input: A schema S and a set of XFD constraints, xfd(x) denotes

the XFD of the type equal to the type of variable x.
Output: Program in XQuery over instances of S returning for a given

instance the repaired version of these instances.
xfdToXQuery(/top[E]).

The translation function
xfdToXQuery()

184 T. PANKOWSKI

is identical to the translation function in Algorithm 1
mappingToXQuery(),

except that the rule (4) is replaced by the following rule (4’):

4’. ρ(l = x) = <l>{if ($x = ”null”) then

string((xfd($x)[text()! = null])[1]) else $x}</l>

Example 6 Discovering missing values in an instance of S1 (Example 1) can
be done using the XQuery program generated for the schema S1, where XFD
constraints for S1, i.e. fd(x2), and fd(x4) (Example 3), are taken into account.
The corresponding XQuery program is similar to Query 1. However, expressions
defining the elements “year” and “university” have the following forms:

Query 2:

...

<year>{

if ($x2="null") then

string((/pubs/pub[title=$x1]/year[text()!="null"])[1]) else $x2}

</year>

<university>{

if ($x4="null") then

string((/pubs/pub/author[name=$x3]/university[text()!="null"])[1])

else $x4}

</university>

...

As the result of repairing, all nulls violating XFDs are replaced by certain
non-null values.

5. Queries and query reformulation

5.1. Queries

Given a schema S, a qualifier φ over S is a formula built from constants and
variables occurring in S. A query from a source schema S to a target schema
T is defined as a mapping from S to T extended with a query qualifier over S.

Definition 11 Let ∀x(S(x) ⇒ ∃yT (x′,y)) be a schema mapping from S to
T and φ(x) be a qualifier over S. A query from S to T with qualifier φ is an
expression of the form

q := ∀x(S(x) ∧ φ(x) ⇒ ∃yT (x′,y)), (6)

or, for short: q := S ∧ φ ⇒ T . If the target schema is clear from the context,
we will simply write: q := S ∧ φ.

An answer to a query is defined as follows:

Schema mapping and query reformulation in peer-to-peer XML data integration system 185

Definition 12 Let I be an instance of a source schema S and Ω be the de-
scription of I. An answer to a query q := S ∧ φ ⇒ T is such an instance J of
T that its description Ω′ is defined as:

Ω′ = {m(ω) | ω ∈ Ω ∧ φ(ω) = true}, (7)

where m is the mapping, m := S ⇒ T .

Example 7 The following query

q12 := S1 ∧ φ ⇒ S2

:= /pubs[pub[title = x1 ∧ year = x2

∧author[name = x3 ∧ university = x4]]]
∧x3 = ”John” ∧ x2 = ”2005”

⇒ /pubs[pub[title = x1 ∧ author[name = x3

∧university = x4]]]

filters an instance of the source schema S1 according to the qualifier x3 =
”John” ∧ x2 = ”2005”, and produces an instance of the schema S2.

5.2. Query reformulation

Assume that a query qi := Si(xi) ∧ φi(zi) is issued against a peer Pi. If the
query is propagated to a peer Pk then it must be reformulated into such a query
qki which can be evaluated over data stored on the peer Pk and the answer must
be structured according to the schema Si.

1. We want to determine the qualifier φk in the query

qki := Sk(xk) ∧ φk(zk) ⇒ Si(xik,yik),

over the source schema Sk, where zk ⊆ xk, xik ⊆ xk, yik ∩ xk = ∅.
2. The qualifier φk(zk) is obtained as the result of rewriting the qualifier

φi(zi) according to Si(xi) and Si(xik,yik):

φk(zk) := φi(zi).rewrite(Si(xi), Si(xik,yik)).

The rewriting consists in appropriate replacement of variable names. A
variable z ∈ zi (z is also in xi) is replaced by such a variable x ∈ xik that
the type of z in Si(xi) is equal to the type of x in Si(xik,yik). If such
replacement is impossible, then the qualifier is non-rewritable.

Example 8 For the query qualifier

φ1(x3) := x3 = ”John”

over S1(x1, x2, x3, x4) (Example 1), we have the following reformulation over
S2(x1, x2, x3) (Example 1) with respect to the mapping m21 (Example 4):

φ1(x3).rewrite(S1(x1, x2, x3, x4), S12(x1, x2, x3)
= φ1(x2) := x2 = ”John”,

since typeS1(x1,x2,x3,x4)(x3) = typeS12(x1,x2,x3)(x2) = /pubs/pub/author/name.

186 T. PANKOWSKI

Note that the qualifier over S1 (Example 7)

φ1(x2, x3) := x2 = ”2005”∧ x3 = ”John”

is non-rewritable over S2 with respect to m21 and is rewritable over S3 with
respect to m31. In the latter case we obtain:

φ3(x3, x1) := x3 = ”2005”∧ x1 = ”John”.

Algorithm 3 translates a query qij into XQuery. The algorithm is a slight
modification of Algorithm 1, where the clause where is added.

Algorithm 3 (translating query to XQuery program)
Input: A query qik := ∀x(Si ∧ φi ⇒ ∃ySk), where:

Si := /l′[E′], Sk := /l[E], y = (y1, ..., ym).
Output: Query in XQuery over Si returning the

answer conforming to Sk when applied to an instance of Si

queryToXQuery(∀x(/l′[E′] ∧ φi ⇒ ∃y1, ..., ym/l[E]))=
<l>{

let $y1 := ”null”, ..., $ym := ”null”
for $v in /l′,

τ(v, E′)
where φ

return

ρ(E)}
</l>

where functions τ and ρ are defined in Algorithm 1.

6. Deciding about merging modes

Answers to a query propagated across the P2P systems must be collected and
merged. The merge operation on an arbitrary set of instances with the same
schema, is defined as follows:

Definition 13 Let S be a schema, F be a set of XFD over S, and I1, ..., Ik be
XML trees of schema S. The merging of I1, ..., Ik with respect to F is understood
as the repairing (Definition 10) of the union I1 ∪ ... ∪ Ik, i.e.

⊔F ({I1, ..., Ik}) = ⊕F (I1 ∪ ... ∪ Ik). (8)

In the definition of merging, we incorporate the discovery of missing values.
To do this operation, it is to be decided, which of the two merging modes should
be selected in the peer while partial answers are to be merged:

• partial merging – all partial answers are merged without taking into ac-
count the source instance stored in the peer,

Schema mapping and query reformulation in peer-to-peer XML data integration system 187

• full merging – the whole source instance in the peer is merged with all
received partial answers; finally, the query is evaluated in terms of the
result of the merging.

Criterion of selection is the possibility of discovering missing values during
the process of merging. To make the decision, one has to analyze XFD con-
straints specified for the peer’s schema and the query qualifier.

Theorem 1 states the condition when there is no sense in applying full merg-
ing because no missing value can be discovered.

Theorem 1 Let S(x) be a schema, fd(z) be an XFD over S(x), and type(fd) =
typeS(x) for some x ∈ x. Let q be a query with qualifier φ(y), y ⊆ x, and IA

be an answer to q received from a propagation. Then the equality

q(⊔fd{I, IA}) = ⊔fd{q(I), IA} (9)

holds if one of the following two conditions holds
(a) x ∈ y, or
(b) z ⊆ y.

Proof. The equality (9) does not hold if there are valuations ω′ ∈ ΩIA
and

ω ∈ ΩI such that ω′(x) = ⊥, ω(x) 6= ⊥, and ω′(z) = ω(z). Let us consider
conditions (a) and (b):

1. Condition (a). If x ∈ y, then there cannot be ω′ ∈ ΩIA
such that ω′(x) =

⊥, because then φ(y)(ω′) 6= true. Thus, the theorem holds.
2. Condition (b). Let z ⊆ y. If there is such ω′ ∈ ΩIA

that ω′(x) = ⊥, then:

• if φ(y)(ω′) = true then ω′ ∈ Ωq(I) and (9) holds;

• if φ(y)(ω′) 6= true then ω can belong neither to Ωq(I) nor to Ωq(IA),
and ω is not relevant for discovering missing values. So, (9) holds.

7. Query execution strategies

In this section we show how Theorem 9 can be used to control query execution
in P2P environment. Based on this theorem we can decide about propagating
queries and merging answers. We do not assume any centralized control of the
propagation. Instead, we assume that a peer makes decision locally based on its
knowledge about its schema and schema constraints and about the query that
should be executed and propagated (see Brzykcy, Bartoszek and Pankowski,
2007). It turns out that the chosen strategy and the way of merging partial
answers determine both the final answer and the cost of execution. We focus
mainly on the amount of information provided by the answer when the merging
procedure involves discovering of missing values.

Let us consider some possible strategies of execution of the following query
q against P1 (Fig. 1) (the result of the query should be structured according to

188 T. PANKOWSKI

its source schema, so we do not specify this explicitly):

q := /pubs[pub[title = xtitle ∧ year = xyear ∧ author[name = xname

∧university = xuniv]]] ∧ xname = ”John”.

In q11 variables xtitle, xyear , xname, and xuniv are bound to text values of an
XML tree conforming to the source schema (tree-pattern formula) defined by
the first conjunct of the query. The second conjunct, xname = ”John”, is the
query qualifier. The target schema is by default equal to the source schema.
The answer to the query should contain information stored in all three sources
shown in Fig. 1.

Thus, one of the following three strategies can be realized (Fig. 3):

��

��

��

��

��

��

��

��

��

��� ����	�

��
��
��

��� �����	

Figure 3. Three different execution strategies of the query q

Strategy (a). Query q is sent to P2 and P3, where it is reformulated to,
respectively, q21 (from S2 to S1) and q31 (from S3 to S1). The answers q21(I2)
and q31(I3) are returned to P1. In P1 these partial answers are merged with
the local answer q11(I1) and a final answer Ansa is obtained. We use the set
F1 = {fd1, fd2} of XFDs, where: fd1 := /pubs/pub[title = x1]/year, fd2 :=
/pubs/pub/author[name = x3]/university. Then

Ansa = ⊔F1{Ansa
11, Ansa

21, Ansa
31},

Ansa
11 = q11(I1) = {(xtitle : ⊥, xyear : ⊥, xname : ⊥, xuniv : ⊥)},

Ansa
21 = q21(I2) = {(xtitle : XML, xname : John, xuniv : NY)},

Ansa
31 = q31(I3) = {(xname : ⊥, xtitle : ⊥, xyear : ⊥)},

Ansa = {(xtitle : XML, xyear : ⊥, xname : John, xuniv : NY)}.

In this strategy the value of xyear is ⊥ and we cannot discover it, although it is
implicitly included in I3.

Strategy (b). It differs from strategy (a) in that P2 after receiving the query
propagates it to P3 and waits for the answer q32(I3). The result is equal to
Ansa (F2 = {fd2}):

Ansb = ⊔F2{Ansb
11, Ansb

21, Ansb
31} =

= {(xtitle : XML, xyear : ⊥, xname : John, xuniv : NY)}.

It is easily seen that this strategy leads to the same result as the strategy (a)
but its cost is higher. We see that involving I2 in the expression for computing
Ansb

21 is not justified – it only degrades performance.

Schema mapping and query reformulation in peer-to-peer XML data integration system 189

Strategy (c). In contrast to the strategy (b), the peer P3 propagates the query
to P2 and waits for the answer. Next, the peer P3 decides to merge the obtained
answer q23(I2) with the whole of its instance I3. The decision is based on the
existence of the functional dependency fd3 = /authors/author/paper[title =
x2]/year. Let F3 = {fd3}, then

Ansc = ⊔F1{Ansc
11, Ansc

21, Ansc
31}),

Ansc
23 = q23(I2) = {(xtitle : XML, xyear : ⊥, xname : John)},

Ansc
31 = q31(⊔F3{I3, Ansc

23}) =
= {(xtitle : XML, xyear : 2005, xname : John)}

Ansc = {(xtitle : XML, xyear : 2005, xname : John,
xuniv : NY)}.

While computing the merger ⊔F3{I3, Ansc
23} a missing value of xyear is discov-

ered. Thus, the answer Ansc provides more information than Ansa and Ansb.

8. Conclusions

The paper presents a novel method for schema mapping and query reformulation
in XML data integration systems in P2P environment. The discussed formal
approach enables us to specify schemas, schema constraints, schema mappings,
and queries in a uniform and precise way. Based on this approach we define some
basic operations used for query reformulation and data merging, and propose
algorithms for automatic generation of operational means (XQuery programs
in our case) to perform these operations in real. We discussed some issues
concerning query propagation strategies and merging modes, when missing data
are to be discovered in the P2P integration processes. We showed how to use
schema constraints, mainly functional dependency constraint, to select the way
of query propagation and data merging, to increase the information content of
the answer to a query.

Acknowledgment

The work was supported in part by the Polish Ministry of Science and Higher
Education under Grant N516 3695/36.

References

Abiteboul, S., Hull, R. and Vianu, V. (1995) Foundations of Databases.
Addison-Wesley, Reading, Massachusetts.

Arenas, M. (2006) Normalization theory for XML. SIGMOD Record 35 (4),
57–64.

Arenas, M., Bertossi, L.E. and Chomicki, J. (2003) Answer sets for con-
sistent query answering in inconsistent databases. Theory and Practice of
Logic Programming 3 (4-5), 393–424.

190 T. PANKOWSKI

Arenas, M. and Libkin, L. (2005) XML Data Exchange: Consistency and
Query Answering. Proceedings of the 24th ACM Symposium on Principles
of Database Systems, PODS ’05, Baltimore, USA. ACM Press, 13–24.

Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos,
J., Serafini, L. and Zaihrayeu, I. (2002) Data management for peer-
to-peer computing: A vision. Proceedings of the 5th Workshop on the Web
and Databases, Web DB 2002, Madison, USA. ACM Press, 89–94.

Brzykcy, G., Bartoszek, J. and Pankowski, T. (2007) Semantic data in-
tegration in p2p environment using schema mappings and agent technol-
ogy. The 1st KES Symposium on Agent and Multi-Agent Systems – Tech-
nologies and Applications. LNCS 4496, Springer, 385–394.

Calvanese, D., Giacomo, G.D., Lenzerini, M. and Rosati, R. (2004) Lo-
gical Foundations of Peer-To-Peer Data Integration. Proc. of the 23rd

ACM SIGMOD Symposium on Principles of Database Systems (PODS
2004), Paris, France. ACM Press, 241–251.

Chomicki, J. (2007) Consistent query answering: Five easy pieces. In: T. Sch-
wentick and D. Suciu, eds., Proceedings of the 12th International Interna-
tional Conference on Database Theory. LNCS 4353, Springer, 1–17.

Fagin, R., Kolaitis, P.G., Miller, R.J. and Popa, L. (2002) Data Ex-
change: Semantics and Query Answering. ICDT 2003. LNCS 2572,
Springer, 207–224.

Fagin, R., Kolaitis, P.G., Popa, L. and Tan, W.C. (2004) Composing
schema mappings: Second-order dependencies to the rescue. Proceedings
of the 23th ACM SIGMOD Symposium on Principles of Database Systems
(PODS 2004), Paris, France. ACM Press, 83–94.

Fuxman, A., Kolaitis, P.G., Miller, R.J. and Tan, W.C. (2006) Peer
data exchange. ACM Trans. Database Syst. 31 (4), 1454–1498.

Gottlob, G., Koch, C. and Pichler, R. (2002) Efficient algorithms for pro-
cessing XPath queries. Proc. of the 28th International Conference on Very
Large Data Bases, VLDB 2002, Hong Kong, China. Morgan Kaufmann,
95–106.

Greco, S., Sirangelo, C., Trubitsyna, I. and Zumpano, E. (2003) Pre-
ferred repairs for inconsistent databases. 7th International Database En-
gineering and Applications Symposium – IDEAS 2003. IEEE Computer
Society, 202–211.

Haas, L.M. (2007) Beauty and the beast: The theory and practice of infor-
mation integration. Proceedings of the 12th International Conference on
Database Theory. LNCS 4353, Springer, 28–43.

Halevy, A.Y., Ives, Z.G., Suciu, D. and Tatarinov, I. (2005) Schema me-
diation for large-scale semantic data sharing. VLDB J. 14 (1), 68–83.

Koloniari, G. and Pitoura, E. (2005) Peer-to-peer management of XML
data: issues and research challenges. SIGMOD Record 34 (2), 6–17.

Schema mapping and query reformulation in peer-to-peer XML data integration system 191

Koubarakis, M., Tryfonopoulos, C., Idreos, S. and Drougas, Y.
(2003) Selective information dissemination in P2P networks: problems
and solutions. SIGMOD Record 32 (3), 71–76.

Madhavan, J. and Halevy, A.Y. (2003) Composing mappings among data
sources. Proceedings of the 29th International Conference on Very Large
Data Bases, VLDB 2003, Berlin, Germany. Morgan Kaufmann, 572–583.

Pankowski, T. (2006) Management of executable schema mappings for XML
data exchange. Database Technologies for Handling XML Information on
the Web, EDBT 2006 Workshops. LNCS 4254, Springer, 264–277.

Pankowski, T., Cybulka, J. and Meissner, A. (2007) XML Schema Map-
pings in the Presence of Key Constraints and Value Dependencies. ICDT
2007 Workshop EROW’07. CEUR-WS.org, 229, 1–15.

Pankowski, T. and Hunt, E. (2005) Data merging in life science data inte-
gration systems. Intelligent Information Systems, New Trends in Intelli-
gent Information Processing and Web Mining. Advances in Soft Comput-
ing, Springer Verlag, 279–288.

Rahm, E. and Bernstein, P.A. (2001) A survey of approaches to automatic
schema matching. The VLDB Journal 10, 4, 334–350.

Staworko, S. and Chomicki, J. (2006) Validity-Sensitive Querying of XML
Databases. Database Technologies for Handling XML Information on the
Web, EDBT 2006 Workshops. LNCS 4254, Springer, 164–177.

Staworko, S., Chomicki, J. and Marcinkowski, J. (2006) Preference-Dri-
ven Querying of Inconsistent Relational Databases. Incompleteness and
Inconsistency in Databases, EDBT 2006 Workshop. LNCS 4254, Sprin-
ger, 318–335.

Tatarinov, I. and Halevy, A.Y. (2004) Efficient query reformulation in peer-
data management systems. Proc. of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2004, Paris, France. ACM
Press, 539–550.

Tatarinov, I., Ives, Z.G., Madhavan, J., Halevy, A.Y., Suciu, D.,
Dalvi, N.N., Dong, X., Kadiyska, Y., Miklau, G. and Mork, P.
(2003) The Piazza peer data management project. SIGMOD Record 32

(3), 47–52.
Wadler, P. (2000) Two semantics for XPath. Available on:

http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/
xpath-semantics.pdf, 26 July 1999, revised 4 January 2000.

Xiao, H. and Cruz, I.F. (2006) Integrating and Exchanging XML Data Us-
ing Ontologies. Journal on Data Semantics VI: Special Issue on Emergent
Semantics. LNCS 4090, Springer, 67–89.

XML Path Language (XPath) 2.0 (2006) www.w3.org/TR/xpath20.
Xu, W. and Özsoyoglu, Z.M. (2005) Rewriting XPath Queries Using Ma-

terialized Views. Proceedings of the 30th International Conference on Very
Large Data Bases, VLDB 2005, Trondheim, Norway. Morgan Kaufmann,
121–132.

192 T. PANKOWSKI

Yu, C. and Popa, L. (2004) Constraint-Based XML Query Rewriting For
Data Integration. Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2004, Paris, France. ACM
Press, 371–382.

