
Control and Cybernetics

vol. 37 (2008) No. 4

Topological sensitivity analysis for elliptic

problems on graphs∗ †

by

Günter Leugering1 and Jan Sokolowski2

1Lehrstuhl für Angewandte Mathematik II,
Friedrich-Alexander-University Erlangen-Nuremberg

Martensstr. 3, D-91058 Erlangen, Germany
2Institut Elie Cartan, Laboratoire de Mathématiques,

Université Henri Poincaré Nancy I,
B.P. 239, 54506 Vandouevre les Nancy Cedex, France

e-mail: leugering@am.uni-erlangen.de, Jan.Sokolowski@iecn.u-nancy.fr

Abstract: We consider elliptic problems on graphs under given
loads and bilateral contact conditions. We ask the question: which
graph is best suited to sustain the loads and the constraints. More
precisely, given a cost function we may look at a multiple node of the
graph with edge degree q and ask as to whether that node should be
resolved into a number of nodes of edge degree less than q, in order to
decrease the cost. With this question in mind, we are looking into
the sensitivity analysis of a graph carrying a second order elliptic
equation with respect to changing its topology by releasing nodes
with high edge degree or including an edge. With the machinery at
hand developed here, we are in the position to define the topological
gradient of an elliptic problem on a graph.

Keywords: differential equations on metric graphs, obstacles,
topology optimization, asymptotic analysis.

1. Introduction

Topological derivatives are important in dealing with topology and shape op-
timization. The reason for this fact is that homeomorphic variations of the
domains will not allow for topology changes. Thus, if one considers a shape
optimization problem and starts with a simply connected set, say, then all ad-
missible variations will produce simply connected sets. If, therefore, an optimal
shape would necessitate digging a hole into the domain, then it would not be
possible to do this with the kind of domain variations mentioned. Topological
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gradients are a key ingredient in topology optimization, the boundary between
these disciplines becoming increasingly floating. For a number of problems the
notion of topological derivatives has been introduced, and examples for such
gradients have been reported in the literature. The list of problems considered
comprises elliptic problems in two and three dimensions with and without ob-
stacles, the equations of elasticity and the Helmholtz equation, see Sokolowski
and Zochowski (1999), Amstutz (2003), Allaire et al. (2004), Masmoudi et al.
(2005), Novotny et al. (2007) and others, together with the references therein.

However, the topological gradient is more a qualitative tool than a quan-
titative one: it helps to indicate where a hole has to be located. The actual
optimization of the domain is then subject to shape-sensitivities.

Topology optimization for graph-like problems has been considered in the
engineering literature for a long time, see Rozvany (1998) as an example. Truss
optimization has also been the focus of many mathematical papers. In truss
topology optimization one typically considers a sizing problem where the thick-
ness of an individual bar may be set to zero. In an early paper, Kočvara and
Zowe (1996), where, after a proper sizing optimization is performed on a truss,
the positions of the nodes are subject to changes, the authors considered a
non-smooth two-level problem. However, such truss problems do not describe
flexible systems as they use rod-models instead of flexible beam models, nor do
they consider 1-d elasticity models other than their finite element representa-
tion, which leads to edge-wise linear functions on a graph and hence to a discrete
graph problem. The method used there typically comes down to selecting rod
elements out of a complete graph in order to decrease a given cost (the typical
choice being the compliance). See Mróz and Bojczuk (2003) for graph problems
including more general structural elements. We, instead aim at metric graph
structures which are locally described by partial differential equations along the
edges of the underlying graph. In this paper we confine ourselves to the sec-
ond order equations which are representative of 1-d elasticity. Timoshenko- and
Euler-Bernoulli beams will be discussed in a forthcoming publication.

Similar to Kočvara and Zowe (1996), de Wolf (1996) considered a flow net-
work with simplified flow conditions and investigated topological sensitivities of
the minimal resistance network. Again, the problem was treated as a bilevel
non-smooth optimization problem. Finally, in a recent paper Durand (2006)
considered optimal branching in biological networks and reestablished a Murray-
type law. A general theory of abstract ’irrigational networks’ has been recently
provided by Brenot, Casselles and Morel (2007/2008).

Networks carrying dynamics appear in many applications, such as neuronal
dynamics, waste-water management, blood flow, micro-flows, gas- and traffic
networks and many more. In all these applications optimization of the topology
of the graph is crucial. Thus, it appears reasonable to approach this kind of
problem with a topological gradient calculus.

To the best knowledge of the authors, topological gradients for partial differ-
ential equations on graphs have not been considered in the literature. Therefore
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the major goal of this contribution is to develop the necessary tools towards
shape and topology optimization for PDEs on graphs.

The first author has been working on partial differential equations on net-
worked domains during the last 10 years. See the monographs by Lagnese,
Leugering and Schmidt (1994) and Lagnese and Leugering (2004) for further
reference on the modeling of such problems. For the sake of self-consistency we
introduce the models below.

The paper is organized as follows. In the second section we provide pre-
liminaries on elliptic problems on graphs. The third section is devoted to the
Steklov-Poincaré operator on the graph. In the fourth section we develop the
asymptotic expansions for the problems on graphs with a hole. The last sec-
tion will be devoted to asymptotic expansions of the energy and a tracking
functional.

2. Preliminaries

We consider a simple planar graph (V,E) = G in R2, with vertices V = {vJ |J ∈
J } and edges E = {ei|i ∈ I}. Let m = |J |, n = ‖I‖ be the numbers of vertices
and edges, respectively. In general, the edge-set may be a collection of smooth
curves in R2, parametrized by their arc lengths. The restriction to planar
graphs and straight edges is for the sake of simplicity only. The more general
case, which is of course also interesting in the combination of shape and topology
optimization, can also be handled. However, this is beyond these notes.

We associate to the edge ei the unit vector ei aligned along the edge. e⊥i
denotes the orthogonal unit vector. Given a node vJ we define

IJ := {i ∈ I|ei is incident at vJ}

the incidence set, and dJ = |IJ | the edge degree of vJ . The set of nodes splits
into simple nodes JS and multiple nodes JM according to dJ = 1 and dJ > 1,
respectively. On G we consider a vector-valued function r representative of the
displacement of the network (see Fig. 1)

r : G→ Rnp := Πpi

i∈I
R, pi ≥ 1 ∀i. (1)

The numbers pi represent the degrees of freedom of the physical model used
to describe the behavior of the edge with number i. For instance, p = 1 is
representative of a heat problem, whereas p = 2, 3 is used in an elasticity context
on graphs in two or three dimensions. The p′is may change in the network in
principle. However, in this paper we insist on pi = p = 2, ∀i. See Lagnese,
Leugering and Schmidt (1994) and Lagnese and Leugering (2004) for details on
the modeling.

Once the function r is understood as being representative of, say, a defor-
mation of the graph, we may localize it to the edges

ri := r|ei
: [αi, βi] → Rp, i ∈ I, (2)
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X
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Figure 1. Representation of planar displacement

where ei is parametrized by x ∈ [αi, βi] =: Ii,0 ≤ αi < βi, ℓi := βi − αi, see
Fig. 1

We introduce the incidence relation

diJ :=

{

1 if ei ends at vJ

−1 if ei starts at vJ .

Accordingly, we define

xiJ :=

{

0 if diJ = −1

ℓi if diJ = 1.

We will use notation ri(vJ ) instead of ri(xiJ ). In order to represent the material
considered on the graph, we introduce stiffness matrices

Ki := hi[(1 − 1

si

)I +
1

si

eie
T
i ]. (3)

Obviously, the longitudinal stiffness is given by hi, whereas the transverse stiff-
ness is given by hi(1 − 1

si
). This can be related to 1-d analoga of the Lamé

parameters. We introduce Dirichlet and Neumann simple nodes as follows. As
the displacements and, consequently, the forces are vectorial quantities, we may
consider nodes, where the longitudinal (or tangential) displacement or forces
are kept zero, while the transverse displacements of forces are not constrained,
and the other way round. We thus define

J t
D := {J ∈ JS |ri(vJ ) · ei = 0}

J n
D := {J ∈ JS |ri(vJ ) · e⊥i = 0}

J t
N := {J ∈ JS |diJKir

′
i(vJ ) · ei = 0}

J n
N := {J ∈ JS |diJKir

′
i(vJ ) · e⊥i = 0}.
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Figure 2. A general graph

Notice that these sets are not necessarily disjoint. Obviously, the set of com-
pletely clamped vertices can be expressed as

J 0
D := J t

D ∩ J n
D. (4)

Similarly, a vertex with completely homogenous Neumann conditions is ex-
pressed as J n

N ∩ J t
N . At tangential Dirchlet nodes in J t

D we may, however,
consider normal Neumann-conditions as in J n

N and so on. In particular, in this
paper we will consider bilateral contact conditions for the displacements at sim-
ple Dirichlet nodes, see Fig. 2. For the sake of simplicity we concentrate on such
obstacles with respect to the transverse displacement only,

J̃ c
D := {J ∈ JS |ri(vJ ) · e⊥i ∈ [ai, bi]}, (5)

where ai ≤ bi for all i ∈ ID, D ∈ J c
D.

We may then consider bilaterally constrained vertices where the tangential
force is zero, i.e. J c

D ∩ J t
N or those with zero longitudinal displacement, i.e.

J c
D ∩ J t

D. The most general treatment would obscure the presentation, and we
thus restrict ourselves to the latter case. Thus, we always assume that a simple
vertex under bilateral constraints admits only zero tangential forces. We may
therefore define

J c
D :=

{

J ∈ JS |ri(vJ ) · e⊥i ∈ [ai, bi], diJKir
′
i(vJ ) · ei = 0

}

. (6)
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In this paper we do not consider constraints around multiple joints which
would restrict the motion of such a joint, say, to a box. Again, the more general
situation can be handled with the analysis presented here. The basic assumption
at a multiple node is that the deformation r is continuous across the joint. In
truss design this is not the case, and consequently pin-joints are considered,
albeit on a discrete level. One may consider pin-joints for networks of beams
also on the continuous level, as in Lagnese, Leugering and Schmidt (1994) and
Lagnese and Leugering (2004). In this paper we restrict ourselves to ’rigid’
joints in the sense that the angles between edges in their reference configuration
remain fixed. The continuity is expressed simply as

ri(vJ ) = rj(vJ ), i, j ∈ IJ , J ∈ JM .

We consider the energy of the system

E0 :=
1

2

∑

i∈I

ℓi
∫

0

Kir
′
i · r′i + ciri · ridx (7)

where the primes denote the derivative with respect to the running variable xi,
ci represents an additional spring stiffness term or an elastic support.

In order to analyze the problem, we need to introduce a proper energy space

V := {r : G→ Rnp|ri ∈ H1(Ii) (8)

ri(vD) = 0, i ∈ ID, D ∈ J 0
D (9)

ri(vJ ) = rj(vJ ), ∀i, j ∈ IJ , J ∈ JM}. (10)

V is clearly a Hilbert space in

H := L2(0, ℓi)
np. (11)

We introduce the bilinear form on V × V

a(r, φ) :=
∑

i∈I

ℓi
∫

0

[Kir
′
i · φ′i + ciri · φi]dx. (12)

Let now the distributed and boundary forces, fi, gJ be given along the edge
ei and at the node vJ , respectively, which define a continuous linear functional
in V

L(φ) :=
∑

i∈If

ℓi
∫

0

fi · φidx+
∑

J∈J
g

N

gJ · φîJ(vJ ), (13)

where î indicates that the simple nodes have just one incident edge, and where
fi ∈ H1(0, ℓi)

∗. We now consider minimizing the energy over the set of con-
strained displacements. To this end we introduce the convex and closed (and
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hence weakly closed) set

K := V ∩ {(ri)n
i=1|ri(vD) · e⊥i ∈ [ai, bi], i ∈ ID, D ∈ J c

D}. (14)

The Ritz-approach to deriving the problem now can be stated as follows

min
r∈K

1

2
a(r, r) − L(r). (15)

That this convex optimization problem admits a unique solution is then proved
by standard arguments. The classical first order necessary optimality conditions
then read as follows:

n
∑

i=1

ℓi
∫

0

[Kir
′
i ·(r̂′i−r′i)+ciri ·(r̂i−ri)]dx−

n
∑

i=1

∫ ℓi

0

fi ·(r̂i−ri)dx ≥ 0, ∀r̂ ∈ K. (16)

In order to explore this variational inequality, we introduce active and inactive
sets with respect to the bilateral obstacles.

Au := {i|i ∈ ID, D ∈ J c
D, ri(vD) · e⊥i = bi}

Aℓ := {i|i ∈ ID, D ∈ J c
D, ri(vD) · e⊥i = ai} (17)

A0 := {i|i ∈ ID, D ∈ J c
D, ai < ri(vD) · e⊥i < ai}.

In order to define proper variations in (16), we introduce the Hilbert space

V0 = {φ ∈ V|φi(vD) · e⊥i = 0, i ∈ ID, D ∈ J c
D}. (18)

Obviously, if r ∈ K then r̂ = r + φ ∈ K, ∀φ ∈ V0. Taking these variations we
obtain from (16) the following variational equation

n
∑

i=1

ℓi
∫

0

[Kir
′
i · φ′i + ciri · φi − fi · φi]dx = 0, ∀φ ∈ V0. (19)

This variational problem, in turn, can be further analyzed by integration by
parts (if additional H2-regularity holds) in order to obtain

∑

J∈J c
D

dîJ [Kir
′
i(vJ ) · ei][φi(vJ ) · ei]

+
∑

J∈JN

dîJKir
′
i(vJ )φî(vJ ) −

∑

J∈JN

gJ · φî(vJ )

+
∑

J∈JM

∑

i∈IJ

diJKir
′
i(vJ ) · φi(vJ ) (20)

+

n
∑

i=1

ℓi
∫

0

{−Kir
′′
i + ciri − fi} · φidx = 0, ∀φ ∈ V0.
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Now (20) clearly implies the strong formulation of the problem:

−Kir
′′
i + ciri = fi in (0, ℓi)

∑

J∈JM

∑

i∈IJ

diJKir
′
i(vJ ) = 0, J ∈ JM (21)

diNKir
′
i(vN ) = gN , i ∈ IN , N ∈ JN

Kir
′
i(vD) · ei = 0, i ∈ ID, D ∈ J c

D.

We now concentrate on the active and inactive sets. We may take variations in
(16) as follows:

r̂i = ri + ψi, ψ ∈ V , ψi(vD) = 0, i ∈ ID, D ∈ J c
D

i ∈ Au : ψi(vD) · e⊥i ≤ 0
i ∈ Al : ψi(vD) · e⊥i ≥ 0
i ∈ Ao : ψi(vD) · e⊥i = ±ε, ε small.

(22)

Obviously, taking variations in the inactive case, we obtain Kir
′
i(vD) · e⊥i = 0

which together with (21)4 gives

Kir
′
i(vD) = 0 i ∈ Ao. (23)

In the active cases we get

diDKir
′
i(vD) · e⊥i [ψi(vD) · e⊥i ] ≥ 0, i ∈ Au ∪Al (24)

and hence
diDKir

′
i(vD) · e⊥i ≤ 0, i ∈ Au

diDKir
′
i(vD) · e⊥i ≥ 0, i ∈ Al.

(25)

Putting all together ((21),(25), (23) and the conditions involved in V) we obtain
the strong formulation of (16)



















































































−Kir
′′
i + ciri = fi, ∀i ∈ I

ri(vD) = 0, i ∈ ID, D ∈ JD

diDKir
′
i(vN ) · ei = 0, i ∈ ID, D ∈ J c

D

diNKir
′
i(vN ) = gJ , i ∈ IN , N ∈ JN

ri(vJ ) = rj(vJ ), ∀i, j ∈ IJ , J ∈ JM
∑

i∈IJ

diJKir
′
i(vJ) = 0, J ∈ JM

ai ≤ ri(vD) · e⊥i ≤ bi, i ∈ ID, D ∈ J c
D

Kir
′
i(vD) · e⊥i = 0 i ∈ Ao

diDKir
′
i(vD) · e⊥i ≤ 0, i ∈ Au

diDKir
′
i(vD) · e⊥i ≥ 0, i ∈ Al

(26)

where fi = 0, i ∈ I \ If , gN = 0, J ∈ JN \ J g
N . Notice that (26), line 6, is

an example of the classical Kirchhoff condition known from electrostatics. See
Lagnese, Leugering and Schmidt (1994) and Lagnese and Leugering (2004) for
the case without obstacles.
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3. Steklov-Poincaré operators on graphs

In order to proceed with the introduction of a topological gradient, we consider
a multiple node v0

J , J ∈ JM . Let the edge degree d0
J be greater or equal to

three, thus we do not consider a serial junction. Ultimately we would like to
cut out a star-subgraph

SJ0

:= {ei|i ∈ IJ0} ⊂ E, (SJ0

, vJ0) = GJ0 ⊂ G (27)

and connect the adjacent nodes, see Fig. 3. This we consider as digging a hole
into the given graph.

We would like to use Steklov-Poincaré operators (Dirchlet-to-Neumann maps)
in order to decompose the entire graph into a subgraph and the remaining net-
work (the exterior). In order to do this we pick Dirichlet-values at the simple
vertices of the subgraph obtained by the ’cuts’ and evaluate the corresponding
Neumann-data there by solving the problem on the subgraph. This constitutes
the Steklov-Poincaré operator for the subgraph. By a common argument one
can then read in the information corresponding to the subgraph by taking the
Steklov-Poincaré-data as Neumann inputs at the simple nodes of the remaining
graph, (see the next section for details). This decomposition method applies
to any subgraph. Thus the ’effect’ of the subgraph can be represented in the
context of the overall problem by the way of the Steklov-Poincaré operator cor-
responding to the subgraph. In order to be able to handle holes with varying
sizes, we consider decomposing the graph into an exterior part and a subgraph
containing the node vJ0 to be cut out. That node is considered together with
its adjacent edges, however with edge-lengths ρi. The obtained star-graph, in
turn, is then cut out of the subgraph. Therefore, we obtain the analogue of a
ring-like subgraph, which constitutes the Steklov-Poincaré subgraph. See Fig.
3 for a typical general situation and Fig. 4 for the exemplary local handling of
subgraph removal.

In order to simplify the notation, and in fact without loss of generality, we
may consider the subgraph (from which the hole is then subsequently removed)
as a star with edge degree dJ (vJ0) = q.

We are led to study the following subproblem






















−Kir
′′
i + ciri = fi, i ∈ IJ0

ri(vJ0,i) = ui, i ∈ IJ0

ri(vJ0 ) = rj(vJ0 ), ∀i, j ∈ IJ0

∑

i∈IJ

diJKir
′
i(vJ0) = 0,

(28)

where vJ0

i
= vJ0,i are the nodes adjacent to vJ , see Fig. 4.

We assume for simplicity that vJ0 is an interior node with edge degree q
such that its adjacent nodes are not simple. Problem (28) admits a unique solu-
tion ri,0, i = 1, . . . q. We consider the Dirichlet-Neumann-map or the Steklov-
Poincaré-map
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Figure 3. Graph with star-like subgraph to be cut out

Figure 4. A star-like subgraph
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{

SJ0 : Rqp → Rqp

Si
J0 := diJKir

′
i,0(vJ0 , i), i ∈ IJ0 .

(29)

In order to simplify notation we may assume that the nodes vJ0,i, which are the
nodes incident at vJ0 , have edge degree ≥ 3 in G, such that after cutting the
corresponding edges out of G they are still multiple, but now in G \GJ0 .

The relevance of the Steklov-Poincaré map in this context becomes apparent
when we consider the overall problem. Indeed, we solve the problem (28),
generate the Neumann data (29) and integrate those into the system with the
hole as follows











































































































−Kir
′′
i + ciri = fi, ∀i ∈ I

ri(vD) = 0, i ∈ ID, D ∈ JD

diDKir
′
i(vN ) · ei = 0, i ∈ ID, D ∈ J c

D

diJKir
′
i(vN ) = gJ , i ∈ IN , N ∈ JN

ri(vJ ) = rj(vJ ), ∀i, j ∈ IJ , J ∈ JM \ J 0
S

∑

i∈IJ

diJKir
′
i(vJ) = 0, J ∈ JM \ J 0

S

rk(vJ ) = rℓ(vJ ) = ri(vJ0,i) ∀k, ℓ ∈ IJ0

S
, i ∈ IJ0

∑

j∈I
J0

i

dj,J0

i
Kjr

′
j(vJ0,i) + Si

J0(ri(vJ0,i)) = 0, i ∈ IJ0

ai ≤ ri(vD) · e⊥i ≤ bi, i ∈ ID, D ∈ J c
D

Kir
′
i(vD) · e⊥i = 0 i ∈ Ao

diDKir
′
i(vD) · e⊥i ≤ 0, i ∈ Au

diDKir
′
i(vD) · e⊥i ≥ 0, i ∈ Al

, (30)

where Si
J0(rĵ(vJ0,i))i is the Steklov-Poincaré-map applied to the nodal data at

vJ0,i. The problem (30) is equivalent to the original problem (26). Obviously,
there is nothing special about cutting out a star-subgraph. One may as well cut
out any subgraph, solve the corresponding Steklov-Poincaré problem, and read
it into the graph problem with the ’hole’. The procedure itself is also completely
natural in most of the known domain decomposition techniques. See Lagnese
and Leugering (2004) for domain decomposition techniques in the context of
optimal control problems on networked domains.

4. Stars with a hole

We consider a star-graph GJ0 with q edges and center at the node vJ0 . As
has been seen in the previous section, we may consider this problem completely
independently of the original graph. In particular, we may without loss of gen-
erality assume that the edges ei stretch from the center to the simple boundary
nodes, which we will label from 1 to q. By this assumption we consider the
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Figure 5. Cutting a hole into star-like subgraph

multiple node at the center as being reached at x = 0 for all outgoing edges.
Thus, the data ui are picked up at the ends x = ℓi,



























−Kir
′′
i + ciri = fi, i ∈ I

ri(ℓi) = ui, i = 1, . . . , q

ri(0) = rj(0), ∀i, j = 1, . . . , q
q
∑

i=1

Kir
′
i(0) = 0.

(31)

We are going to cut out the center and connect the corresponding cut-nodes
via a circuit as seen in Fig. 5. In general, we have numbers ρi ∈ [0, ℓi), i =
1, . . . , q, which are taken to be the lengths of the edges that are cut out. Thus,
the remaining edges have lengths ℓi − ρi. At x = ρi we create a new multiple
node vi. We connect these nodes by edges eq+i, i = 1, . . . , q, with lengths σi(ρi).
After that, these nodes receive a new edge degree. In this paper we assume that
all these nodes have the same edge degree di = 3. More complicated cutting
procedures can be introduced, but would obscure the ideas of this first paper
on topological derivatives of graph problems.

The problem we have to solve is as follows:






































−Kir
′′
i + ciri = fi, i ∈ I

ri(ℓi) = ui, i = 1, . . . , q

ri(ρi) = rq+i(0) = rq+1−i(σ
i(ρi)), ∀i = 2, . . . , q

r1(ρ1) = rq+1(0) = r2q(σ
2q(ρ2q)),

−Kir
′
i(ρi)−Kq+ir

′
q+i(0)+Kq+i−1r

′
q+i−1(σ

q+i−1(ρq+i−1)) = 0, i = 2, . . . , q

−K1r
′
1(ρ1) −Kq+1r

′
q+1(0) +K2qr

′
2q(σ

2q(ρ2q)) = 0.

(32)
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We proceed to derive the solutions to (31) and(32), respectively. To this end we
look at

−Kir
′′
i + ciri = fi ⇔ r′′i = ciK

−1

i ri −K−1

i fi

and define Ai := ciK
−1

i , Fi := −ciAifi. The general solution of the homoge-
neous equation (fi = 0) is given by

rH
i (x) = sinh(A

1

2

i x)ai + cosh(A
1

2

i x)bi, (33)

where the sin- and cos-operators are defined via spectral resolution

sinh(A
1

2

i (x))ξ =

p
∑

j=1

sinh(λ
1

2

ijx)(ξ, φij)φij , (34)

and accordingly for cosh(A
1

2

i (x)).
The inhomogeneous equation is then solved by variation of constants as

follows

rI
i (x) = A

− 1

2

i

x
∫

0

sinh(A
1

2

i (x− s)Fi(s)ds. (35)

We will treat the case fi = 0 only. The general case is then a matter of additional
but straightforward calculus.

Lemma 4.1 The solution r to problem (31) with fi = 0, i = 1, . . . , q is given
by

ri(x) = sinh((A
1

2

i )(x))ai + cosh(A
1

2

i (x))b (36)

with the coefficient-vectors ai, b given by

ai = sinh(A
1

2

i ℓi)
−1(ui − cosh(A

1

2

i ℓi)

·(
q
∑

i=1

ciA
− 1

2

i cothA
1

2

i ℓi)
−1

q
∑

i=1

ciA
− 1

2

i sinh(A
1

2

i ℓi)
−1ui (37)

b = (

q
∑

i=1

ciA
− 1

2

i coth(A
1

2

i ℓi))
−1

q
∑

i=1

ciA
− 1

2

i sinh(A
1

2

i ℓi)
−1ui. (38)

The Steklov-Poincaré map is given by

Si
J0(u) = A

1

2

i (cosh(A
1

2

i ℓi)ai + sinh(A
1

2

i ℓi)b) (39)

with ai, b according to (37),(38).

The situation appears to be much simpler in case all material parameters and
geometrical data are equal:

ci = 1, Ki = Id = A
1

2 , ℓi = ℓ, fi = 0, i = 1, . . . q (40)
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Example 4.1 Let assumption (40) hold true. Then the solution r to (31) is
given by

ri(x) =
1

sinh(ℓ)
sinh(x)(ui −

1

q

q
∑

j=1

uj) (41)

+
1

cosh(ℓ)
cosh(x)

1

q

q
∑

i=1

ui.

The Steklov-Poincaré map is given by

Si(u)J0 = coth(ℓ)(ui −
1

q

q
∑

j=1

uj) + tanh(ℓ)
1

q

q
∑

j=1

uj. (42)

We proceed to problem (32). Again, we will treat the general case first and
will then restrict to assumption (40) in order to better reveal the underlying
structure.

We introduce the ansatz for the solution as follows

rρ
i (x) := sinh(A

1

2

i x)a
ρ
i + cosh(A

1

2

i x)b
ρ
i . (43)

From the Dirichlet conditions in (32)2 we infer

rρ
i (ℓi) = sinh(A

1

2

i (ℓi))a
ρ
i + cosh(A

1

2

i (ℓi))b
ρ
i = ui, i = 1, . . . , q. (44)

From the continuity requirement in (32)3,4 we obtain

rρ
i (ρi) = sinh(A

1

2

i ρi)a
ρ
i + cosh(A

1

2

i ρi)b
ρ
i = rρ

q+i(0) = bρq+i (45)

= rρ
q+i−1(σ

q+i−1(ρq+i−1)), i = 2, . . . q.

rρ
1(ρ1) = sinh(A

1

2

1 ρ1)a
ρ
1 + cosh(A

1

2

1 ρ1)b
ρ
1 (46)

= rρ
q+1(0) = bρq+1 = rρ

2q(σ
2q(ρ2q)).

The Kirchhoff conditions in (32) result in

−ciA− 1

2

i [cosh(A
1

2

i ρi)a
ρ
i + sinh(A

1

2

i ρi)b
ρ
i ] − cq+iA

− 1

2

q+ia
ρ
q+i (47)

+cq+i−1A
− 1

2

q+i−1[cosh(A
1

2

q+i−1(σ
q+i−1(ρq+i−1)))a

ρ
q+i−1

+ sinh(A
1

2

q+i−1(σ
q+i−1(ρq+i−1)))b

ρ
q+i−1] = 0, i = 2, . . . , q.

−c1A− 1

2

1 [cosh(A
1

2

1 ρ1)a
ρ
1 + sinh(A

1

2

1 ρ1)b
ρ
1] − cq+1A

− 1

2

q+1a
ρ
q+1 (48)

+c2qA
− 1

2

2q [cosh(A
1

2

2q(σ
2q(ρ2q)))a

ρ
2q

+ sinh(A
1

2

2q(σ
2q(ρ2q)))b

ρ
2q] = 0.
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This set of equations (44)–(48) constitutes 4q conditions on the 4q unknowns
aρ

i , b
ρ
i , i = 1, . . . , 2q. The problem is as to whether there is an asymptotic

expansion of rρ
i in terms of ρ for small ρ := (ρi)i=1,...,q. Notice that the graph

with ρ = 0 is the original star-graph with q edges, while for every ρ > 0 (i.e.
ρi > 0), the graph has 2q edges and contains exactly one circuit. We may, of
course, also formally start with a star-graph consisting of 2q edges with serial
joints at xi = 0, xq+i = ρi, i = 1, . . . , q so that the edges ei, i = 1, . . . , q, have
length ℓi − ρi to begin with, while the other edges eq+i, i = 1, . . . , q, stretch
from the center (at xq+i = 0) to the serial nodes at xq+i = ρi.

Our analysis depends on the expansion of the set of equations (44) to (48)
up to second order terms. The asymptotic analysis is based on the expansions
of sinh(x), cosh(x) on the matrix level. We use the asymptotic expansions in
(34) as follows

{

sinh(A
1

2

i (σi(ρi)))ξ = σi(ρi)A
1

2

i ξ +O(ρ2
i )

cosh(A
1

2

i (σi(ρi)))ξ = ξ +O(ρ2
i ).

(49)

By (44) we have

aρ
i = (sin(A

1

2

i (ℓi))
−1(ui − cosh(A

1

2

i (ℓi))b
ρ
i ), i = 1, . . . , q. (50)

We expand (45) and(46)

A
1

2

i ρia
ρ
i + bρi = bρq+i (51)

= σq+i−1(ρq+i−1)A
1

2

q+i−1a
ρ
q+i−1 + bρq+i−1 +O(ρ2), i = 2, . . . q.

A
1

2

1 ρ1a
ρ
1 + bρ1 = bρq+1 = σ2q(ρ2q)A

1

2

2qa
ρ
2q + bρ2q +O(ρ2). (52)

We now proceed to the Kirchhoff conditions at the multiple nodes (47),(48)

−ciA− 1

2

i [aρ
i + ρiA

1

2

i b
ρ
i ] − cq+iA

− 1

2

q+ia
ρ
q+i

+cq+i−1A
− 1

2

q+i−1
[aρ

q+i−1
+ σq+i−1(ρq+i−1)A

1

2

q+i−1
bρq+i−1

] (53)

= 0 +O(ρ2), i = 2, . . . , q

and

−c1A− 1

2

1 [aρ
1 + ρ1A

1

2

1 b
ρ
1] − cq+1A

− 1

2

q+1a
ρ
q+1

+c2qA
− 1

2

2q [aρ
2q + σ2q(ρ2q)A

1

2

2 b
ρ
2q] = 0 +O(ρ2).

(54)
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We reformulate the system (51),(52),(53),(54) as follows

[

A
1

2

i−1ρi−1 − tanh(A
1

2

i−1ℓi−1)
]

aρ
i−1 −

[

A
1

2

i ρi − tanh(A
1

2

i ℓi)
]

aρ
i (55)

+σq+i−1(ρq+i−1)A
1

2

q+i−1a
ρ
q+i−1

= cosh(A
1

2

i ℓi)
−1ui − cosh(A

1

2

i−1ℓi−1)
−1ui−1, i = 2, . . . , q,

−
[

A
1

2

1 ρ1 − tanh(A
1

2

1 ℓ1)
]

aρ
1 +

[

A
1

2

q ρq − tanh(A
1

2

q ℓq)
]

aρ
q

+σ2q(ρ2q)A
1

2

2qa
ρ
2q = cosh(A

1

2

1 ℓ1)
−1u1 − cosh(A

1

2

q ℓq)
−1uq +O(ρ2),

−
[

ciA
− 1

2

i + (σq+i−1(ρq+i−1)cq+i−1 − ρici) tanh(A
1

2

i ℓi)
]

aρ
i (56)

−cq+iA
− 1

2

q+ia
ρ
q+i + cq+i−1A

− 1

2

q+i−1a
ρ
q+i−1

= −
(

σq+i−1(ρq+i−1)cq+i−1 − ρici
)

cosh(A
1

2

i ℓi)
−1ui, i = 2, . . . q,

−
[

c1A
− 1

2

1 + (σ2q(ρ2q)c2q − ρ1c1)
]

tanh(A
1

2

1 ℓ1)a
ρ
1

−cq+1A
− 1

2

q+1a
ρ
q+1 + c2qA

− 1

2

2q a
ρ
2q

= −
(

σ2q(ρ2q)c2q − ρ1c1
)

cosh(A
1

2

1 ℓ1)
−1u1 +O(ρ2).

Now, (55)-(56) constitute a system of 2q linear asymptotic equations to
order 2 in the 2q variables aρ

i , i = 1, . . . , 2q.

Theorem 4.1 The system of equations (53) to (56) admits a unique solution
aρ

i , i = 1, . . . 2q. Moreover, we have the asymptotic expansion

aρ
i = ai +O(ρ), i = 1, . . . , q, (57)

where ai is given by (37). There exists a function si(·) such that

rρ
i (x) = ri(x) +O(ρ)si(x), i = 1, . . . , q, (58)

where ri is the solution of the star-graph problem (31) ρ = 0.

Proof. Using equations (51) and (52), taking appropriate differences, we realize

that bi = b̂ + O(ρ). This information is inserted into equations (53) and (54).
If we write all quantities involving aρ

i with indices i = 1 . . . q on the left and the
other terms on the right side, we obtain after summing up, using a ’telescope-
sum’, only O(ρ)-terms on the right hand side, i.e. we have

q
∑

i=1

ciA
− 1

2

i aρ
i = O(ρ). (59)
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Then we use the expression (50) for aρ
i in (59) to obtain

q
∑

i=1

ciA
− 1

2

i sinh(A
1

2

i ℓi)
−1ui =

(

q
∑

i=1

ciA
− 1

2

i coth(A
1

2

i ℓi)
−1

)

b̂.

From this and (38) we see that up to terms of order O(ρ), b̂ = b. Then aρ
i , up

to the order O(ρ), are given by ai in (37).

4.1. Homogeneous networks

In this subsection we consider the network under the assumption (40), i.e. all
material and geometrical quantities are the same, and a symmetric hole. Under
this assumption the system of equations (55) to (56) reduces to

aρ
i−1 − aρ

i − σρ coth(ℓ)aρ
q+i−1 = −1 + ρ coth(ℓ)

sinh(ℓ)
(ui − ui−1) +O(ρ2), (60)

−aρ
1 + aρ

q − σρ coth(ℓ)a2q = −1 + ρ coth(ℓ)

sinh(ℓ)
(u1 − uq) +O(ρ2),

−(1 + (σ − 1)ρ tanh(ℓ))aρ
i − aρ

q+i + aρ
q+i−1 =

1 − σ

cosh(ℓ)
ui +O(ρ2)

−(1 + (σ − 1)ρ tanh(ℓ))aρ
1 − aρ

q+1 + aρ
2q =

1 − σ

cosh(ℓ)
u1 +O(ρ2),

where the first and the third equations hold for i = 2, . . . , q, respectively. This
system has a very particular structure, which reflects the adjacency structure
of the graph. To obtain the direct explicit solution is, nevertheless, a matter of
substantial calculations. Instead we look at an example.

Example 4.2 In this example we reduce the graph to a tripod, see Fig. 5. Here
we can solve (60) analytically an obtain

aρ
i =

1

sinh(ℓ)
(ui −

1

3

3
∑

j=1

uj)

+ρ
1

cosh(ℓ)







(1 − 1

3
σ) coth(ℓ)2(ui −

1

3

3
∑

j=1

uj) (61)

+ (σ − 1)
1

3

3
∑

j=1

uj







+O(ρ2),



988 G. LEUGERING, J. SOKOLOWSKI

bρi =
1

cosh(ℓ)

1

3

3
∑

j=1

uj

−ρ sinh(ℓ)

cosh(ℓ)2







(

(1 − 1

3
σ) coth(ℓ)2

)

(ui −
1

3

3
∑

j=1

uj) (62)

+ (σ − 1)
1

3

3
∑

i=1

ui

}

+O(ρ2),

where i = 1, 2, 3.

We also display the coefficients aρ
q+i, i = 1, 2, 3 in order to reveal the behavior

of the edges introduced by cutting the hole:

aρ
4 =

1

3 sinh(ℓ)
(u2 − u1) +

ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ))(u2 − u1)

)

+O(ρ2) (63)

aρ
5 =

1

3 sinh(ℓ)
(u3 − u2) +

ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ))(u3 − u2)

)

+O(ρ2) (64)

aρ
6 =

1

3 sinh(ℓ)
(u1 − u3) +

ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ)(u1 − u3)

)

+O(ρ2). (65)

The remaining bq+i, 1 = 1, 2, 3 are of course given by bi, i = 1, 2, 3 according
to (51),(52). This completely determines the solution rρ

i (x), i = 1, . . . , 6. We
list the first three members for easier reference:

rρ
i (x) =

1

sinh(ℓ)

(

ui −
1

3

3
∑

j=1

uj

)

sinh(x) +
1

cosh(ℓ)

1

3

3
∑

j=1

uj cosh(x)

+ρ







1

cosh(ℓ)



(1 − 1

3
σ) coth(ℓ)2(ui −

1

3

3
∑

j=1

uj)

+ (σ − 1)
1

3

3
∑

j=1

uj



 sinh(x) (66)

− sinh(ℓ)

cosh(ℓ)2



(1 − 1

3
σ) coth(ℓ)2(ui −

1

3

3
∑

j=1

uj)

+(σ − 1)
1

3

3
∑

j=1

uj



 cosh(x)







+O(ρ2), i = 1, 2, 3.
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The Steklov-Poincaré-map is then obtained using

(r′i)
ρ(ℓ) = coth(ℓ)(ui −

1

3

3
∑

j=1

uj) + tanh(ℓ)
1

3

3
∑

j=1

uj

+ρ







(1 − tanh2(ℓ))[(1 − 1

3
σ) coth2(ℓ)(ui −

1

3

3
∑

j=1

uj)) (67)

+ (σ − 1)
1

3

3
∑

j=1

uj ]







, i = 1, . . . q.

It is apparent that (66),(67) provide the second order asymptotic expansion
we were looking for. We consider the following experiment: we apply longitudinal
forces ui = uei with the same magnitude at the simple nodes of the network.
The (outer) edges ei, 1 = 1, 2, 3 or, respectively the edges of the original star,
are given by

e1 = (0, 1), e2 = (−
√

3

2
,−1

2
), e3 = (

√
3

2
,−1

2
)

which together with the orthogonal complements

e⊥1 = (−1, 0), e⊥2 = (
1

2
,−

√
3

2
), e⊥3 = (

1

2
,

√
3

2
)

form the local coordinate systems of the edges. Obviously,
3
∑

i=1

ei = 0. Thus, the

solution to the unperturbed problem is given by

ri(x) =
1

sinh(ℓ)
u sinh(x)ei. (68)

This is in agreement with the fact that that particular reference configuration is
completely symmetric. Now, the solution rρ

i to the perturbed system and (r′i)
ρ(ℓ)

are then given by

rρ
i (x) =

1

sinh(ℓ)
sinh(x)uei

+ρ(1 − σ

3
)

1

sinh(ℓ)
(coth(ℓ) sinh(x) − cosh(x)) uei +O(ρ2) (69)

(ri)
′ρ(ℓ) = coth(ℓ)uei + ρ(coth(ℓ)2 − 1)(1 − σ

3
)uei +O(ρ2).

The energy of the unperturbed system is given by

E0 =
1

2

3
∑

i=1

ℓ
∫

0

r′i · r′i + ri · ridx =
3

2
coth(ℓ)u2. (70)
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The energy of the perturbed system is given by

Eρ =
1

2

3
∑

i=1

ℓ−ρ
∫

0

[r′i · r′i + ri · ri]dx+
1

2

6
∑

i=4

σρ
∫

0

[r′i · r′i + ri · ri]dx (71)

=
1

2
〈Sρu, u〉 =

1

2
〈S0u, u〉+ ρ

1

2
(1 − σ

3
)
{

((coth(ℓ))2 − 1)
}

u2 (72)

=
1

2
〈S0u, u〉+ ρ

√
3

2
(
√

3 − 1) sinh(ℓ)−2u2. (73)

From these experiments we may draw the conclusion, that nodes of edge degree
3 under symmetric load, where the configuration is at 120◦ between the edges
(this amounts to σ =

√
3) are not going to be replaced by a hole, which would, in

turn result in three new multiple nodes of edge degree 3. This seems to support
the optimality of such graphs as observed by Buttazzo (2005).

Remark 4.1
1. Very similar formulae are obtained in the scalar case (ri(x) ∈ R, no

planar representation!), relevant for instance in problems of heat transfer
or electrical currents in networks.

2. If the loads are not symmetric, and/or if the geometry of the ’hole’ is
not uniform, the energy may in fact drop. A more detailed analysis is
the subject of a forthcoming paper. It suffices to say here, that nodes
with higher edge degree, according to our analysis, are ’more likely’ to be
released by a hole, as even in the symmetric case the number σ(ρ) which
measures the new edge-lengths will be less than 1.
This is true e.g. for a node with edge degree 6 and beyond. Thus, the total
length of the new edges is smaller than the total length of the removed
edges. This, in turn, is intuitive with respect to the fact that in the higher-
dimensional problem (in 2- or 3-d, no graphs), digging a hole reduces the
amount of mass.

Example 4.3 Here we consider the homogeneous situation for a star with edge
degree 6 at the multiple node. In this case σ = 1 for the symmetric situation.
See Fig. 6

We calculate

aρ
1 =

1

sinh(ℓ)
(u1 −

1

6

6
∑

j=1

uj) (74)

+ρ
cosh(ℓ)

cosh2(ℓ) − 1







(−u5 − u3 − 4u2 − 4u6 + 10u1) − 7(u1 −
1

6

6
∑

j=1

uj)







.

Notice that the edges 2 and 6 are the ’neighboring’ edges of edge 1 in the
original star-graph. The other coefficients aρ

i , 1 = 2, . . . , 6 are then obvious.
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1

2

3

4

5

6
7

8

910

11

12

Figure 6. Graph with ’critical’ edge degree 6

For the sake of brevity, we only display e.g. aρ
12:

aρ
12 =

1

12 sinh(ℓ)
[5(u1 − u6) + 3(u2 − u5) + (u3 − u4)]

−ρ cosh(ℓ)

144(cosh2(ℓ) − 1)
[25(u1 − u6) − 9(u2 − u5) − 7(u3 − u4)]

+O(ρ2). (75)

Again, observe that edge 12, in terms of the edges of the original graph, has
direct neighbors 1 and 6, the next level is 2 and 5 and finally we have 3 and
4. One realizes a consequent scaling. Also note that aρ

i = 0 if ui are all equal.
This shows that the coefficients bρi in that case are independent of ρ and thus
the energy will not change for this limiting case.

5. The topological derivative

We are now in the position to define the topological derivative of an elliptic
problem on a graph. Let G be a graph, and let vJ ∈ JM be a multiple node
with edge degree dJ . Let Gρ be the graph obtained from G by replacing vJ with

a cycle of length
dJ
∑

i=1

ciρ with vertices v1
J , . . . v

dJ

J of edge degree 3 each, such that

the distance from vJ to vi
J is equal to ρ. Thus, the number nρ of edges of Gρ is

n+ dJ . Let J : G→ R be a functional on the edges of G

J(r, r′, G) :=

n
∑

i=1

ℓi
∫

0

F (x, ri, r
′
i) (76)
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and let

J(rρ, (rρ)′, Gρ) :=

n+dJ
∑

i=1

ℓ
ρ
i
∫

0

F (x, rρ
i , (r

ρ
i )′) (77)

be its extension to Gρ. Assume we have an asymptotic expansion as follows

J(rρ, (rρ)′, Gρ) = J(r, r′, G) + ρT (vJ ) +O(ρ2) (78)

then we define the topological gradient of J(Gρ) with respect to ρ for ρ = 0 at
the vertex vJ as follows.

T (vJ ) = lim
ρ→0

J(rρ, (rρ)′, Gρ) − J(r, r′, G)

ρ
. (79)

We consider the energy functional or, equivalently, the compliance which is
the most natural criterion to begin with. There are five such functionals relevant
for the analysis of this paper: E0(r) on the entire graph G , Eρ(rρ) on the entire

graph with the hole Gρ , ECS(r) on the graph G \ SJ0

, where the star-graph

without hole SJ0

has been cut out along edges ei, i ∈ IJ0 , E0
S(r; v) on the

star-graph without hole, and Eρ
S(r; v) on the star-graph with a hole. Obviously

E0
S(r;u) =

1

2
〈S0u, u〉, (80)

Eρ
S(r;u) =

1

2
〈Sρu, u〉, (81)

E0(r) = ECS(r) + E0
S(r, r), Eρ(rρ) = ECS(rρ) + Eρ

S(rρ, rρ), (82)

where it is understood that in Eρ
S(rρ, ·) and E0

S(r, ·) we insert ui = rρ(ℓi) and
ui = r0(ℓi), respectively. Thus

Eρ(rρ) − E0(r) =
1

2
〈Sρ(r̃), r̃〉 − 1

2
〈S0(r̃), r̃〉, (83)

where r̃ solves the problem on G \ SJ0

and ui = r̃i(ℓi), i ∈ IJ0 . Thus, the
asymptotic analysis of the last section carries over to the entire graph. As we
have done the complete asymptotic analysis up to order 2 in the homogeneous
case only, we consequently dwell on this case now, the more general case will be
subject of a forthcoming publication.

5.1. Homogeneous graphs

In order to find an expression of the topological gradient in terms of the solutions
r at the node vJ0 , the one that is cut out, we need to express the solution in
terms of the data ui.
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Example 5.1 We consider the star-graph as above with 3 edges. Obviously

ui −
1

3

3
∑

j=1

uj = sinh(ℓ)r′i(0),
1

3

3
∑

j=1

uj = cosh(ℓ)ri(0). (84)

Thus using the fact that
3
∑

i=1

‖ui − 1

3

3
∑

j=1

uj‖2 =
3
∑

i=1

‖ui‖2 − 1

3
(‖

3
∑

i=1

‖)2 we can

express the bilinear expression 〈Sρ(u), u〉 in terms of ‖r0(0)‖2 and ‖(r0)′(0)‖2

(where we omit the index 0) as follows

〈Sρ
i (u), u〉 = 〈S0

i (u), u〉
+ρ

{

(1 − 1

3
σ)

3
∑

i=1

‖r′i(0)‖2 + (σ − 1)
3
∑

i=1

‖ri(0)‖2

}

.
(85)

This says that the energy function in the homogeneous case, when cutting out a
symmetric hole e.g. σi = σ =

√
3, i = 1, 2, 3, we have

TE(r, vJ0) =
1

2

{

(1 − 1

3
σ)

3
∑

i=1

‖r′i(0)‖2 + (σ − 1)

3
∑

i=1

‖ri(0)‖2

}

. (86)

The situation will be different for such vertices having a higher edge-degree
than 6, and those having non-symmetric holes. We expect that such networks
are more likely to be reduced to edge-degree 3 by tearing a hole. But this has
to be confirmed by more detailed studies.

More general functionals will be considered in a forthcoming publication.

5.2. Sensitivity with respect to edge inclusion

We now consider a different situation, where a node with edge degree dJ = N is
transformed into a node of edge degree 3 and one of degree N−1 by introduction
of a new edge eN+1, see Fig. 7.

We consider this procedure in an explicit example with edge degree 4.
Let, therefore, vJ be a node with edge degree 4. As visualized in Fig. 7, we

will introduce an additional new edge eρ
5 of length ρ > 0 which, together, with

the two new edges eρ
1, e

ρ
2 given by

eρ
1 :=

ℓ1e1 − ρeN+1

‖ℓ1e1 − ρeN+1‖

eρ
2 :=

ℓ2e1 − ρeN+1

‖ℓ2e2 − ρeN+1‖
, (87)

where in our case study below N = 4.
The new lengths ℓ−σ of the edges eρ

1, e
ρ
2 (we consider a symmetric situation

where the new additional edge eN+1 equally divides the angle between e1, e2
with an inclination α towards the corresponding unit vectors) can be computed
by elementary trigonometry. The number σ is then found to be
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Figure 7. N-node turns into 3-node plus (N+1)-node

σ = ρ cosα− ρ2 1

2ℓ
(1 − 1

ℓ
cos2 α) +O(ρ3). (88)

It is interesting to notice that for cosα > 1

2
the new graph has actually a

smaller total length. This is in contrast to the standard situation, where cutting
out a hole - which in fact implies introducing new the edges forming that hole -
has the opposite effect. For the sake of simplicity, we calculate the sensitivities
with respect to introducing the new edge of length ρ for the Laplacian on the
graph only. Thus, we do not consider an extra stiffening part due to the presence
of a term cri,







































−r′′i = 0 in Ii, i = 1, . . . , 5

ri(ℓ) = ui, i = 1, . . . 4,

r1(σ) = r2(σ) = r5(ρ),

r′1(σ) + r′2(σ) − r′5(ρ) = 0,

r3(0) = r4(0) = r5(0),

r′3(0) + r′4(0) + r′5(0) = 0.

(89)

We perform a similar analysis as in Section 4 and therefore omit the details.
We obtain

rρ
1(x) =

1

ℓ
(u1 −

1

4

4
∑

i=1

ui)x+
1

4

4
∑

i=1

ui

− ρ

2ℓ2

{

[
1

2
cosα+ 1](u2 − u1) + (2 − cosα)(u1 −

1

4

4
∑

i=1

ui)

}

(x − ℓ)

= r01(x)

− ρ

2ℓ2

{

[
1

2
cosα+ 1](u2 − u1) + (2 − cosα)(u1 −

1

4

4
∑

i=1

ui)

}

(x − ℓ),
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rρ
2(x) = r02(x)

− ρ

2ℓ2

{

([
1

2
cosα+ 1](u1 − u2) + (2 − cosα(u2 −

1

4

4
∑

i=1

ui)

}

(x − ℓ),

rρ
3(x) = r03(x)

− ρ

2ℓ2

{

[1 − 1

2
cosα](u2 − u1) + (2 − cosα(u2 −

1

4

4
∑

i=1

ui)

}

(x− ℓ),

rρ
4(x) = r04(x)

− ρ

2ℓ2

{

[1 − 1

2
cosα](u1 − u2) + (2 − cosα)(u1 −

1

4

4
∑

i=1

ui)

}

(x − ℓ).

In order to calculate the energy we use the Steklov-Poincaré mapping and mul-
tiply by ri(ℓ).

As before, the calculations can be done for scalar problems as well as for
vectorial in-plane models. We dispense with the display of the lengthy formulae.
Instead, we give two different scenarios for topological derivatives.

Example 5.2 In the scalar case we may set u1 = u2 and u3 = u4 = 0, i.e., we
apply Dirichlet conditions at the ends of edges 3 and 4 and pull at the end of
the edges 1 and 2 by the same amount. This results in:

〈Sρu, u〉 = 〈S0u, u〉 − ρ

2ℓ2
(2 − cosα)u2. (90)

Obviously, the introduction of a new edge is enhanced. One obtains a decompo-
sition into two multiple nodes with edge degree 3

Example 5.3 In the second example we take the planar model and set u1 =
ue1, u2 = ue2 and again u3 = 0 = u4. Now we obtain

〈Sρu, u〉 = 〈S0u, u〉 − 3ρ

4ℓ2

[

cos(α)(cos2 α+
2

3
cosα− 4

3
)

]

u2. (91)

For small enough angles α (e.g. 0 < α < π/6) the expression with ρ, i.e. the
topological derivative of the energy becomes negative. This shows that in the
planar situation, the opportunity to create an additional edge depends on the
angles between the edges 1 and 2.

Obviously, the examples above can be generalized to more general networks
including distributed loads and obstacles. It is also possible to extend this
analysis to 3-d networks. This is subject to a forthcoming publication.

6. Conclusion and further work

We have provided a first sensitivity-analysis of topological changes in continuous
networks carrying a process described by an elliptic model. The analysis is
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performed for scalar and vectorial planar graphs representative of heat flow
(after proper transformation with respect to time) and mechanical networks.
As this work is purely analytical, a numerical study will be presented elsewhere.
Moreover, 3-d networks, which are obviously more realistic, will by discussed in a
forthcoming publication. The analysis initiated here will be extended to bilevel
optimization problems, where the sensitivity analysis (upper level) is applied
to an optimal structure with the optimization (lower level) being performed
with respect to thickness and material properties. All this will be important in
lightweight- and nano-structures as well as in macro- and micro-flow networks.

References

Allaire, G., Gournay, F., Jouve, F. and Toader, A.M. (2004) Structu-
ral optimization using topological and shape sensitivities via a level set
method. Ecole Polytechnique, R.I. 555.

Amstutz, S. (2003) Aspects théoriques et numériques en optimisation de
forme topologique. PhD Thesis, Toulouse.

Bernot, M., Caselles, V. and Morel, J.M. (2007/2008) Branched Tran-
sportation Networks. Springer-Verlag.

Buttazzo, G. (2005) Optimization problems in the theory of mass trans-
portation. Boll. Unione Mat. Ital. 9/1, 401-427.

De Wolf, D. and Smeers, Y. (1996) Optimal dimensioning of pipe networks
with application to gas transmission networks. Oper. Res. 44(4), 596-608.

Durand, M. (2006) Architecture of optimal transport networks, Physical Re-
view E 73, 016116.

Hintermüller, M.A. (2004) A combined shape-Newton topology optimiza-
tion technique in real-time image segmentation. In: Real-Time PDE-
Constrained Optimization, Comput. Sci. Eng., SIAM.org, 253-274.

Kočvara, M. and Zowe, J. (1996) How mathematics can help in design of
mechanical structures. In: Griffiths, D.F. et al., eds., Numerical Analysis
1995. Proceedings of the 16th Dundee conference on numerical analysis,
University of Dundee, UK, June 27-30, 1995. Longman: Harlow. Pitman
Res. Notes Math. Ser. 344, 76-93.

Lagnese, J.E., Leugering, G. and Schmidt, E.J.P.G. (1994) Modeling,
Analysis and Control of Dynamic Elastic Multi-link Structures. Birkhäuser,
Boston, Systems and Control: Foundations and Applications.

Lagnese, J.E. and Leugering, G. (2004) Domain Decomposition Methods
in Optimal Control of Partial Differential Equations. ISNM. International
Series of Numerical Mathematics 148. Birkhäuser, Basel.

Masmoudi, M., Pommier, J. and Samet, B. (2005) The topological asymp-
totic expansion for the Maxwell equation and some applications. Inverse
Problems 21 (2), 547-564.

Mróz, Z. and Bojczuk, D. (2003) Finite topology variations in optimal de-
sign of structures. Struc. Multidisc. Optim. 25, 1-21.



Topological sensitivity analysis for graphs 997

Novotny, A., Feij’oo, R., Taroco, E. and Padra, C. (2007) Topological
sensitivity analysis for three-dimensional linear elastic problem. Comp.
Meth. Appl. Eng. 196, 41, 4354-4364.

Rozvany, G.I.N. (1998) Topology optimization of multi-purpose structures.
Math. Methods Oper. Res. 47 (2), 265-287.

Sokolowski, J. and Zochowski, A. (1999) Topological derivatives for ellip-
tic problems. Inverse Problems 15, 123-134.




