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1. Introduction

Our aim is to present a new approach to shape optimization. Shape function-
als are difficult to study by dynamic programming methods. The reason is
that shape means we are dealing with problems defined on multidimensional
domains for which we have not the classical dynamic programming methods.
The second difficulty is with choosing suitable deformation of the domain un-
der consideration to get a new functional (shape functional) depending on some
new quantities. They should allow to apply to that functional known mathe-
matical tools to have possibilities to determine some optimality conditions with
respect to chosen deformation. The most popular method is to remove from
that domain some ball with small radius being a parameter in the deformation
and then try to calculate a derivative - topological derivative (see, e.g., Nazarov
and Sokołowski, 2003). In last few years we find in literature several notions
of derivatives applied to shape functionals (see, e.g., Nazarov and Sokołowski,
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2003; Sokołowski and Żochowski, 1999a). They use the variation of the geo-
metrical domain resulting in the change of the topological characteristic. Our
approach is close to the classical control problem. We show that the dual dy-
namic programming approach is still applicable to shape optimization to be able
to analyze the shape functional.

We consider the following optimal control problem (P):

minimize J(x, u) =

∫

[0,T ]×Ω

L(t, z, x(t, z), u(t, z))dtdz+

∫

Ω

l (x (T, z)) dz (1)

subject to

xtt (t, z) − ∆zx(t, z) = f(t, z, x(t, z), u(t, z)) a. e. on (0, T )× Ω (2)

x (0, z) = ϕ (0, z) , xt (0, z) = ψ (0, z) on Ω (3)

x(t, z) = 0 on (0, T ) × Γ (4)

u(t, z) ∈ U a. e. on (0, T ) × Ω (5)

where Ω is a given bounded domain of Rn with boundary Γ = ∂Ω of C2, Σ =
(0, T )×Γ, U ⊂ Rm is given nonempty set, L, f : [0, T ]×Ω̄×R×Rm → R, l : R→
R, and ϕ, ψ : Rn+1 → R are given functions, ϕ (0, ·) ∈ L2(Ω), ψ (0, ·) ∈ H−1(Ω);
x : [0, T ]× Ω → R, x ∈W 2,2((0, T )× Ω)∩ C([0, T ];L2(Ω)) and u : [0, T ]×Ω →
Rm is Lebesgue measurable function. We assume that the functions L, f, l are
lower semicontinuous in their domains of definition. In the paper we assume
that the system (2)-(5) admits at least one solution belonging to W 2,2((0, T )×
Ω) ∩ C([0, T ];L2(Ω)). About the existence and regularity problems for that
system see, e.g., Lasiecka, Lions and Triggiani (1986). We call a pair x(t, z),
u(t, z) admissible if it satisfies (2)-(5) and L(t, z, x(t, z), u(t, z)) is summable;
then the corresponding trajectory x(t, z) is said to be admissible.

For that problem we apply our earlier result from Nowakowski (2008) (com-
pare also Galewska, Nowakowski, 2006) concerning sufficient optimality con-
ditions in terms of dual dynamic programming PDE (described in Section 2).
Next we present a new type of deformation of the domain following Zolésio (see,
e.g., Nazarov and Sokołowski, 2003) but adding to that deformation a control,
allowing to control (to some extent) that deformation and then we define a
suitable shape functional. Having defined trajectory and control of deforma-
tion we are able to apply dual dynamic programming tools (see Nowakowski,
1992) to derive optimality condition for our shape functional with respect to
that deformation.

2. Duality and sufficient optimality conditions

Let us recall some facts concerning sufficient optimality conditions for problem
(P) from Nowakowski (2008). Let P ⊂ Rn+3 be a set of variables (t, z, p) =
(t, z, y0, y), (t, z) ∈ [0, T ] × Ω̄, y0 ≤ 0, y ∈ R, and let c = (c0, c) ∈ R2 be
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fixed. We adopt the convention that cp =
(

c0y0, cy
)

for (t, z, p) ∈ P . Let
x̃ : P → R be such a function of the variables (t, z, p) that for each admissible
trajectory x(t, z) there exists a function p(t, z) = (y0, y(t, z)), p ∈W 2,2([0, T ]×
Ω̄) ∩ C([0, T ];L2(Ω)), (t, z, p(t, z)) ∈ P such that

x(t, z) = x̃(t, z, p(t, z)) for (t, z) ∈ [0, T ]× Ω̄. (6)

Existence of the function x̃ will be explained below - after the formulae (15).
Now, let us introduce an auxiliary function V (t, z, p) : P → R, of C2, such that
the following two conditions are satisfied:

V (t, z, cp) = c0y0Vy0(t, z, cp) + cyVy(t, z, cp) = cpVp(t, z, cp), (7)

for (t, z) ∈ (0, T ) × Ω, (t, z, cp) ∈ P.

The condition (7) is a generalization of transversality condition known in clas-
sical mechanics as orthogonality of momentum to the front of wave. Exam-
ples of such functions are given in Nowakowski (2008) in the section of Exam-
ples. Similarly as in classical dynamic programming, define at (t, p̃(·)), where
p̃(·) = (ỹ0, ỹ(·)) is any function p̃ ∈ W 2,2(Ω), (t, z, p̃(z)) ∈ P, (t, z) ∈ [0, T ]× Ω,
a dual value function SD by the formula

SD (t, p̃ (·)) := inf

{

− c0ỹ0

∫

[t,T ]×Ω

L(τ, z, x(τ, z), u(τ, z))dτdz

−c0ỹ0

∫

Ω

l (x (T, z)) dz

}

(8)

where the infimum is taken over all admissible pairs x(τ, ·), u(τ, ·), τ ∈ [t, T ]
such that

x(t, z) = x̃(t, z, p̃(z)), for z ∈ Ω, (9)

x̃(t, z, p̃(z)) = 0 for z ∈ ∂Ω (10)

i.e. whose trajectories start at (t, x̃(t, ·, p̃(·)) and for which there exists such a
function

p(τ, z)=(ỹ0, y(τ, z)), p ∈W 2,2([t, T ]×Ω̄)∩C([t, T ];L2(Ω)), (τ, z, p(τ, z)) ∈ P,

that x(τ, z) = x̃(τ, z, p(τ, z)) for (τ, z) ∈ (t, T ) × Ω̄ and

y(t, z) = ỹ(z) for z ∈ Ω̄. (11)

Then, integrating (7) over Ω, for any function p̃(·) = (ỹ0, ỹ(·)), p̃ ∈ W 2,2(Ω),
(t, z, p̃(z)) ∈ P , (t, z, cp̃(z)) ∈ P , such that x(·, ·) satisfying x(t, z) = x̃(t, z, p̃(z))
for z ∈ Ω, is an admissible trajectory, we also have the equalities:

∫

Ω

V (t, z, cp̃(z))dz = −

∫

Ω

ỹ(z)x(t, z, p̃(z))dz − SD (t, p̃ (·)) (12)
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with

c0
∫

Ω

ỹ0Vy0(t, z, cp̃(z))dz = −SD (t, p̃ (·)) , (13)

and assuming

x̃(t, z, p̃(z)) = −Vy(t, z, cp̃(z)), for (t, z) ∈ (0, T )× Ω̄, (t, z, cp̃(z)) ∈ P.

It turns out that the function V (t, z, p), defined by (12), (13), satisfies the second
order partial differential system

Vtt(t, z, c̄p) − ∆zV (t, z, c̄p) +H(t, z,−Vy(t, z, c̄p), c̄p) = 0, (14)

(t, z) ∈ (0, T ) × Ω, (t, z, p) ∈ P,

where

H(t, z, x, c̄p) = c0y0L(t, z, x, u(t, z, p)) + cyf(t, z, x, u(t, z, p)),

and u(t, z, p) is optimal dual feedback control on (0, T )× Ω , and the dual sec-
ond order partial differential system of multidimensional dynamic programming
(DSPDEMDP)

sup
{

Vtt(t, z, cp) − ∆zV (t, z, cp) + c0y0L(t, z,−Vy(t, z, p), u)

+cyf(t, z,−Vy(t, z, cp), u) : u ∈ U} = 0, (t, z) ∈ (0, T )× Ω, (t, z, cp) ∈ P.
(15)

Let us note that the function x̃(t, z, p), introduced at the beginning of this
section a little bit artificially, in fact is defined by −Vy(t, z, p), where V is a
solution to (15), i.e. knowing the set P and Vy we are able to know the set Ẋ,
where our original problem we need to consider.

The verification theorem provides sufficient optimality conditions for (P) in
terms of a solution V (t, z, p) of the dual second order partial differential equation
of multidimensional dynamic programming.

Theorem 1 Let x(t, z), u(t, z), (t, z) ∈ (0, T ) × Ω̄, be an admissible pair. As-
sume that there exist c = (c0, c) ∈ R2 and a C2 solution V (t, z, p) of DSPDEMDP
(15) on P such that (7) holds. Let further p(t, z) = (y0, y(t, z)), p ∈W 2,2([0, T ]×
Ω) ∩ C([0, T ];L2(Ω)), be such a function that x(t, z) = −Vy(t, z, cp(t, z)) for
(t, z) ∈ (0, T ) × Ω̄. Suppose that V (t, z, p) satisfies the boundary condition for
(T, z, cp) ∈ P ,

c0y0

∫

Ω

(d/dt)Vy0(T, z, cp)dz = c0y0

∫

Ω

l (−Vy (T, z, cp)) dz. (16)

Moreover, assume that

Vtt(t, z, cp(t, z))−∆zV (t, z, cp(t, z))+c0y0L(t, z,−Vy(t, z, cp(t, z)), u(t, z))

+cy(t, z)f(t, z,−Vy(t, z, cp(t, z)), u(t, z))=0, for (t, z) ∈ (0, T ) × Ω.
(17)
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Then x(t, z), u(t, z), (t, z) ∈ (0, T ) × Ω, is an optimal pair relative to all ad-
missible pairs x(t, z), u(t, z), (t, z) ∈ (0, T ) × Ω, for which there exists such
a function p(t, z) = (y0, y(t, z)), p ∈ W 2,2([0, T ] × Ω) ∩ C([0, T ];L2(Ω)), that
x(t, z) = −Vy(t, z, cp(t, z)) for (t, z) ∈ (0, T ) × Ω, and

y(0, z) = y(0, z) for z ∈ Ω. (18)

The examples of how to use that theorem and the description of requirement
that V (t, z, p) be a C2 solution of DSPDEMDP (15) on P can be found in
Nowakowski (2008).

We give the notion of an optimal dual feedback control and sufficient opti-
mality conditions in its terms.

Definition 1 A function u = ũ(t, z, p) from P of the points (t, z, p) = (t, z, y0, y),
(t, z) ∈ (0, T ) × Ω, y0 ≤ 0, y ∈ R, into U is called a dual feedback control, if
there is any solution x̃(t, z, p), P , of the partial differential equation

x̃tt(t, z, p) − ∆z x̃(t, z, p) = f(t, z, x̃(t, z, p), ũ(t, z, p)) (19)

satisfying boundary condition

x̃(t, z, p) = 0 on (0, T )× Γ,(t, z, p) ∈ P

such that for each admissible trajectory x(t, z), (t, z) ∈ [0, T ] × Ω, there exists
such a function p(t, z) = (y0, y(t, z)), p ∈ W 2,2([0, T ] × Ω) ∩ C([0, T ];L2(Ω)),
that (6) holds.

Definition 2 A dual feedback control u(t, z, p) is called an optimal dual feed-
back control, if there exist a function x(t, z, p), (t, z, p) ∈ P , corresponding to
u(t, z, p) as in Definition 1, and a function p(t, z) = (y0, y(t, z)), p ∈W 2,2([0, T ]×
Ω) ∩ C([0, T ];L2(Ω)), such that dual value function SD (see (8)) is defined
at (t, p (t, ·)) by u(τ, z, p) and corresponding to them x(τ, z, p), (τ, z, p) ∈ P ,
τ ∈ [t, T ], i.e.

SD(t, p (t, ·)) = −c0y0

∫

[t,T ]×Ω

L(τ, z, x(τ, z, p(τ, z)), u(τ, z, p(τ, z)))dτdz

−c0y0

∫

Ω

l (x(T, z, p(T, z))) dz (20)

and, moreover, there is V (t, z, p) satisfying (7) for which Vy0 satisfies the equa-
lity

c0
∫

Ω

y0Vy0(t, z, cp(t, z))dz = −SD (t, p (t, ·))

and Vy satisfies

Vy(t, z, cp) = −x(t, z, p) for (t, z) ∈ (0, T )× Ω̄, (t, z, cp) ∈ P . (21)



1050 A. NOWAKOWSKI

Theorem 2 Let (u(t, z, p), be a dual feedback control in P . Suppose that there
exist c = (c0, c) ∈ R2 and a C2 solution V (t, z, p) of (15) on P such that (7) hold.
Let p(t, z) = (y0, y(t, z)), p ∈W 2,2([0, T ]×Ω)∩C([0, T ];L2(Ω)), (t, z, p(t, z)) ∈
P , (t, z, cp(t, z)) ∈ P , be such a function that x(t, z) = x(t, z, p(t, z)), u(t, z) =
u(t, z, p(t, z)),(t, z) ∈ (0, T )×Ω, is an admissible pair, where x(t, z, p), (t, z, p) ∈
P , is corresponding to u(t, z, p) as in Definition 1. Assume further that Vy and
Vy0 satisfy:

Vy(t, z, cp) = −x(t, z, p) for (t, z) ∈ [0, T ]× Ω, (t, z, p) ∈ P, (t, z, cp) ∈ P, (22)

c0y0

∫

Ω

Vy0(t, z, cp(t, z))dz

= −c0y0

∫

[t,T ]×Ω

L(s, z, x(s, z, p(s, z)), u(s, z, p(s, z)))dsdz (23)

−c0y0

∫

Ω

l (x(T, z, p(T, z))) dz.

Then u(t, z, p) is an optimal dual feedback control.

3. Shape optimization problem

Let Ω̃ be a given simply connected domain in R
n with C2 boundary Γ. Take any

fixed point z0 lying in the interior of Ω̃. Let U be a given nonempty, compact
set in (Rm)+ i.e. all u ∈ U have coordinates ui ≥ 0. We intend to construct the
deformation of Ω̃ by removing from it the point z0 and next a certain simply
connected domain of C2 with a small diameter, containing z0. To this effect we
extend the method of Sokołowski and Zolésio (1992), p. 43, and the following
boundary value problem is constructed.

Given a Hoelder continuous function v(z) : Ω̃\z0 → U (a control function),
find w ∈ C2(Ω̃\z0) such that







∆w = v in Ω̃\z0,
w = 1 at z0,
w = 0 on Γ.

(24)

Solution to (24) is w(z, v) (we underline dependence of w on the control v)
and it belongs to C2(Ω̃ \ z0) (as U – bounded, Ω̃ \ z0 is domain of C2 and v a
Hoelder continuous function, see Gilbarg and Trudinger, 1983). Thus, boundary
of Ω̃\Ωρ is of C2. Let us examine the family of level curves

w−1(ρ) = {z ∈ Ω̃ \ z0 : w(z, v) = ρ}, 0 < ρ0 ≤ ρ ≤ 1.

Put Γρ0
= w−1(ρ0) and Ωρ = {z ∈ Ω̃\z0 : ρ < w(z, v) < 1}. We assume Ω1 = ∅

and that [ρ0, 1] ∋ ρ → Ωρ is monotone decreasing family of sets. We have
‖∇w(z, v)‖ 6= 0 in Ωρ, ρ0 ≤ ρ < 1 (see Sokołowski and Zolésio, 1992, pp. 43,44).
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Following Sokołowski and Zolésio (1992) we introduce the field

W (z, v) = ‖∇w(z, v)‖−2∇w(z, v)

and the flow associated with this field:

Tρ(z0, v) = eρW (z0),

i.e. Tρ(z0, v) = z(ρ, z0, v), z0 ∈ Γ, ρ ∈ [ρ0, 1], where z(·, ·, ·) is a solution to the
system of ordinary differential equations

d

dρ
z(ρ, z0, v) = W (z(ρ, z0, v), v), (25)

with the initial condition z(1, z0, v) = z0. The transformations Tρ, ρ ∈ [ρ0, 1],
have the following properties (see Sokołowski and Zolésio, 1992, p. 44):

T1 = I (the identity mapping on Γ),

Tρ mapps Γ onto w−1(ρ), i.e.

Tρ(Γ, v) = w−1(ρ), for ρ ∈ [ρ0, 1).

We can deform Ω̃\Ωρ changing ρ ∈ [ρ0, 1]. Thus, we get the deformed domains:

Ω̃\Ωρ = Ω̃\{z ∈ Ω̃\z0 : ρ < w(z, v) < 1}, for ρ ∈ [ρ0, 1).

We should stress that our deformation Ωρ depends on the control v(z), too, i.e.
we have to write Ωρ(v). We note that in (24) the control v(z) is defined in
Ω̃\z0. However, if we consider (24) in Ω̃\Ωρ(v) then the solution w(z, v) exists
in Ω̃\Ωρ(v) and it will coincide with that of (24) if we consider it with new
boundary conditions, i.e. w = ρ on ∂Ωρ, w(z0) = 1. Of course, v is now also
considered only in Ω̃\Ωρ(v) and to underline that we shall write in the next part
of the paper that v is defined in [ρ0, 1], i.e. v(τ), τ ∈ [ρ0, 1].

In control theory we write (25) as:

d

dτ
z(τ, z0, v) = W (z(τ, z0, v), v), τ ∈ [ρ0, 1] (26)

z(1, z0, v) = z0

and the solutions of (26) are denoted by the pair (z(τ), v(τ)), τ ∈ [ρ0, 1] or
simply (z, v) if there is no misunderstanding. Any trajectory z(τ) under control
v(τ), τ ∈ [ρ0, 1], satisfying (26) shall be called admissible and the pair (z, v) an
admissible pair. The set of graphs of all admissible trajectories we denote by Z.

Let us take now any closed subinterval I of [0, T ] (I may reduce to a point
t0 ∈ (0, T )) and consider a diffeomorfism h : [0, T ] × [ρ0, 1] → [0, T ] such that
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h([0, T ]× ρ0) = I and h([0, T ]× 1) = [0, T ]. For ρ ∈ [ρ0, 1] denote h([0, T ]×
ρ) = Iρ and by t(ρ) the begining of the interval Iρ. Next consider the sets Iρ ×

Ω̃\Ωρ(v), ρ ∈ [ρ0, 1]. For each domain Iρ × Ω̃\Ωρ(v), ρ ∈ [ρ0, 1] we can consider
the optimal control problem (P). For each that problem with the domain Iρ ×

Ω̃\Ωρ(v), according to the sufficiency Theorem 1 there exists an optimal dual
value depending on ρ and trajectory z(τ) corresponding to the control v(τ)
defined in [ρ, 1] (see also definition (2))

J(ρ, v) = −SD(t(ρ), p(t(ρ), ·), v) = c0ȳ0

∫

Ω̃\Ωρ(v)

Vy0(t(ρ), s, p(t(ρ), s))ds,

where p(t(ρ), ·) is the dual optimal trajectory for the problem (P) with the
domain Iρ × Ω̃\Ωρ(v). In this way we get the new functional J(ρ, v) depending
only on ρ, ρ ∈ [ρ0, 1] and control v(τ), τ ∈ [ρ, 1], which determine trajectory
z(τ). We can treat J(ρ, v) as a terminal functional at (ρ, z(ρ)) with state z(τ)
and control v(τ) defined in [ρ, 1]. However, the starting point is for us now
(1, z(1)) and the terminal point (ρ, z(ρ)). We want to minimize J(ρ, v) with
respect to ρ ∈ [ρ0, 1] and all admissible controls v(τ), τ ∈ [ρ, 1]. To this effect
we shall consider first the problem:

minimize J(ρ0, v)

among all admissible controls v(s), s ∈ [ρ0, 1]. If the minimizing control exists,
denote it by v̄(s), s ∈ [ρ0, 1]. Then we prove that along v̄(s), s ∈ [ρ0, 1] the
value J(s, v̄(s)) is constant. In order to be in agreement with control theory
we denote J(ρ, v) as J(ρ, z(ρ)). Therefore now, by the boundary condition for
dynamic programming we will assume the value

J(ρ0, z(ρ0)). (27)

For the functional J(ρ, z(ρ)) we can form dual dynamic construction as in
Nowakowski (1992), where now our functional does not depend explicitly on
a state z(s), s ∈ [ρ0, 1]. Thus, we should treat that problem so as to minimize
J(ρ0, z(ρ0)) among all controls v : [ρ0, 1] → U and states z(s), s ∈ [ρ0, 1]. Hav-
ing that in mind and applying construction from Nowakowski (1992), let Y (s, p)
be a function defined on a set P ⊂ [ρ0, 1]×Rn+1, (s, p) = (s, y0, y), y0 ≤ 0 and
satisfying there

Y (s, p) = y0Yy0(s, p) + yYy(s, p) = pYp(s, p). (28)

We require (restricting eventually the set Z) that for each admissible trajectory
z(s), s ∈ [ρ0, 1] satisfying (26) there exist a p(s) = (y0, y(s)) – absolutely con-
tinuous such that z(s) = −Yy(s, p(s)), s ∈ [ρ0, 1], p(1) = p0; p0 is fixed for all
admissible trajectory z(s), s ∈ [ρ0, 1].

If

y0Yy0(ρ0, p) = −JD(ρ0, p) (29)
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with dual value function JD defined by

JD(ρ0, p) = inf{−y0SD(ρ0, p(t(ρ0), ·), v)} = inf{−y0J(ρ0, z(ρ0))} (30)

where infimum is taken over all admissible pairs (z(s), v(s)), s ∈ [ρ0, 1], whose
trajectories are starting at (1,−Yy(1, p0)), then by (27)

y0Yy0(ρ0, p) = y0J(ρ0,−Yy(ρ0, p)), (ρ0, p) ∈ P (31)

and Y (s, p) satisfies

Ys(s, p) +H(s,−Yy(s, p), p) = 0, (s, p) ∈ P,

where H(s, z, p) = yW (z, v(s, p)) and v(s, p) is an optimal dual feedback control
and the partial differential equation of dynamic programming:

min {Ys(s, p) + yW (−Yy(s, p), v) : v ∈ U} = 0, (s, p) ∈ P. (32)

Remark 1 Let us discuss differences between the approach described above and
that described in Sokołowski and Żochowski (1999a) using topological derivative.
Both in Sokołowski and Żochowski (1999a) and here we remove from Ω̃ some
small ball with center z0 (in Sokołowski and Żochowski, 1999a) and simply con-
nected domain of C2 with small diameter containing z0 (here). In both case
we get the function J(ρ) (in Sokołowski and Żochowski, 1999a) and J(ρ, z(ρ))
(here) depending on parameter ρ. In both cases our objective is to analyze the
behavior of J(ρ), J(ρ, z(ρ)), as ρ → 0+, ρ → 1−, respectively. In Sokołowski
and Żochowski (1999a) it is needed to evaluate the limits of derivatives J ′(ρ),
J ′′(ρ) for ρ→ 0+ using suitable (of their form) shape derivative and concluding
with explicit formula (in linear quadratic problem) for the topological deriva-
tive for that problem. Its importance is described in Sokołowski and Żochowski
(1999b). In our paper we propose a different approach, which is based on dual
dynamic method. We do not need to calculate the derivatives d

dρ
J(ρ, z(ρ)) or

d2

dρ2J(ρ, z(ρ)) to make the analysis mentioned (in general - especially in non-
linear problems - they do not exist). Instead of that, we form a dual function
JD(ρ, p) and a new function Y (ρ, p), subject to conditions (29) and (30), which
satisfies (32). Thus, if we are able to find a solution to (32) then we know
JD(ρ, p) and so J(ρ, z̄(ρ)) for all ρ ∈ [ρ0, 1] (z̄(ρ), ρ ∈ [ρ0, 1] is an optimal
state - see next section), in particular, at 1.Therefore we have then the optimal
value J(ρ, z̄(ρ)) with respect to all small deformations described above i.e. z(τ)
τ ∈ [ρ, 1]. We would like to stress that in our case we do not need differentia-
bility of ρ → J(ρ, z(ρ)) and even it need not be continuous, only the auxiliary
function Y (ρ, p) has to be differentiable - see the next section.
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4. Verification theorem

We prove the verification theorem which allows us to give sufficient optimality
conditions to determine the optimal state z̄(s) under control v(s), s ∈ [ρ0, 1].

Theorem 3 Let Y (s, p) be a C1 solution of the above partial differential equa-
tion (32) on P and such that (28) and (31) hold. Let (z̄(s), v(s)) be an admissible
pair, s ∈ [ρ0, 1] and let p(s), s ∈ [ρ0, 1], p(1) = p0 – absolutely continuous be
such that z̄(s) = −Yy(s, p(s)), s ∈ [ρ0, 1] and satisfying

Ys(s, p(s)) + y(s)W (−Yy(s, p(s)), v(s)) = 0, in [ρ0, 1]. (33)

Then, z̄(τ), v(τ), τ ∈ [ρ, 1] is an optimal pair relative to all admissible pairs
z(τ), v(τ), τ ∈ [ρ, 1] for which there exists such a function p(τ) = (ȳ0, y(τ)),
p(1) = p0, p – absolutely continuous that z(τ) = −Yy(τ, p(τ)), τ ∈ [ρ, 1]. The
function [ρ0, 1] ∋ s → y0Yy0(s, p(s)) = y0J(s,−Yy(s, p(s))) is constant and
equal y0Yy0(1, p0)).

Proof. Take any admissible pair z(s), v(s), s ∈ [ρ0, 1], whose graph of trajectory
is contained in Z and for which there exists an absolutely continuous function
p(s) =

(

y0, y(s)
)

, p(1) = p0 lying in P such that z(s) = −Yy(s, p(s)) for s ∈
[ρ0, 1]. Then, from (28), we have , for almost all s ∈ [ρ0, 1]

Ys(s, p(s)) = y0 (d/ds)Yy0(s, p(s)) + y(s) (d/ds)Yy(s, p(s)) (34)

Let X(s, p(s)) be a function defined in P by the formula

X (s, p (s)) := −y0Yy0(s, p(s)). (35)

Since y0 (d/ds)Yy0(s, p(s)) = − (d/ds)X (s, p (s)) and

(d/ds)Yy(s, p(s)) = −W (−Yy(s, p(s)), v(s)) a.e. on [ρ0, 1], (36)

it follows, by (34) and (35), that for almost all s ∈ [ρ0, 1],

(d/ds)X (s, p (s)) = −Ys(s, p(s)) − y(s)W (−Yy(s, p(s)), v(s)) . (37)

Thus, by (37) and (32), we get

(d/ds)X (s, p (s)) ≤ 0 a. e. on [ρ0, 1]. (38)

Similarly, by (37) and (33), we obtain

(d/ds)X(s, p(s)) = 0 a. e. on [ρ0, 1]. (39)

The above inequality and equality mean that functionX(s, p (s)) is a nonincreas-
ing function of s andX(s, p(s)) is constant on [ρ0, 1] and equals −y0Yy0(ρ0, p(ρ0))
= −y0Yy0(1, p0)). Thus, by (35) and −y0Yy0(1, p(1)) = −y0Yy0(1, p0)), we get
for s ∈ [ρ0, 1]

−y0Yy0(s, p(s)) ≤ −y0Yy0(s, p(s)), (40)

−y0J(s, z̄(s)) ≤ −y0J(s, z(s)), (41)

which proves the assertion of the theorem.
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