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Abstract: We consider the problem of uniform stabilization of
nonlinear hyperbolic equations, epitomized by the following three
canonical dynamics: (1) the wave equation in the natural state space
L2(Ω) × H−1(Ω), under nonlinear (and non-local) boundary dissi-
pation in the Dirichlet B.C., as well as nonlinear internal damping;
(2) a corresponding Kirchhoff equation in the natural state space
[H2(Ω) ∩H1

0 (Ω)]×H1
0 (Ω), under nonlinear boundary dissipation in

the ‘moment’ B.C. as well as nonlinear internal damping; (3) the sys-
tem of dynamic elasticity corresponding to (1). All three dynamics
possess a strong, hard-to-show ‘boundary → boundary’ regularity
property, which was proved, also by invoking a micro-local argu-
ment, in Lasiecka and Triggiani (2004, 2008). This is by no means a
general property of hyperbolic or hyperbolic-like dynamics (Lasiecka
and Triggiani, 2003, 2008). The present paper, as a continuation of
Lasiecka and Triggiani (2008), seeks to take advantage of this strong
regularity property in the case of those PDE dynamics where it holds
true. Thus, under the above boundary → boundary regularity, as
well as exact controllability of the corresponding linear model, uni-
form stabilization of nonlinear models is obtained under minimal
nonlinear assumptions, provided that a corresponding unique con-
tinuation property holds true.

The treatment of the present paper is cast in the abstract setting
(Lasiecka, 1989, 2001; Lasiecka and Triggiani, 2000, Ch. 7, 2003,
2008), which is proper for these hyperbolic dynamics and recovers
the results of Lasiecka and Triggiani (2003, 2008) in the absence of
the nonlinear interior damping, in particular in the linear case.
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1. Description of the problem. Literature

The present paper is a direct successor of Lasiecka and Triggiani (2008), which,
in turn, followed from Lasiecka and Triggiani (2003, 2004). These works dealt
with the problem of uniform stabilization of certain classes of hyperbolic and
Petrowski-type partial differential equations, which are defined on a bounded
multi-dimensional domain and which are subject to linear (Lasiecka and Trig-
giani, 2003, 2004), or nonlinear (Lasiecka and Triggiani, 2003, 2008) boundary
dissipation. The problem of nonlinear boundary dissipation for these evolution
equations has, of course, been the subject of intensive direct studies over the
past many years, with direct analysis which was based on the prior treatment—
in results as well as techniques—of the corresponding linear dissipative models.
A general direct approach, yielding sharp energy decay results under minimal
assumptions on the nonlinear dissipative terms, was proposed in Lasiecka and
Tataru (1993) in connection with a wave equation with nonlinear dissipation in
the Neumann B.C. It was later exported and pursued in the study of nonlin-
ear boundary, uniform stabilization of other hyperbolic-like dynamics, including
shells (Lasiecka and Triggiani, 2002), Schrödinger equations (Lasiecka and Trig-
giani, 2006); and, moreover, also of uniform stabilization of wave equations with
homogeneous Neumann B.C. but with dissipation localized on a selected layer
or neighborhood of the boundary (Lasiecka and Toundykov, 2006).

In contrast, paper Lasiecka and Triggiani (2008)—on the basis of the linear
results in Lasiecka and Triggiani (2003, 2004)—sought to revisit the nonlinear
boundary uniform stabilization problem of several selected classes of hyperbolic
or Petrowski-type evolution equations, by marrying the sharp energy-based ap-
proach in Lasiecka and Tataru (1993) with two additional properties required of
the dynamics under study. One is the exact controllability of the corresponding
linear version: This is a natural property, which in fact has been known for
several decades (Russell, 1978) to be a necessary condition for uniform stabi-
lization of linear hyperbolic-type PDE models. Moreover, the availability of this
property of exact controllability for the hyperbolic/Petrowski-type classes has
been established over the past two decades, to an advanced level of generality
and checkability (Bardos, Lebeau and Rauch, 1992; Triggiani and Yao, 2002;
Gulliver et al., 2003; Lasiecka, Triggiani, and Yao, 1999; Lasiecka, Triggiani and
Zhang, 2000).

The second property taken as an assumption in the nonlinear approach to
uniform stabilization followed in Lasiecka and Triggiani (2003, 2008) is an ‘ab-
stract boundary–boundary’ regularity property of the corresponding boundary
control models (boundedness of the operator B∗L, assumption (A.2) below).
Unlike the first, this second assumption is less natural and, indeed, is too
strong for stabilization purposes. In fact, Lasiecka and Triggiani (2003, 2004)—
prompted by Guo and Luo (2002) and Ammari (2002)—show that while this
property does hold true for certain explicit classes of hyperbolic/Petrowski-
type PDEs, it also fails to be true for some other relevant classes. Moreover,
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even for the classes where it fails, the desirable result of uniform stabilization
has been known to hold true via a direct analysis, for several decades! Thus,
even though the aforementioned ‘abstract boundary-boundary’ regularity prop-
erty (of B∗L) is only a (strong) sufficient condition for stabilization, but by
no means a necessary one, nevertheless—having ascertained it in Lasiecka and
Triggiani (2003, 2004) for several explicit physically relevant classes—one may
as well take advantage of this finding and analyze its consequences, also as
they pertain to nonlinear problems. This was the goal of the paper Lasiecka
and Triggiani (2008). Indeed, by relying on both exact controllability and the
‘abstract boundary-boundary’ regularity property of the corresponding linear
model, Lasiecka and Triggiani (2003) and further Lasiecka and Triggiani (2008)
provided an amenable abstract proof for uniform stabilization, with optimal
decay rates—due to the infusion of the energy-based approach in Lasiecka and
Tataru (1993)—which applied to, and was motivated by, boundary dissipation
in concrete (selected) classes of hyperbolic/Petrowski-type PDEs. As a conse-
quence, decay rates given in Lasiecka and Triggiani (2008) were truly uniform;
that is, with constant independent of the radius of the sphere containing the
initial condition.

Canonical cases, where this nonlinear approach and theory apply, refer to the
uniform stabilization of two new nonlinear boundary dissipative models: (i) the
wave equation, and (ii) the Schrödinger equation, both with (necessarily, non-
local) boundary dissipation in the Dirichlet B.C. (unlike Lasiecka and Tataru,
1993, which treated the wave equation with dissipation in the Neumann B.C.—
the linear versions of which were first given in Lasiecka and Triggiani,1987 and
1992, respectively). For these two classes—as well as for the corresponding
Kirchhoff plate equation—paper Lasiecka and Triggiani (2008) gives new sharp
results of uniform, nonlinear, boundary stabilization.

The present paper continues the nonlinear uniform stabilization analysis
of Lasiecka and Triggiani (2008)—along the same approach which combines
the energy-based sharp analysis of Lasiecka and Tataru (1993) with the exact
controllability and the ‘abstract boundary-boundary’ regularity property (of
B∗L). However, it restricts the scope (due to space limitations) to three PDE-
dynamics: the wave equation, as well as its natural generalizaiton, the system
of dynamic elasticity, both with Dirichlet nonlinear boundary dissipation; and
the corresponding Kirchhoff-plate problem—while adding a nonlinear dissipa-
tive term also in the interior. This latter feature was hinted at in Lasiecka
and Triggiani (2008, Remark 4.4.1), but left out from the analysis given there.
Moreover (again due to space limitations), we shall more conveniently restrict
to models with constant coefficients, while Lasiecka and Triggiani (2008) also in-
cluded explicitly the models with variable coefficients (in space) in the principal
part of the dynamic operator.

Our presentation is first carried out at the appropriate abstract level—
given in Lasiecka (1989, 1999), Lasiecka and Triggiani (2000 – Chapter 7, 2003,
2008)—and leads to abstract nonlinear uniform stabilization results where uni-
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formity is with respect to all initial conditions in a given ball of the state space.
Subsequently, the abstract theory is specialized to two concrete PDE cases: (i)
the wave equation with Dirichlet nonlinear dissipation (Section 4); and (ii) the
Kirchhoff plate equation with nonlinear dissipation in the ‘moment’ B.C. (Sec-
tion 5). In contrast, some results on the lack of uniform stabilization/exact
controllability for linear systems are given in Triggiani (1989/1990, 1990, 1991).

2. Abstract models and results

We begin with the abstract setting—given in Lasiecka (1989, 2001), Lasiecka
and Triggiani (2000 – Chapter 7, 2003, 2008) – which appropriately captures
the dynamical properties of the class of hyperbolic/Petrowski-type nonlinear
models, which we intend to cover.

Abstract model. Let H and U be two Hilbert spaces. The present paper
studies the following abstract dynamical system in closed-loop feedback form:

wtt + Aw + Bg(B∗wt) + F(w) = 0 in [D(A)]′, (2.1)

on the state space

H ≡ D(A 1

2 ) ×H, (2.2)

for {w,wt}, subject to the following sets of assumptions, each targeted to an
appropriate conclusion, as explicitly noted below.

Preliminary dynamical assumptions for local well-posedness

(i) A : H ⊃ D(A) → H is a positive, self-adjoint operator with compact
resolvent;

(ii) B : U → [D(A)]′ is a linear operator; here, [D(A)]′ is the dual space of
D(A), with respect to H as a pivot space; moreover, there exists a space

Ũ , with Ũ ⊂ U ⊂ Ũ ′ and: (ii1) B ∈ L(Ũ ′; [D(A 1

2 )]′); (ii2) the subsequent

adjoint B∗ ∈ L(D(A 1

2 ); Ũ) is surjective.

(iii) the continuous function g is the Gateaux gradient of a convex function
Φ : U → R and satisfies g(0) = 0. Hence, g is maximal monotone on U
(Barbu, 1976). In particular,

〈g(u1) − g(u2), u1 − u2〉U ≥ 0, ∀ u1, u2 ∈ U ; (2.3)

(iv) the operator F , with F(0)=0, is assumed to be locally Lipschitz D(A 1

2 ) →
H:

‖F(v1) −F(v2)‖H ≤ cρ‖v1 − v2‖
D(A

1

2 )
, ∀ v1, v2 ∈ D(A 1

2 ), (2.4)

with ‖vi‖
D(A

1

2 )
≤ ρ, i = 1, 2.
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Many examples of this abstract model are given under one cover in Lasiecka
(2001), Lasiecka and Triggiani (2008, 2000 – Chapter 7).

Abstract first-order model. As usual, the second-order evolution model
(2.1) can be recast as a first-order abstract equation in the variable y = {w,wt},
as follows, Lasiecka and Triggiani (2000 – Chapter 7):

yt = Ay −Bg(B∗y) + F (y), in [D(A∗)]′, y = [w,wt]; (2.5)

A =

[

0 I

−A 0

]

, Bu =

[

0

Bu

]

, B∗

[

v1

v2

]

= B∗v2; F (y) =

[

0

F(w)

]

, (2.6)

F (0) = 0. The skew-adjoint operator A = −A∗,

A : H ⊃ D(A) ≡ D(A∗) = D(A) ×D(A 1

2 ) → H, (2.7)

generates a strongly continuous (C0-) unitary group eAt on the space H in (2.2).

Local well-posedness. It is known, Lasiecka (1989), that, under the above
assumptions (i), (ii), (iii), (iv), Eqn. (2.1) [or else (2.5)] admits a local (in time)
unique semigroup solution defined on the state space H in (2.2),

{w,wt} ∈ C([0, T ]; H = D(A 1

2 ) ×H); T > 0 sufficiently small. (2.8)

We next introduce additional sets of assumptions for the purpose of obtaining
uniform stabilization of (2.1) [or (2.5)].

Further sets of assumptions for uniform stabilization. We shall divide
these into three subsets: (a) structural assumptions on the nonlinearities g and
F ; (b) ‘abstract boundary → boundary’ regularity and exact controllability of
the corresponding linear controlled problem zt = Az + Bu; in short, the pair
{A,B}; (c) abstract unique continuation.

Structural assumptions on g, F .

(A.1): (a) For the continuous function g : U → U with g(0) = 0, in (iii)
above, there exists a (real-valued) continuous, concave function h : R

+ → R
+,

strictly increasing, with h(0) = 0, such that

‖g(u)‖2
U + ‖u‖2

U ≤ h(〈g(u), u〉U ), ∀ u ∈ U. (2.9)

In the case where g is a Nemytski operator of substitution, (2.9) is a property,
not an assumption, Lasiecka and Triggiani, 2008, Section 3, Lemma 3.2.

(b) The locally Lipschitz operator F , with F(0) = 0, is Frechet differentiable

D(A 1

2
−ǫ) → H and satisfies the further property

‖F(v1) −F(v2)‖H ≤ Cρ‖v1 − v2‖
D(A

1

2
−ǫ)
, (2.10)

for all ‖vi‖
D(A

1

2
−ǫ)

≤ ρ, i = 1, 2, for some arbitrarily small ǫ > 0.
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(c) There exists a potential function Π : D(A 1

2 ) → R
+, such that Π is

differentiable, Π(w) ≥ 0 for w ∈ D(A 1

2 ), and the following identity holds for

w, z ∈ D(A 1

2 ):

(F(w), z)H = (Π′(w), z)H, where (Π′(w), w)H ≥ 0. (2.11)

Here, Π′(w) is the Frechet derivative at the point w ∈ D(A 1

2 ). Accordingly, we
define the energy function of problem (2.1) [or (2.5)], by

E(t) ≡ ‖wt(t)‖2
H + ‖A 1

2w(t)‖2
H + 2Π(w(t)) ≥ 0. (2.12)

Global well-posedness. It is well known that under assumption (A.1)(a)-
(b)-(c), there exists a unique global finite energy solution: that is, in (2.8), T
can be an arbitrarily finite positive number.

This conclusion follows from the general theory of maximal monotone op-
erators (Barbu, 1976), as applied to Eqn. (2.5): see Lasiecka (1989, Theorem
2.1). In fact, the evolution defined by Eqn. (2.5) can be represented as a locally
Lipschitz perturbation of a maximal monotone operator. Surjectivity of B∗ ∈
L(D(A 1

2 ); Ũ) is used here to guarantee that the operator A−Bg(B∗ · )+F · ) of
(2.5) is maximal monotone (Lasiecka, 1989, Theorem 2.1). This gives local (in
time) existence. Furthermore, global existence of solutions is then guaranteed
by a-priori bounds that arise from the positivity of the energy function in (2.12)
and from the energy identity posted in (3.1) below, in Section 3.

The boundary input-solution operator L of the linear model zt =
Az + Bu. Next, we introduce the boundary input-solution operator of the
corresponding open-loop linear part of (2.5),

(Lu)(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ (2.13a)

: continuous L2(0, T ;U) → C([0, T ];H), (2.13b)

whose regularity indicated in (2.13b) (needs to be assumed, but, in fact) follows
as a consequence of the following ‘abstract boundary → boundary’ regularity
assumption, which we now introduce.

The ‘abstract boundary-boundary’ regularity: The operator B∗L
is bounded on L2(0, T ;U). With reference to (2.13), we assume that

(A.2):

The operator B∗L is bounded, L2(0, T ;U) → L2(0, T ;U); (2.14a)

(B∗Lu)(t) =

∫ t

0

B∗eA(t−τ)Bu(τ)dτ. (2.14b)

Remark 2.1 The stated implication: (2.14) ⇒ (2.13b) in the above (linear)
setting was proved (in two ways) in Lasiecka and Triggiani (2004, 2008).
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Remark 2.2 It is well known (Flandoli, Lasiecka and Triggiani, 1988; Lasiecka
and Triggiani, 1991, 2000), that the regularity property (2.13b) is equivalent (via
duality) to the following (regularity) inequality

B∗eA∗t : continuous H→L2(0, T ;U); or

∫ T

0

‖B∗eA∗th‖2
Udt ≤ CT ‖h‖2

H, h∈H.

(2.15)

The interior input-solution operator K of the linear model zt =
Az + h. We likewise introduce the interior input-solution operator of the corre-
sponding open-loop model zt = Az + h:

(Kh)(t) =

∫ t

0

eA(t−τ)h(τ)dτ (2.16a)

: continuous L1(0, T ;H) → C([0, T ];H), (2.16b)

so that

(B∗Kh)(t) =

∫ t

0

B∗eA(t−τ)h(τ)dτ (2.17a)

: continuous L2(0, T ;H) → L2([0, T ];U). (2.17b)

The regularity (2.17b) follows a-fortiori from (2.15). [Take the inner product
on L2(0, T ;U) of B∗Kh with a function ψ ∈ L2(0, T ;U); change the order
of integration, and invoke (2.15).] Thus, a-fortiori, from assumption (A.2) =
(2.14), which implies (2.13b) (by Remark 2.1), which in turn is equivalent to
(2.15) (by Remark 2.2).

The nonlinear semigroup SF (t) describing (2.5); the variation of
parameter formula. As noted before, under assumptions (A.1)(a),(b),(c), it
follows, Lasiecka (1989 – Theorem 2.1, 1999), that the operator

AF ≡ A−Bg(B∗) + F (2.18)

is maximal monotone and generates a nonlinear semigroup of contractions on
H , which we shall call SF (t). Accordingly, we may represent the solution of
the first-order equation (2.5) by means of the following variation of parameter
formula, via L in (2.13a) and K in (2.16a):

y(t; y0) = SF (t)y0

= eAty0 − {Lg(B∗SF ( · )y0)}(t) + {KFSF ( · )y0}(t), (2.19)

y(t) = {wt), wt(t)}, to be later invoked.

The exact controllability assumption of the open-loop linear prob-
lem ż = Az +Bu (or wtt + Aw + Bu = 0). We further assume that:
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(A.3):







The linear open-loop dynamics wtt + Aw + Bu ≡ 0 is exactly
controllable in {w,wt} on the state space H in (2.2), within
the class of L2(0, T ;U)-controls, for a sufficiently large T > 0.

(2.20)

By the well-known duality between exact controllability and continuous
observability (Russell, 1978), assumption (A.3) is equivalent to the following
Continuous Observability Inequality (Flandoli, Lasiecka and Triggiani, 1988,
Lasiecka and Triggiani, 1991a, 2003, 2008; Triggiani, 1988; Gulliver et al., 2003)

(A.3′):

‖x‖2
H ≤ CT

∫ T

0

‖B∗eA∗tx‖2
Udt, ∀ x ∈ H, (2.20′)

which in turn, since A = −A∗ is skew-adjoint, is equivalent to the inequality
(Lasiecka and Triggiani, 2003):

(A.3′′):

‖x‖2
H ≤ CT

∫ T

0

‖B∗eAtx‖2
Udt, ∀ x ∈ H. (2.20′′)

The fourth and last abstract assumption needed in the study of the asymp-
totic behavior of the evolution equation (2.1) [or (2.5)] is an ‘abstract unique
continuation property,’ to be invoked in Section 3 to absorb lower-order terms.

Abstract unique continuation assumption

(A.4): Consider the evolution problem with interior feedback term

wtt + Aw + F(w) ≡ 0, 0 < t ≤ T, (2.21a)

whose time derivative version, under assumption (A.1)(b), is

(wt)tt + A(wt) + F ′(w)wt ≡ 0, 0 < t ≤ T, (2.21b)

along with the following over-determined boundary condition (zero observation):

B∗wt ≡ 0, 0 ≤ t ≤ T. (2.22)

We assume that, for T sufficiently large (at least as large as the time of exact
controllability in (A.3)):

(2.21a–b), (2.22) ⇒ wt ≡ 0, hence w ≡ const, 0 < t ≤ T. (2.23)

Implication of assumptions (A.4) and (A.1)(c): w ≡ 0. Assumption
(A.4) yields wt ≡ 0 for 0 < t ≤ T . Accordingly, Eqn. (2.21a) becomes then Aw+
F(w) ≡ 0 and hence yields (Aw,w)H+(F(w), w)H ≡ 0. By assumption (A.1)(c)
= (2.11) and A positive, self-adjoint, we have (F(w), w)H = (Π′(w), w)H ≥ 0,
and then (Aw,w)H ≡ 0, hence, w ≡ 0, 0 < t ≤ T .
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Main result. The main result of the present paper is given next. It gener-
alizes the abstract result of Lasiecka and Triggiani (2008, Theorem 3.1) in the
case of the purely ‘boundary case,’ to which it reduces when F ≡ 0 (except
that, in Lasiecka and Triggiani, 2008, uniformity of the decay is with respect to
all initial conditions in H ; here, instead, uniformity is with respect to all initial
conditions within a given ball of H , centered at the origin). To state it, we
need to introduce some additional quantities, following Lasiecka and Triggiani
(2008) (ultimately, Lasiecka and Tataru, 1993), Lasiecka and Triggiani (2000,
2006), Lasiecka and Toundykov (2006). With reference to the concave function
h noted in assumption (A.1)(a) = (2.9), we next introduce the following three
functions, which are defined in succession (Lasiecka and Tataru, 1993): first the
function H( · ) on R

+:

H(x) =
CT,E(0)

T
h
( x

2T

)

: positive for x > 0, continuous, strictly increasing, H(0) = 0; (2.24)

where CT,E(0) is the constant depending on T and the initial energy E(0),

occurring in (3.37). [In PDE applications, one has h
(

x
2T×meas(Γ)

)

with a scaling

factor inside the argument of h( · ) which depends on the geometry of the domain
Ω, ∂Ω = Γ, on which the PDE is defined. We can absorb this scaling factor
with h.] Next, the function p(x), the inverse of H(x):

p(x) = H−1(x)

: positive for x > 0, continuous, strictly increasing, p(0) = 0; (2.25)

finally, the function

q(x) = x− (I + p)−1(x) = p(I + p)−1(x) = (I + p)−1p(x)

: positive for x > 0, continuous, strictly increasing, q(0) = 0. (2.26)

Thus, H, p, q do depend on the initial energy E(0). We can now state the
main uniform stabilization result of the present paper. Subsequent sections will
provide a few PDE illustrations.

Theorem 2.1 With reference to the nonlinear closed-loop feedback problem (2.1)
[or (2.5)], assume the standing hypotheses (i), (ii), (iii), (iv) posted below (2.2),
as well as assumptions (A.1), (A.2), (A.3), (A.4). Then, the semigroup solution
SF (t) with generator AF in (2.18) describing the solution of the closed-loop,
dissipative, nonlinear problem (2.1) [or (2.5)] (as guaranteed by Lasiecka, 1989,
2001), decays to zero on the space H as T → +∞, uniformly with respect to
initial data within a given ball of H. More precisely, its decay rate is described by
the following nonlinear ODE in the scalar function s(t) (nonlinear contraction),

d

dt
s(t) + q(s(t)) = 0, s(0) = E(0), (2.27)
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where q is the function defined in (2.26), which depends on the initial energy
E(0). The decay rate is given by the solution s(t) ց 0:

E(t) ≤ s(t)(E(0)) ց 0 as tր +∞, (2.28)

where the notation means that the solution s(t) depends on the initial energy
E(0) (since q does in (2.26), via (2.24), (2.25)). Thus, uniformity of the decay
is with respect to all initial conditions in H, which are within a given ball of H
centered at the origin.

Remark 2.3 It is shown in Lasiecka and Toundykov (2006), Lasiecka and
Triggiani (2006) that the asymptotic rate of energy provided by Theorem 2.1
can be approximated by solving the ODE (2.27) with the function q replaced
by the function h−1; that is, by solving

d

dt
s(t) + h−1(s(t)) = 0, s(0) = E(0). (2.29)

3. Proof of Theorem 2.1

Step 1. The energy identity (Lasiecka and Triggiani, 2008, Eqn. 3.3).

Lemma 3.1 Assume (A.1a-b-c) (as well as (i), (ii), (iii), (iv) of Section 2).
Then, the evolution equation (2.1) [or (2.5)], whose solution is given by the
variation of parameter formula (2.19), obeys the following energy identity

E(t) + 2

∫ t

s

〈g(B∗wt(t)),B∗wt(t)〉Udt = E(s), 0 ≤ s ≤ t, (3.1)

where the integrand is non-negative by (2.3) or (2.9), so that the energy is
decreasing: E(t) ≤ E(s), for s ≤ t. Hence, the problem is dissipative.

Proof. The proof of this lemma follows from standard energy methods, as ap-
plied to Lipschitz perturbations of monotone problems (Barbu, 1976; Lasiecka,
1989).

Step 2. The first part of the next lemma pertains to the continuous observ-
ability inequality.

Lemma 3.2 Assume (A.1), (A.2), (A.3) (and (i)–(iv) of Section 2).

(a) Let T > 0 be sufficiently large as in assumption (A.3). Then, the follow-
ing inequality holds true for the energy E( · ) in (2.12)

E(T ) +

∫ T

0

E(t)dt ≤ TCTCE(0)

∫ T

0

[

‖B∗wt(t)‖2
U + ‖g(B∗wt(t))‖2

U

]

dt

+ TCTCE(0)

∫ T

0

‖F(w(t))‖2
Hdt (3.2)
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(b) Eqn. (3.2) leads to the following estimate:

∫ T

0

E(t)dt ≤ CE(0)CTh

(

1

T

∫ T

0

〈g(B∗wt(t)),B∗wt(t)〉Udt
)

+ CE(0)CT

∫ T

0

‖w(t)‖2

D(A
1

2
−ǫ)
dt, (3.3)

where ǫ > 0 is the one occurring in (2.10).

Proof. We work with the first-order dynamics (2.5), where we recall that y =
{w,wt} with reference to the original second-order problem (2.1); in particular,
with its variation of parameter formula (2.19). We proceed as in Lasiecka and
Triggiani (2006, Theorem 3.1; 2003, Section 3.1).

Part (a). Step (i). We apply the operator B∗ on both sides of the solution
formula (2.19) and obtain

B∗eAty0 = B∗SF (t)y0 + {[B∗L]g(B∗SF ( · )y0)}(t)
+ {[B∗K]FSF ( · )y0}(t). (3.4)

We next invoke assumption (A.2) = (2.14): the operator B∗L is bounded in
L2(0, T ;U) and thus, a-fortiori, the operator B∗K is bounded from L2(0, T ;H)
to L2(0, T ;U), by (2.17b). This way, identity (3.4) yields

‖B∗eAty0‖2
L2(0,T ;U)

≤ constT

{

‖B∗SF ( · )y0‖2
L2(0,T ;U) + ‖g(B∗SF ( · )y0)‖2

L2(0,T ;U)

+‖FSF ( · )y0‖2
L2(0,T ;H)

}

. (3.5)

Step (ii). We next invoke the exact controllability assumption (A.3) for
T > 0 sufficiently large, of the pair {A,B}, which for A = −A∗ skew-adjoint
is equivalent to its version (A.3′′) = (2.20′′). We thus obtain, by combining
(A.3′′)=(2.20′′) with (3.5) (where T is as in assumption (A.3)):

‖y0‖2
H ≤ CT

∫ T

0

‖B∗eAty0‖2
Udt (3.6)

(by (3.5)) ≤ constT

{
∫ T

0

[‖B∗SF (t)y0‖2
U + ‖g(B∗SF (t)y0)‖2

U ]dt

+

∫ T

0

‖FSF (t)y0‖2
Hdt

}

. (3.7)

Step (iii). We return to the energy E(t) in (2.12) and evaluate it at t = 0.

We thus estimate by assumption (A.1)(c) on Π : D(A 1

2 ) ⇒ R
+:

E(0) = ‖w1‖2
H + ‖A 1

2w0‖2
H + 2Π(w(0)) (3.8)
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≤ ‖w1‖2
H + ‖A 1

2w0‖2
H + CE(0)‖w(0)‖2

D(A
1

2 )
(3.9)

≤ CE(0)‖[w0, w1]‖2
H = CE(0)‖y0‖2

H . (3.10)

Next, by Lemma 3.1, E(t) is decreasing, hence by (3.7), (3.10):

∫ T

0

E(t)dt ≤ TE(0) ≤ TCE(0)‖y0‖2
H (3.11)

≤ TCTCE(0)

∫ T

0

[

‖B∗SF (t)y0‖2
U + ‖g(B∗SF (t)y0)‖2

U‖
]

dt

+ TCTCE(0)

∫ T

0

‖FSF (t)y0‖2
Hdt. (3.12)

Then, (3.12) and E(T ) ≤ E(0) prove the desired inequality (3.2) via (2.6) and
y(t) = SF (t)y0 = {w(t), wt(t)}, B∗SF (t)y0 = B∗wt(t), FSF (t)y0 = [0,F(w(t))]
[(3.12) is a first-order version, (3.2) is a second-order version].

Part (b). On the RHS of (3.12), we first recall assumption (A.1)(a) = (2.9)
and next invoke the Jensen inequality (Lieb and Loss, 1996, p. 138). We thus
obtain

∫ T

0

E(t)dt ≤ TCTCE(0)

∫ T

0

h (〈g(B∗SF (t)y0), B
∗SF (t)y0〉U ) dt

+ TCTCE(0)

∫ T

0

‖FSF (t)y0)‖2
Hdt

(by Jensen in.) ≤ TCTCE(0)h

(

1

T

∫ T

0

〈g(B∗SF (t)y0), B
∗SF (t)y0〉Udt

)

+ TCTCE(0)

∫ T

0

‖FSF (t)y0‖2
Hdt. (3.13)

Inequality (3.13) is the first-order version which yields the claimed second-
order version inequality (3.3). Indeed, (3.13) yields estimate (3.3), as desired, by
invoking again (2.6) and y(t) = SF (t)y0 = {w(t), wt(t)}, B∗SF (t)y0 = B∗wt(t),
FSF (t)y0 = [0,F(w(t))], as well as the following estimate obtained from as-
sumption (A.1)(c) = (2.10) on F :

∫ T

0

‖FSF (t)y0‖2
Hdt =

∫ T

0

‖Fy(t)‖2
Hdt

=

∫ T

0

‖F(w)‖2
Hdt ≤ CT,E(0)

∫ T

0

‖w(t)‖2

D(A
1

2
−ǫ)
dt. (3.14)

Step 3. Absorption of the last ℓ.o.t. in estimate (3.3). In this step, we absorb
the last term in inequality (3.3), which is due to the presence of the interior
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terms F in model (2.1) [or F in its version (2.5)]. [This step did not occur in
Lasiecka and Triggiani, 2008, Section 3, which dealt only with abstract boundary
damping.] This step is carried out by a usual compactness-uniqueness argument,
albeit in a nonlinear setting, as in Lasiecka and Tataru (1993, Section 5).

Lemma 3.3 Consider the setting of Lemma 3.2(b), Eqn. (3.3). Assume, fur-
thermore, assumption (A.4) = (2.23) for a time T > 0 sufficiently large. Then,
there is a positive constant CT,E(0), depending on T and the initial energy E(0),
such that the following inequality holds true:

∫ T

0

‖w(t)‖2

D(A
1

2
−ǫ)
dt ≤ CT,E(0)

∫ T

0

[‖g(B∗SF (t)y0)‖2
U + ‖B∗SF (t)y0‖2

U ]dt.

(3.15)

Proof (Orientation). As mentioned, the proof is based on a, by now, familiar
compactness-uniqueness argument, albeit in the present nonlinear setting, as in
the concrete case of Lasiecka and Tataru (1993, Section 5). Compactness results

from the embedding D(A 1

2 ) →֒ D(A 1

2
−ǫ), ǫ > 0, since A−1 is assumed compact

(see (i) below (2.2)), while uniqueness is guaranteed by both the controllability
assumption (A.3) of the linear version and assumption (A.4) of uniqueness in
the nonlinear setting. The size of T depends on the speed of propagation of the
underlying dynamics. A sketch will follow, patterned after the concrete case in
Lasiecka and Tataru (1993, Section 5).

Step 1. Let the initial condition {w0, w1} satisfy E(0) ≤ M . By con-
tradiction, assume that inequality (3.15) is false. Then, there exists a se-
quence of solutions {wn, wn

t } of problem (2.1), hence with regularity {wn, wn
t } ∈

L∞(0, T ;D(A 1

2 )×H) as in (2.8), and satisfying the observability-type inequality
(3.2) and also (3.3) [where y(t) = SF (t)y0], such that

{

wn → some w, weak∗ in L∞(0, T ;D(A 1

2 ));

wn
t → wt, weak∗ in L∞(0, T ;H),

(3.16a)

(3.16b)

as n→ ∞, while, with yn = {wn, wn
t }:

‖wn‖2

L2(0,T ;D(A
1

2
−ǫ))

∫ T

0

[‖g(B∗yn)‖2
U + ‖B∗yn‖2

U ]dt

→ ∞, (3.17)

as n→ ∞. As the numerator of (3.17) is uniformly bounded in n by (3.16a), it
follows via (2.6) for B∗ that

∫ T

0

[‖g(B∗wn
t )‖2

U + ‖B∗wn
t ‖2

U ]dt→ 0 for n→ ∞. (3.18)
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Step 2. On the other hand, (3.16a) and (3.16b), along with the compact-

ness of A−1 [assumed in (i) below (2.2)], and hence compactness of D(A 1

2 ) →֒
D(A 1

2
−ǫ) in the space variable yields (Simon, 1987; Aubin, 1963) the strong

convergence

wn → w strongly in L∞(0, T ;D(A 1

2
−ǫ)). (3.19)

Furthermore, by assumption (A.1)(b), in particular (2.10) on F (which is

a-fortiori continuous D(A 1

2
−ǫ) → H, we also obtain as a consequence of (3.19),

that

F(wn) → F(w) strongly in L∞(0, T ;H). (3.20)

Step 3. Let us first assume that w 6= 0 in (3.19). Passing with the weak∗-
limit on the original equation (2.1)

wn
tt + Awn + Bg(B∗wn

t ) + F(wn) = 0, (3.21)

satisfied by {wn, wn
t } and invoking (3.18) and (3.20) yields

wtt + Aw + F(w) = 0, B∗wt ≡ 0, 0 < t ≤ T. (3.22)

The abstract uniqueness assumption (A.4), as in (2.23), plus the implication
noted below (2.23) yields then that

w ≡ 0, 0 < t ≤ T, (3.23)

a contradiction with the original assumption w 6≡ 0 of the present case.

Step 4. Let us assume next that w ≡ 0 in (3.19). Normalize the solution wn

by setting

ŵn ≡ wn

cn
, cn = ‖wn‖

L2(0,T ;D(A
1

2
−ǫ))

, (3.24)

so that

cn → 0 by (3.19) with w ≡ 0; and ‖ŵn‖
L2(0,T ;D(A

1

2
−ǫ))

≡ 1. (3.25)

Next, divide numerator and denominator of the blowing-up fraction in (3.17)
by c2n, use the normalization condition in (3.25) and obtain via (2.6)

1

c2n

∫ T

0

[‖g(B∗wn
t )‖2

U + ‖B∗wn
t ‖2

U ]dt→ 0 as n→ 0. (3.26)

As noted before, the solution {wn, wn
t } satisfies the observability-type in-

equality (3.2) of Lemma 3.2(b). We divide this inequality (3.2) for {wn, wn
t } by

c2n, invoke (3.26), as well as

1

c2n

∫ T

0

‖F(wn(t))‖2
Hdt ≤ CT,E(0)

∫ T

0

‖ŵn(t)‖2

D(A
1

2
−ǫ)
dt ≡ CT,E(0) (3.27)
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—which is obtained from (3.14) and (3.24), (3.25): in this way we obtain

1

c2n

∫ T

0

[‖A 1

2wn(t)‖2
H + ‖wn

t (t)‖2
H]dt ≤ constT,E(0), (3.28a)

dropping positive terms En(T )/c2n and Π(wn(t)) ≥ 0, see (2.12) for En(t).
Then, by (3.24), we rewrite (3.28a) as

‖Ên‖L2(0,T ;H) ≤ CT,E(0), 0 ≤ t ≤ T, where Ên(t) ≡ ‖ŵn(t)‖2

D(A
1

2 )
+‖ŵn

t (t)‖2
H.

(3.28b)

Then, by (3.28) we deduce that






















ŵn→ ŵ weakly in L2(0, T ;D(A 1

2 ));

ŵn
t → ŵt weakly in L2(0, T ;H);

ŵn→ ŵ strongly in L2(0, T ;D(A 1

2
−ǫ)),

by Aubin (1963), Simon (1987),

(3.29a)

(3.29b)

(3.29c)

again, since A−1 is compact. Dividing Eqn. (3.21) for wn by cn and passing to
the weak limit yields by virtue of (3.29), (3.26),

ŵtt + Aŵ + lim
n

F(wn)

cn
= 0 as well as B∗ŵt ≡ 0, 0 ≤ t ≤ T. (3.30)

As a last step of our present argument, we shall show that the differentiability
of F : D(A 1

2 ) → H, due to assumption (A.1)(b), will imply

lim
n

F(wn)

cn
= F ′(0)ŵ, weakly in L2(0, T ;D(A 1

2
−ǫ)). (3.31)

Proof of (3.31). The differentiability of F in (A.1)(b), Eqn. (2.10), gives,
recalling cn from (3.24)

F(wn) −F ′(0)wn = o
(

‖wn‖
L2(0,T ;D(A

1

2
−ǫ))

)

= o(cn), (3.32)

where, by definition of o we get (3.31) from (3.32) via (3.24) on ŵn and (3.29a).
By use of (3.31) in (3.30), we then obtain

ŵtt + Aŵ + F ′(0)ŵ = 0, B∗ŵt ≡ 0, 0 < t ≤ T. (3.33)

Invoking the uniqueness assumption (A.4) on (3.33) then yields ŵ ≡ 0.
Indeed, Eqn. (3.33) coincides with Eqn. (2.21b) in the solution now being ŵ and
with respect to the reference point now being 0. But ŵ ≡ 0 is a contradiction
with

1 ≡ lim
n→∞

‖ŵn‖
L2(0,T ;D(A

1

2
−ǫ))

≡ ‖ŵ‖
L2(0,T ;D(A

1

2
−ǫ)
, (3.34)

which follows by (3.25) and (3.29c).
The proof of Lemma 3.3 is complete.



950 I. LASIECKA, R. TRIGGIANI

Step 4: Final Estimate. As a corollary of estimate (3.15) being used on the
RHS of estimate (3.3), we obtain via assumption (A.1)(a) = (2.9) and Jensen
inequality as in (3.13):

Proposition 1 Assume (A.1)–(A.4) (as well as (i)–(iv) of Section 2). Let
T > 0 be sufficiently large, as required by assumption (A.4) = (2.23) and (A.3).
Then, the following estimate holds true for solutions of problem (2.1) [or (2.5)]:

∫ T

0

E(t)dt ≤ CE(0)CTh

(

1

T

∫ T

0

〈g(B∗SF (t)y0, B
∗SF (t)y0〉Udt

)

. (3.35)

Step 5. Completion of the proof of Theorem 2.1. In view of the energy
identity (3.1) in Lemma 3.1, which implies that E(t) is decreasing, we obtain
by (3.35)

TE(T ) ≤
∫ T

0

E(t)dt ≤ CT,E(0)h

(

1

2T
(E(0) − E(T ))

)

. (3.36)

Dividing (3.36) by T and recalling the definition of the function H( · ) in
(2.24) yields

E(T ) ≤ CT,E(0)

T
h

(

E(0) − E(T )

2T

)

≡ H(E(0) − E(T )). (3.37)

Since H( · ) is strictly increasing, see (2.24), we apply H−1( · ) across (3.37),
recall p = H−1 by (2.25), and obtain

H−1(E(T )) ≤ E(0) − E(T ); or E(T ) + p(E(T )) ≤ E(0). (3.38)

The above inequality now leads (Lasiecka and Tataru, 1993, Lemma 5.1) to
the desired conclusion of Theorem 2.1, in particular, to Eqn. (2.27), with q as
in (2.26).

4. Wave equation with nonlinear dissipation both in the

Dirichlet B.C. and in the interior

4.1. Model and results

Let Ω be an open bounded domain in R
n, n = 1, 2, 3, with sufficiently smooth

boundary Γ. On it, we consider the following wave equation problem, with both
boundary dissipation in the Dirichlet B.C. and in the interior:

wtt = ∆w −F(w) in (0,∞] × Ω ≡ Q; (4.1.1a)

w(0, · ) = w0, wt(0, · ) = w1 in Ω; (4.1.1b)

w|Σ ≡ g

([

∂(A−1wt)

∂ν

]

Γ

)

in (0,∞] × Γ ≡ Σ. (4.1.1c)
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Here ν = outward unit normal vector defined on Γ. With reference to prob-
lem (4.1.1), we introduce two positive self-adjoint operators and a corresponding
functional setting, in line with the notation of Sections 2 and 3. First, we define
the

(i) positive, self-adjoint operator A0 in L2(Ω):

A0h = −∆h, L2(Ω) ⊃ D(A0) = H2(Ω) ∩H1
0 (Ω) → L2(Ω); (4.1.2a)

D(A
1

2

0 ) = H1
0 (Ω), [D(A

1

2

0 )]′ ≡ H−1(Ω) (4.1.2b)

(duality with respect to L2(Ω) as a pivot space). Next,

(ii) the positive, self-adjoint operator A on H−1(Ω):

A ≡ realization of A0 considered on the underlying space H−1(Ω); (4.1.3a)

: H ≡ H−1(Ω) ⊃ D(A) = D(A
1

2

0 ) ≡ H1
0 (Ω) → H−1(Ω); (4.1.3b)

D(A 1

2 ) ≡ L2(Ω), H ≡ L2(Ω)×H−1(Ω) ≡ D(A 1

2 )×H; U = L2(Γ). (4.1.4)

Linear case: F ≡ 0, g(u) = u. This boundary feedback system was first
introduced in Lasiecka and Triggiani (1987), where uniform stabilization was
shown in the state space L2(Ω) × H−1(Ω) of optimal regularity with w|Σ =

− ∂(A−1wt)
∂ν

∣

∣

∣

Σ
∈ L2(0,∞;L2(Γ)) (Lasiecka and Triggiani, 1981, 1983; Lasiecka,

Lions and Triggiani, 1986), at least when Ω is convex (or the set-theoretic dif-
ference of two convex sets). Via Russell (1978), this result gave for the first time
exact controllability of the corresponding open loop problem on the state space
L2(Ω)×H−1(Ω) of optimal regularity with controls w|Σ = u ∈ L2(0, T ;L2(Γ)).
Later, geometric conditions were much relaxed, Lasiecka and Triggiani (1992).

Nonlinear case: F ≡ 0, g as in assumptions (iii), (A.1a). This case was
explicitly studied in Lasiecka and Triggiani (2008, Section 4), where uniform sta-
bilization of problem (4.1.1a–c) with F ≡ 0 was obtained with optimal rates of
energy decay and with constant independent on the norm of the initial condition,
by following the approach of the present paper, which is based on assumptions
(A.2) and (A.3). As noted above, assumption (A.3) had been known to hold true
since Lasiecka and Triggiani (1987), see also Triggiani (1988), Lions (1988), Ho
(1986). Verification of assumption (A.2) is a delicate issue and was established
in Lasiecka and Triggiani (2004, 2006), by combining trace regularity results of
Lasiecka, Lions and Triggiani (1986) with a micro-local analysis argument.

Nonlinear case: F , g to be specified here as to fall into the abstract
setting of Sections 2 and 3. Before doing this, we recall the abstract setting for
the control operator from Triggiani (1978), Lasiecka and Triggiani (1983, 1987,
1991a, 2000), and for problem (4.1). We set:

v = Du⇐⇒ {∆v = 0 in Ω; v|Γ = u}
D = harmonic extension of the Dirichlet datum; (4.1.5)
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Bg = ADg in [D(A)]′; (Bg, v)H = 〈g,B∗v〉U ; (4.1.6a)

B∗ϕ=− ∂A−1ϕ

∂ν

∣

∣

∣

∣

Γ

, first on D(A) and next extended L2(Ω) → L2(Γ). (4.1.6b)

Ũ = H
1

2 (Γ), so that B∗ = − ∂
∂ν

A−1 is surjective

D(A 1

2 ) ≡ L2(Ω) onto Ũ = H
1

2 (Γ), (4.1.6c)

by trace theory, as required by the preliminary assumption (ii) just below (2.2).
In view of (4.1.3), (4.1.5), (4.1.6), the feedback problem (4.1.1a–c) can be rewrit-
ten abstractly as

wtt + Aw + Bg(B∗wt) + F(w) = 0 in [D(A)]′, (4.1.7)

{w0, w1} ∈ H , as desired, in line with (2.1).

The nonlinear terms f and g. In what follows, we shall consider the
term F(w) as defined by

F(w) = f(A−1w), (4.1.8)

where f is a Nemytski operator of substitution (f(v))(x) = f(v(x)), generated
by a scalar-valued function f ∈ C1(R). The following hypotheses are placed on
f and g:

(Hf ): The scalar function f(s) is differentiable,

f(0) = 0 and f(s)s ≥ 0, so that f̂(x) ≥ 0, ∀ x ∈ R, f̂ ′(x) = f(s). (4.1.9)

[In fact, taking w.l.o.g. f̂(0) = 0, we have f̂(x) =
∫ x

0 f(s)ds ≥ 0 with
x > 0, so that f(s) ≥ 0, ds ≥ 0; as well as x < 0, so that f(s) ≤ 0,
ds ≤ 0.]

(Hg): The operator g : U → U, U = L2(Γ) is a Nemytski operator of sub-
stitution (g(u))(x) = g(u(x)) defined by the scalar function g(s) which
is continuous, monotone increasing, g(0) = 0, and satisfies the following
growth condition at infinity:

ms2 ≤ g(s)s ≤Ms2, |s| ≥ 1, 0 < m < M. (4.1.10)

We then recall from Lasiecka and Tataru (1993) (and then Lasiecka and Trig-
giani, 2006; Lasiecka and Toundykov, 2006) that it is always possible to select a
continuous, concave, strictly increasing function h0 : R

+ → R
+, with h0(0) = 0,

such that

s2 + g(s)s ≤ h0(sg(s)), |s| ≤ 1. (4.1.11)

The main result of the present section on problem (4.1.1a–c) is the following:
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Theorem 4.1.1 Assume hypotheses (Hf )=(4.1.9) and (Hg) = (4.1.10). Then,

problem (4.1.1a–c) is well posed in the state space H ≡ D(A 1

2 )×H (≡ L2(Ω)×
H−1(Ω)) in the sense that it generates a nonlinear semigroup there. More-
over, the energy of the solution Ew(t) ≡ ‖{w(t), wt(t)}‖2

H decays uniformly to
zero with rate specified by Theorem 2.1, if, in addition, the uniqueness property
(4.2.10), (4.2.11) ⇒ (4.2.12) holds true. Here the function h (in (2.24) leading
to the function q in (2.26)) is now replaced by the function h0 in (4.1.11), and
uniformity of the decay rate is with respect to all initial conditions contained in
a given ball of the space H in (2.2).

Remark 4.1 Theorem 4.1.1 is a specialization of the abstract stabilization
Theorem 2.1, as applied to the wave/Dirichlet problem (4.1.1a–c). As is the
case in the energy-based approach of Lasiecka and Tataru (1993)—which is
incorporated in the proof of Theorem 2.1—the decay rates of Theorem 4.1.1
depend entirely on the behavior of the nonlinear function g(s) near the origin
(see also the examples of Lasiecka and Tataru, 1993; Lasiecka and Triggiani,
2006; Lasiecka and Toundykov, 2006; Triggiani, 2007). Indeed, as noted in
Remark 2.3, the decay rate is driven by the equation

d

dt
s(t) + h−1

0 (s(t)) = 0, s(0) = E(0), (4.1.12)

where h0 is the function in (4.1.11) (more specifically, the dominant behavior
of h, for small frequencies, depends on h0). We illustrate this algorithm with
several examples (all in line with the aforementioned references).

Case 1: Linear growth of g( · ) near the origin. Let ms ≤ g(s)s ≤Ms2 near
the origin, 0 < m < M . Then from (4.1.11) we can take h0(s) ∼ as near the
origin, for some nonzero constant a. In this case, as expected, the decay of s(t)
provided by Eqn. (2.27) or (4.1.12) is exponential.

Case 2: Polynomial growth of g(s) near the origin. Let now g(s) ∼ sp, p > 1,

near the origin. Then, from (4.1.11), we can take h(s) = h0(s) = s
2

p , and the
corresponding ODE (4.1.12) to be solved, takes the form

st + s
p

2 = 0, s(0) = E(0). (4.1.13)

The above leads to the algebraic decay rates 1
2

tp−2

.

Case 3: Exponential growth. We consider g(s) = e−
1

s2 s. In this case we can

take h(s) = 1
ln s

, so that h−1(s) = e−
1

s and the resulting ODE (4.1.12) to be
solved becomes

st + e−
1

s = 0. (4.1.14)

The decay rates are then logarithmic.

Case 4: We consider the sublinear growth g(s) = s
1

3 . Then h(s) =
√
s,

s > 0. The ODE (4.1.12) to be solved becomes st + s2 = 0, whose solution has
asymptotic behavior s(t) ∼ 1

t
.
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4.2. Proof of Theorem 4.1.1

Theorem 4.1.1 will follow as a specialization of the abstract Theorem 2.1 to the
actual setting in Section 4.1, once we verify the four abstract assumptions (A.1)
through (A.4) in the present case.

Verification of assumption (A.3). In the present case, assumption (A.3)
is the well-known result of exact controllability of the wave equation with Dirich-
let control in the state space H ≡ L2(Ω)×H−1(Ω), which was first established
in Lasiecka and Triggiani (1987) (as a consequence of uniform stabilization via
Russell, 1978), under some geometric conditions. Direct proofs were later given
in Triggiani (1988), Ho (1986), Lions (1988), with more general results given in
Bardos, Lebeau and Rauch (1992), Lasiecka, Triggiani and Yao (1999), Lasiecka,
Triggiani and Zhang (2000), Triggiani and Yao (2002). All these works actually
established—in various degrees of generality—the equivalent Continuous Ob-
servability Inequality (A.3′) = (2.20′), which in the present case reads: There
exists a constant CT > 0, such that

‖{y0, y1}‖2
H1

0
(Ω)×L2(Ω) ≤ CT

∫

Σ

∣

∣

∣

∣

∂y

∂ν

∣

∣

∣

∣

2

dΣ, (4.2.0)

for the homogeneous dual problem














ytt − ∆y = 0 in Q;

y(T ) = y0, yt(T ) = y1 in Ω;

y|Σ ≡ 0,

(4.2.1a)

(4.2.1b)

(4.2.1c)

for T > T0 = sufficiently large > 0. Thus, assumption (A.3) holds true in the
present case of model (4.1.1).

Verification of assumption (A.2). In the present case of model (4.1.1),
it was shown in Lasiecka and Triggiani (2004, 2008) that assumption (A.2) is
equivalent to the following inequality:

∫

Σ

∣

∣

∣

∣

∂A−1vt

∂ν

∣

∣

∣

∣

2

dΣ ≤ CT

∫

Σ

|u|2dΣ, (4.2.2)

where v solves the following problem














vtt = ∆v in (0, T ]× Ω = Q;

v(0, · ) = 0, vt(0, · ) = 0 in Ω;

v|Σ = u ∈ L2(Σ) in (0, T ]× Γ ≡ Σ.

(4.2.3a)

(4.2.3b)

(4.2.3c)

[This regularity was first stated in Ammari, 2002, but the key part of the proof
sketched in this reference is referred to the author’s Ph.D. thesis, which is inac-
cessible to us. The complete proof in Lasiecka and Triggiani, 2004, 2008, is very
different.]
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Regularity (4.2.2) for the v-problem (4.2.3a–c) is very delicate and challeng-
ing for dim Ω ≥ 2 (while it is simple for dim Ω = 1, Lasiecka and Triggiani,
2003). It was proved in Lasiecka and Triggiani (2004) (see also Lasiecka and
Triggiani, 2008, Section 4) by combining trace regularity results from Lasiecka,
Lions and Triggiani (1986) with a micro-local analysis argument. (Lasiecka and
Triggiani, 2003, provided an incorrect counter-example in the half-space, due
to a spurious appearance of the symbol ‘Real part’ in Lasiecka and Triggiani,
2003, Eqn. (5.2.18). Once the symbol Re is omitted, as it should have been, the
same analysis and computation provide a positive conclusion for the half-space
version of problems (4.2.2), (4.2.3) in dimension greater or equal to two.)

Thus, in conclusion, assumption (A.2) holds true in the present case of model
(4.1.1).

Verification of assumption (A.1)(a) for g. It is established in Lasiecka
and Triggiani (2008, Section 3, Eqns. (3.24)–(3.34)) that a Nemytski operator
g : U → U (operator of substitution (g(u))(x) = g(u(x))) satisfies assump-
tion (A.1)(a), if the scalar function g satisfies assumption (Hg), as presently
postulated. Indeed, we review the analysis.

For small s, monotonicity of g implies the existence of a concave function
h0 such that (Lasiecka and Tataru, 1993; Lasiecka and Triggiani, 2006; Lasiecka
and Toundykov, 2006):

s2 + g2(s) ≤ h0(sg(s)), |s| ≤ 1, (4.2.4)

with h0, moreover, continuous, increasing and h0(0) = 0. For large s, the linear
bounds (4.1.10) imposed on g give

s2 + g2(s) ≤ g(s)s

m
+Msg(s) = (m+M)sg(s), |s| ≥ 1. (4.2.5)

This gives

h(s) = h0(s) + (m+M)(s) (4.2.6)

as the final choice for the concave function h which satisfies all the required
conditions.

Verification of assumption (A.1)(b),(c) for F . The operator F is
defined in (4.1.8) with f satisfying assumption (Hf ) = (4.1.9).

To verify (A.1)(b) = (2.10), we note that differentiability of F in (A.1)(b)
follows from the postulated differentiability of f( · ), as well as from Sobolev
embedding H2−2ǫ(Ω) ⊂ C(Ω) for dim Ω = 1, 2, 3, and finally from the property
that

A−1 : bounded H−2ǫ(Ω) ≡ D(A 1

2
−ǫ) → H2−2ǫ(Ω), (4.2.7)

with A defined in (4.1.3). [The claimed embedding follows from W s,p ⊂ W t,q,
0 ≤ t ≤ s <∞, 1 < p ≤ q <∞ for s− n

p
≥ t− n

q
, with s = 2 − 2t, p = 2; t = 0,

q → ∞, which is valid for n < 2(2 − 2ǫ), or n = 1, 2, 3)
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A0

?

•

H ≡ H
−1(Ω) = [D(A

1

2

0
)]′

L2(Ω) = D(A
1

2 )

H
1

0
(Ω) = D(A

1

2

0
)

H
2(Ω) ∩ H

1

0
(Ω)

A

?

•

A−1

6

•

H
2−2ǫ(Ω)

D(A
1

2
−2ǫ) = H

−2ǫ(Ω)

Next, to verify (A.1)(c) = (2.11), we recall (4.1.8) F = f(A−1w), define

f̂ ′ = f , recall H = H−1(Ω) = [D(A
1

2

0 )]′ from (4.1.3b), (4.1.2b), and compute

(F(w), z)H = (f(A−1w), z)H = (f̂ ′(A−1w), z)H = (f̂ ′(A−1w),A−1z)L2(Ω);
(4.2.8)

(F(w), w)H = (f̂ ′(A−1w), w)H = (f(A−1w),A−1w)L2(Ω) = (Π′(w), w)H ≥ 0,
(4.2.9)

since f(s)s ≥ 0, where Π(w) =
∫

Ω
f̂(A−1w)dΩ ≥ 0, as required, by (4.1.9) (i.e.,

f̂(x) ≥ 0, ∀ x ∈ R).

Verification of assumption (A.4). Property (2.23) in the setting of
(2.21a–b), (2.22) can be restated in the present case as the following unique
continuation principle: Consider the dynamics (corresponding to (2.21b) in our
present case)

ytt − ∆y + f ′(A−1w)A−1y = 0, (4.2.10)

obtained from differentiating (4.1.1a) in t and setting wt = y, along with the
over-determined B.C.,

y =
∂

∂ν
A−1y ≡ 0 on Σ = (0, T ]× Γ. (4.2.11)

Here, the first B.C. is incorporated in the operator A in (2.21a) (via (4.1.2a)),
while the second B.C. corresponds to (2.22) with B∗ given by (4.1.6b) (and
y = wt). We then seek to conclude that, in fact, (4.2.10), (4.2.11) imply

y ≡ 0 on 0 < t ≤ T (4.2.12)
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(i.e., (2.23)). Due to the non-local character of the nonlinear term in (4.2.10),
one may need to assume additional conditions, such as small internal damping,
to obtain y ≡ 0 in (4.2.12).

Alternatively, we may convert the y-problem (4.2.10), (4.2.11) into the fol-
lowing v-problem











−∆vtt + ∆2v + f ′(A−1w)v ≡ 0 in Q;

v|Γ =
∂v

∂ν

∣

∣

∣

∣

Γ

= ∆v|Γ ≡ 0 in Σ,

(4.2.13a)

(4.2.13b)

obtained by setting v = A−1y or Av = −∆v with three homogeneous B.C.
Whether the v-problem implies v ≡ 0, perhaps under some geometrical (star-
shaped) conditions, remains to be studied.

5. Kirchhoff plate with nonlinear dissipation both in the

‘moment’ B.C. and in the interior

5.1. Model and results

Let Ω be an open bounded domain in R
n, n = 1, 2, with sufficiently smooth

boundary Γ for n = 2. On it, we consider the following Kirchhoff problem with
constant γ > 0, with both boundary dissipation in the ‘moment’ B.C. and in
the interior























wtt − γ∆wtt + ∆2w + f(w) = 0 in (0,∞) × Ω ≡ Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ ≡ 0, ∆w|Σ = −g
(

∂wt

∂ν

∣

∣

∣

∣

Γ

)

on (0,∞) × Γ ≡ Σ.

(5.1.1a)

(5.1.1b)

(5.1.1c)

Let A0, D be the operators defined in (4.1.2a), (4.1.5), respectively. Then,
the abstract model of problem (5.1.1) is (Lasiecka and Triggiani, 1991b; Horn
and Lasiecka, 1994):

Mwt + A2
0w + A0Dg

(

∂wt

∂ν

∣

∣

∣

∣

Γ

)

+ f(w) = 0, (5.1.2)

where the ‘mass’ operator M = Mγ = (I + γA0), γ > 0, is positive, self-adjoint
on L2(Ω). Applying M−1 to (5.1.2) yields the final model

wtt +M−1A2
0w +M−1A0Dg

(

∂wt

∂ν

∣

∣

∣

∣

Γ

)

+M−1f(w) = 0 (5.1.3)

of the same form as (2.1), where (Lasiecka and Triggiani, 1991b, 2000, 2002):
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(a) A ≡M−1A2
0 is a positive, self-adjoint operator on the space

H = D(M
1

2 ) = D((I + γA0)
1

2 ) ≡ H1
0 (Ω), (f1, f2)H = ((I + γA0)f1, f2)L2(Ω).

(5.1.4)

(b) The state space H in (2.2) for the pair {w,wt} is, as D(A 1

2 ) = D(A0):

H = D(A0) ×D((I + γA0)
1

2 ) = [H2(Ω) ∩H1
0 (Ω)] ×H1

0 (Ω). (5.1.5)

(c) The operator B ≡M−1A0D has H-adjoint B∗ given by

(Bg, x)H = ((I+γA0)(I+γA0)
−1A0Dg, x)L2(Ω) = (g,D∗A0x)L2(Γ); (5.1.6)

B∗x = D∗A0x = −∂x
∂ν

(Lasiecka and Triggiani, 1983, 1991a, 2000).

(5.1.7a)

Ũ = H
1

2 (Γ), so that B∗ = − ∂
∂ν

is surjective

D(A 1

2 ) = D(A0) = H2(Ω) ∩H1
0 (Ω) onto Ũ = H

1

2 (Γ), (5.1.7b)

by trace theory, as required by the preliminary assumption (i) just below (2.2).
Thus, the operator B and its H-adjoint B∗ are

B

[

x1

x2

]

=

[

0

Bx2

]

, B∗

[

x1

x2

]

= B∗x2 = − ∂x2

∂ν
, (5.1.8)

hence

B∗

[

w

wt

]

= − ∂wt

∂ν
. (5.1.9)

(d) The operator F in model (2.1) is given by F(w) = M−1f(w) according
to (5.1.3).

This way, model (5.1.3) is cast in the abstract setting (2.1). The natural
energy associated with problem (5.1.1) is

E(t) = ‖∆w(t)‖2
L2(Ω) + ‖M 1

2wt(t)‖2
L2(Ω) +

∫

Ω

f̂(w(t))dΩ, f̂ ′ = f. (5.1.10)

The main result of the present section on problem (5.1.1) is the following.

Theorem 5.1.1 Assume hypotheses (Hf ) = (4.1.9) and (Hg) = (4.1.10) on f
and g. Then, problem (5.1.1a–c) is well posed on the state space H defined by
(5.1.5) in the sense that it generates a nonlinear semigroup here. Moreover, the
energy E(t) of the system given by (5.1.10) decays uniformly to zero with rate
specified by Theorem 2.1, provided that, in addition, the uniqueness property
(5.1.13), (5.1.14) ⇒ (5.1.15) holds true.
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5.2. Proof of Theorem 5.1.1

Theorem 5.1.1 will follow as a specialization of the abstract Theorem 2.1 to the
actual setting of Section 5.1, once we verify the four abstract assumptions (A.1)
through (A.4) in the present case.

Verification of assumption (A.3). In the present case, assumption (A.3)
is the well-known result of exact controllability of the Kirchhoff equation with
just one boundary control in the ‘moment’ B.C. ∆w|Σ = g (Horn and Lasiecka,
1994; Lasiecka and Triggiani, 1991b). Thus, assumption (A.3) holds true in our
case.

Verification of assumption (A.2). That the corresponding map B∗L is
continuous on L2(0, T ;L2(Γ)) was shown in Lasiecka and Triggiani (2004) on
the basis of validity of the same assumption (A.2) of the wave equation case of
Section 4 (see (4.2.2), (4.2.3)). Hence, by a partially micro-local analysis argu-
ment, the present Kirchhoff equation case can be reduced to the wave equation
case. Reference Lasiecka and Triggiani (2004) corrects an erroneous conclusion
of Lasiecka and Triggiani (2003), as noted below (4.2.3c). Thus, assumption
(A.2) holds true in the present case.

Verification of assumption (A.1)(a) on g. This was noted in Section
4.2; from (4.2.4) to (4.2.7).

Verification of assumption (A.1)(b), (c) for F . Let F(w) ≡M−1f(w)
as in (d) of Section 5.1, with f satisfying assumption (Hf ) = (4.1.9). Then, we
compute recalling H in (5.1.4):

(F(w), z)H ≡ (MM−1f(w), z)L2(Ω) = (f(w), z)L2(Ω); (5.2.1)

(F(w), w)H = (f(w), w)L2(Ω) = (f̂ ′(w), w)L2(Ω)

= (Π′(w), w)H = (Π′(w),Mw)L2(Ω) ≥ 0, (5.2.2)

since f(s)s ≥ 0, where Π(w) =
∫

Ω
f̂(w)dΩ ≥ 0, as required, by (4.1.9) (i.e.,

f̂(x) ≥ 0, ∀ x ∈ R).

Verification of assumption (A.4). Property (2.23) in the setting of
(2.21a–b), (2.22) can be restated in the present case as the following unique
continuation statement: Consider the dynamics

ytt − γ∆ytt + ∆2y + f ′(w)y = 0 in Q, (5.2.3)

obtained from differentiating (5.1.1a) in t and setting y = wt, along with the
over-determined B.C.,

y|Σ ≡ ∆y|Σ ≡ ∂y

∂ν

∣

∣

∣

∣

Σ

≡ 0 on Σ = (0, T ]× Γ. (5.2.4)
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Here, the first two B.C. are incorporated in the dynamic operator A in (5.1.4)
(via (4.1.2a), while the third B.C. corresponds to (2.22) with B∗ given by (5.1.9)
(and y ≡ wt). We then seek to conclude that, in fact, (5.2.3), (5.2.4) imply

y ≡ 0 on 0 < t ≤ T (5.2.5)

(i.e., (2.23)).

6. The system of dynamic elasticity with nonlinear dis-

sipation both in the Dirichlet B.C. and in the interior

Model. Let Ω be an open bounded domain in R
n, n = 1, 2, 3, with sufficiently

smooth boundary Γ. In this section, we present, briefly, the case of a system
of dynamic elasticity with nonlinear feedback control in the Dirichlet B.C., as
well as in the interior. Our brief discussion is jusified by two reasons: (a) such
system is the perfect counterpart, mutatis mutandis, of the scalar wave equation
of Section 4, modulo the new technicalities due to the more complex structure
of the system of dynamic elasticity over the scalar wave equations, which in
fact can be handled as in Horn (1998a,b); (b) space constraints. Thus, with
w = [w1, w2, wn] [say, typically n = 3], the counterpart of the feedback problem
(4.1.1a–c) is now

wtt − µ∆w − (λ+ µ)∇(div w) = −F(w) in (0,∞] × Ω = Q; (6.1a)

w(0, · ) = w0, wt(0, · ) = w1 in Ω; (6.1b)

w|Σ = g

([

µ
∂A−1wt

∂ν
+ (λ+µ)ν div(A−1wt)

]

Γ

)

on (0,∞)×Γ ≡ Σ. (6.1c)

For the corresponding linear open loop problem, to be given in (6.4) below,
we refer, e.g., to Lions (1988, Chapter IV, Section 1).

The operators A, B, B∗; the abstract model. As in (4.1.2), we let now
A0: D(A0) = [H2(Ω)∩H1

0 (Ω)]n be the (free dynamic) operator, whose action is
defined by the LHS of Eqn. (6.1a): A0 = −[u∆ + (λ+ µ)∇(div ( · ))]. Likewise,
we let A be the realization of A0 considered on the underlying space [H−1(Ω)]n

(counterpart of (4.1.3)).
As in (4.1.5), (4.1.6), and Lasiecka and Triggiani (2000), we now let B be

defined by

By = ADu in [D(A)]′; y = Du;
µ∆y + (λ+ µ)∇(div y) = 0 in Ω;

y = u on Γ.

(6.2a)

(6.2b)

Then, the same computations as in Lasiecka and Triggiani (1987, p. 345) for the
wave case yield

B∗v = D∗Av = −
[

µ
∂A−1v

∂ν
+ (λ+ µ)ν div(A−1v)

]

Γ

= −σ(A−1v)ν (6.3)
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[counterpart of (4.1.6b)], and we take Ũ = [H
1

2 (Γ)]n, so that B∗ is surjective:

D(A 1

2 ) ≡ [L2(Ω)]n onto Ũ , as required by the preliminary assumption (ii) just
below (2.2) [counterpart of (4.1.6c). Then, problem (6.1a–c) can be rewritten
abstractly as in (4.1.7).

Linear case, open loop problem. Here we consider the problem in Lions
(1988, Chapter IV, Section 1), where v = [v1, . . . , vn]:

vtt − µ∆v − (λ+ µ)∇(div v) = f in Q;

v(0, · ) = v0, vt(0, · ) = v1 in Ω; vtt = −Av + ADg;

v|Σ = g in Σ.

(6.4a)

(6.4b)

(6.4c)

Optimal interior/boundary regularity of problem (6.4). Belishev
and Lasiecka (2002) provide an optimal interior/boundary regularity theory not
only for the constant coefficient system of dynamic elasticity (6.4a-b-c), but also
for the more general dynamical Lame system with variable (in space) coefficients
of class C3, where the model is

vtt = Av + f in Q; (Av)i = ρ−1
3
∑

j,k,ℓ=1

∂jcijkℓ∂ℓvk, i = 1, 2, 3; (6.5a)

v(0, · ) = v0, vt(0, · ) = v1 in Ω; cijkℓ = λδijδkℓ + µ(δikδjℓ + δiℓδjk) (6.5b)

v|Σ = g in Σ; Cv = µ(v + vT ) + λ(tr v)I, C = {cijkℓ}3
1. (6.5c)

Here C satisfies the symmetricity conditions cijkℓ = cjikℓ = cijℓk = ckℓij ,
so that C is the elasticity tensor of the Lame model, where ρ, λ, µ are smooth
C3-functions depending on the spatial variable only. They satisfy the usual
ellipticity condition: ρ > 0, µ > 0, 3λ + 2µ > 0, which allows one to establish
the positivity of C : 〈Cα, α〉 ≥ c0‖α‖2, c0 > 0. Introducing the strain tensor

ǫ(v) =
1

2
[∇v + (∇v)T ], then A = ρ−1 div Cǫ( · ). (6.6)

The aforementioned interior/boundary regularity theory in Belishev and Lasie-
cka (2002) for problem (6.4) with Dirichlet B.C. is the perfect counterpart of
the optimal interior/boundary regularity theory for general scalar second-order
hyperbolic equations with (time and space) variable coefficients and Dirichlet
B.C. given in Lasiecka and Triggiani (1981, 1983), and in Lasiecka, Lions and
Triggiani (1986), and invoked in Section 4. A result at the basic energy level
for the constant coefficient case (6.4a–c) is given also in Lions (1988, Chapter
IV, Section 1). All these are obtained by using the same multiplier (energy
method) as in the canonical case, Lasiecka, Lions and Triggiani (1986) (with
variable coefficients). In the next result, we report only the results needed
below in the treatment of the present section.
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Theorem 6.1 (Belishev and Lasiecka, 2002) With reference to the v-problem
(6.5) [in particular, the constant coefficient problem, (6.4)], we have:

(a) the map

{v0, v1, f, g} ∈ [L2(Ω) ×H−1(Ω)]n × L1(0, T ; [H−1(Ω)]n) × L2(0, T ; (L2(Γ))n)

⇒ {v, vt} ∈ C([0, T ]; [L2(Ω) ×H−1(Ω)]n) (6.7)

is continuous. [In particular, so is the map L, corresponding to (2.13): Lg =
{v, vt} for v0 = v1 = 0, f = 0.]

(b)

C(v)ν ∈ [H−1(Σ)]n, (6.8a)

in particular,

σ(v)ν ∈ [H−1(Σ)]n in the constant coefficient case (6.4), (6.8b)

where Av = div σ(v), σ(ω) = µ(ω + ωT ) + λ div ω, div (ω) = tr ǫ(ω), ǫ(ω) =
∇ω + (∇ω)T , in the usual notation.

For a justification of part (a) of the above Theorem 6.1, we refer to Beli-
shev and Lasiecka (2002, Theorem 1, Section 2.3, p. 148; via usual duality on
Lemma 1, p. 149, or Proposition 1, p. 149). Indeed, the proof in Belishev and
Lasiecka (2002, pp. 150–152) is recognized as following the same strategy as that
of Lasiecka, Lions and Triggiani (1986) for the basic energy level result in (6.7),
with support of computations performed in Lasiecka (1999) for the von Karman
system. Moreover, for part (b) of Theorem 6.1, we refer to Belishev and Lasiecka
(2002, Comments in Section 2.5, p. 154). These state that, once Theorem 6.1(a)
has been established (as well as its dual result in Belishev and Lasiecka, 2002,
Lemma 1, Proposition 1, p. 149), one can prove higher- (or lower-) level opti-
mal regularity theory of the solutions with respect to various levels of function
spaces for the controls g; and that this can be accomplished in the same way
as done in Lasiecka, Lions and Triggiani (1986) for scalar second-order hyper-
bolic equations. Then the boundary regularity (6.8) is the perfect counterpart
of Lasiecka, Lions and Triggiani (1986, Eqn. (2.14), p. 153).

Exact controllability of problem (6.4). Surjectivity of the map in (6.7)
[or say, of the operator L defined below (6.7)], say for v0 = v1 = 0, f = 0, and
T > 0 sufficiently large is established in Lions (1988, Chapter IV, Section 1),
Alabau and Komornik (1998).

This is precisely the required result of exact controllability on the natural
state space of problem (6.4): it corresponds to the abstract assumption (2.20)
in the present case.

Nonlinear case: F and g. These are assumed precisely as in Section 4 for
the canonical case of the scalar wave equation.
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The boundary-boundary regularity: The operator B∗L is bounded
on L2(0, T ;U), U = (L2(Γ))n. Assumption (A.2). It remains to justify, in
the case of the system of dynamic elasticity, the counterpart of the boundary
regularity property (4.2.2) asserted in the case of the wave equation (or general
second-order hyperbolic equations), which is proved in Lasiecka and Triggiani
(2004, 2008). A statement, with the key part of the proof referred to the author’s
Ph.D. thesis is also in Ammari (2002). The strategy is quite different from
Lasiecka and Triggiani (2004, 2008). As in Lasiecka and Triggiani (2003, 2004,
2008), one first obtains that assumption (A.2) is reformulated as follows with
B = [0,AD]tr, with reference to the v-problem in (6.4a–c) with v0 = v1 = 0,
f = 0: by (6.3)

B∗Lg = D∗vt = D∗AA−1vt = B∗(A−1vt) ≡ −σ(A−1vt)ν (6.9)

= −σ(z)ν; z = A−1vt; (6.10)

(by (6.4b)) zt = A−1vtt = A−1[−Av + ADg] = −v +Dg; (6.11)

ztt = Az +Dgt in Q, z|Σ = 0, (6.12)

counterpart of Lasiecka and Triggiani (2004, Eqn. 1.12; 2008), where we have
recalled (6.4b). Moreover, B∗ is the adjoint w.r.t. the state space [L2(Ω) ×
H−1(Ω)]n, while D∗ is the adjoint w.r.t. [L2(Ω)]n.

Eqns. (6.9), (6.10) above are the perfect counterpart of Lasiecka and Trig-
giani (2004, (1.10), Section 4.2), while the z-problem in (6.12) above is the
perfect counterpart of the z-problem {ztt = ∆z + Dgt, z|Γ = 0} in Lasiecka
and Triggiani (2004, p. 627, Eqn. (4.1.12)). [Of course, “D” in Lasiecka and
Triggiani (2004) and “D” now are two different, but perfect countparts of each
other, Dirichlet maps, corresponding to the respective elliptic (static) problems.]
Thus, in conclusion, the perfect counterpart of the boundary estimate (4.2.2)
for scalar waves is the following

Theorem 6.2 With reference to the v-problem (6.4a–c) (or even (6.5a–c)),
with v0 = v1 = 0, f = 0, we have

B∗L : continuous L2(0, T ;U) → L2(0, T ;U), U = [L2(Γ))]n, (6.13a)

equivalently, by (6.9):
∫

Σ

‖σ(A−1vt)ν‖2dΣ ≤ CT

∫

Σ

‖g(t)‖2dΣ. (6.13b)

The proof of Theorem 6.2 is the perfect counterpart of (4.2.2) given in
Lasiecka and Triggiani (2004, 2008, Section 4.2). We can only give here a quick
account to stress the parallelism.

Step 1. (hyperbolic sector) As in Lasiecka and Triggiani (2004, p. 628 and
(2.11), p. 630; 2008, Section 4.2), we have

σ(zt)ν∈ [H−1(Σ)]n, hence (I−X )σ(z)ν ∈ L2(0, T ;U) in the hyperbolic sector,
(6.14)
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once the problem has been transported to the half-space Ω̃, by use of partition of
unity procedure and local change of coordinates. The underlying reason behind
(6.14) is the trace regularity σ(v)ν ∈ [H−1(Σ)]n, asserted (in (6.8a)).

Step 2. In the elliptic sector, the proof parallels that of Lasiecka and Trig-
giani (2004, 2008, Section 4.2), with additional computations, due to the more
complicated structure of the elastic operator A, over the wave operator, for
which the analysis carried out (via Hörmander’s volumes) in Horn (1998a, Sec-
tion 2) is needed: but this, in turn, is precisely the perfect parallel counter-
part of that provided in the case of scalar second-order hyperbolic equations
in the original reference Lasiecka and Triggiani (1992). More precisely, as in
Lasiecka and Triggiani (2004; 2008, Section 4.2), one extends the v-solution of
(6.4) with zero initial conditions v0 = v1 = 0 and f = 0 by zero for negative
times. We then introduce the same time cut-off function ϕ(t) as in Lasiecka
and Triggiani (2004; 2008, Section 4.2). This transforms [on the half-space Ω̃]
the original v-problem into a new w-problem, w = ϕv, with an additional RHS
term ℓot(v), due to commutators, still zero I.C., no interior forcing term, and
Dirichlet boundary datum g. The interior regularity of {w,wt} is the same as
that of {v, vt} given by (6.7). Next, as in Lasiecka and Triggiani (2004; 2008,
Section 4.2), we split the w-problem into the sum of two problems, w = u + y,
where (a) u solves the problem with zero I.C. and Dirichlet boundary datum
g ∈ L2(0, T ; Ũ), Ũ = [L2(Γ̃)]n, Γ̃ the boundary of Ω̃; (b) y solves the problem
with zero I.C., zero Dirichlet boundary datum, but an RHS term f = ℓot(v).
By the regularity (6.7), we have

{u, ut} ∈ C([0, T ]; [L2(Ω̃)×H−1(Ω̃)]n) continuously in g ∈ L2(0, T ; Ũ), (6.15)

precisely the counterpart of Lasiecka and Triggiani (2004, Eqn. (2.5b); 2008,
Eqn. (4.2.5b)). Moreover, regarding the y-problem, the regularity of f=ℓot(v) ∈
C([0, T ]; [H−1(Ω̃)]n) by (6.7), and hence

{y, yt} ∈ C([0, T ]; [L2(Ω̃)×H−1(Ω̃)]n) continuously in g ∈ L2(0, T ; Ũ), (6.16)

precisely as in Lasiecka and Triggiani (2004, Eqn. (2.7); 2008, Eqn. (4.2.7)). The
analysis in Step 3 (Lasiecka and Triggiani, 2004, 2008, Section 4.2) (using Horn,
1998; Lasiecka and Triggiani, 1992) has a perfect counterpart now. In fact, we
recall from (6.9) that we seek to establish

D∗vt ∈ L2(0, T ;L2(Γ̃)) continuously in g ∈ L2(0, T ;L2(Γ̃)). (6.17)

Moreover, we recall that v in Ω is transferred into w = u+ y on the half-space
Ω̃ (locally). Thus, with reference to the above y-problem, what suffices to show
for y is the following regularity property

f → D∗yt = D∗AA−1yt : continuous L2(0, T ; [H−1(Ω̃)]n) → L2(0, T ;L2(Γ̃)),

(6.18)
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whereby D∗yt is, ultimately, continuous in g ∈ L2(0, T ;L2(Γ̃)) [Eqn. (6.18) is
the counterpart of Lasiecka and Triggiani (2004, Eqn. (2.8); 2008, Eqn. (4.2.8).
However, the above property (2.8) is precisely the result of Lasiecka, Lions and
Triggiani (1986, Theorem 3.11, p. 182) in the case of scalar second-order hyper-
bolic equations, of which—as noted in Belishev and Lasiecka (2002, Comments
in Section 2.5, p. 154)—a perfect counterpart holds true for the system of dy-
namic elasticity, the y-problem. So (6.18) holds true.]

Finally, the analysis of Lasiecka and Triggiani (2004, Step 4, p. 630–1; 2008,
Step 4, p. 223–4) in the elliptic sector has a perfect counterpart as well, in parti-
cular for Lasiecka and Triggiani (2004, Eqns. (2.14), (2.15); 2008, Eqns. (4.2.14)–
(4.2.15)). Ultimately, the entire analysis leads to the conclusion that

Xσ(z)ν, σ(X z)ν ∈ L2(0, T ; Ũ) in the elliptic sector, (6.19)

as in Lasiecka and Triggiani (2004, Eqn. (2.17); 2008, (4.2.17)). Combining
the regularity of σ(z)ν in the hyperbolic sector, Eqn. (6.14), and in the elliptic
sector, Eqn. (6.19), one finally obtains

σ(z)ν ∈ L2(0, T ; Ũ), continuously in g ∈ L2(0, T ; Ũ), Ũ = L2(Γ̃) (6.20)

(counterpart of Lasiecka and Triggiani, 2004, (2.18)), and then (6.13b) is estab-
lished, since z = A−1vt by (6.10).

In conclusion: A perfect counterpart of Theorem 4.1.1 applies now in the
case of the system of dynamic elasticity given by (6.1a–c), mutatis mutandis.

Acknowledgement. We wish to thank the two referees for their useful
comments that have resulted in an improved exposition and the clarification of
a few points.
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