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t: In this paper the Un
apa
itated Multiple Allo
a-tion p-hub Median Problem (the UMApHMP) is 
onsidered. A newheuristi
 method based on a geneti
 algorithm approa
h (GA) forsolving UMApHMP is proposed. The des
ribed GA uses binaryrepresentation of the solutions. Geneti
 operators whi
h keep thefeasibility of individuals in the population are designed and imple-mented. The mutation operator with frozen bits is used to in
reasethe diversibility of the geneti
 material. The running time of the GAis improved by 
a
hing te
hnique. Proposed GA approa
h is ben
h-marked on the well known CAB and AP data sets and 
ompared withthe existing methods for solving the UMApHMP. Computational re-sults show that the GA qui
kly rea
hes all previously known optimalsolutions, and also gives results on large s
ale AP instan
es (up to
n=200, p=20) that were not 
onsidered in the literature so far.Keywords: p-hub problem, geneti
 algorithms, dis
rete lo
a-tion and assignment1. Introdu
tionHub networks are widely used in modern transport and tele
ommuni
ation sys-tems. Instead of serving ea
h user from its assigned fa
ility with a dire
t link,hub networks route the �ow via established hub network. Hubs serve as 
on-solidation and 
onne
tion points between two lo
ations. There is e
onomy ofs
ale in
orporated by a dis
ount fa
tor for transportation between the hubs andno dire
t transportation between two non-hub nodes is allowed. By employinghub nodes as swit
hing points in the network, and by in
reasing transportationbetween them, 
apa
ity network 
an be used more e�
iently.The hub lo
ation problem is 
on
erned with lo
ating hub fa
ilities and al-lo
ating non-hub nodes to hubs. Depending on how the non-hub nodes areallo
ated to the hubs, there are two basi
 allo
ation s
hemes in the hub net-work: single allo
ation and multiple allo
ation s
heme.
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670 Z. STANIMIROVI�1) In the single allo
ation s
heme ea
h origin/destination node must be as-signed to exa
tly one hub. All of the �ow from/to ea
h non-hub node istransported only via spe
i�ed hub.2) Multiple allo
ation s
heme allows ea
h non-hub node to 
ommuni
ate withmore than one hub.The di�eren
e between single and multiple allo
ation s
hemes is illustratedin Fig.1. In a network with n = 5 nodes, given by their (x, y) 
oordinates inthe plane, p = 2 hub nodes are to be lo
ated in order to minimize the overalltransportation 
osts. The 
orresponding distan
e matrix is:
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.The unit rates for transportation origin-hub, hub-hub and hub-destinationare equal to 1, 0.75 and 1 respe
tively. The optimal solutions in single/multipleallo
ation 
ase are presented in the middle/on the right side of Fig.1. As 
anbe seen from the diagrams, the optimal solutions di�er signi�
antly, not only inthe allo
ations but also in the hub lo
ations.
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(5,1) (5,1)Figure 1. The optimal solution to a single and a multiple allo
ation p-hubproblem in a network with n = 5, p = 2, χ = δ = 1, α = 0.75In the 
ase of single allo
ation s
heme, hubs are lo
ated at nodes B and D,while non-hub nodes A and E are allo
ated to (exa
tly one) hub D and non-hubnode C is allo
ated to (exa
tly one) hubB. In the multiple allo
ation 
ase, nodesC andD are 
hosen to be hubs, while non-hub nodes are allowed to 
ommuni
atevia more than one hub: non-hub nodes A, B and E may 
ommuni
ate via hub CorD, depending on the transportation 
ost. For example, for the transportationfrom origin node A to destination node E via hub C, transportation 
osts alongthe path "A-C-E" are √
2 +

√
34 = 7.25 . If we 
hoose to transport via hubD, the transportation 
osts for the path "A-D-E" are lower 3 +

√
5 = 5.23.However, for the transportation from origin-node A to destination-node B we



A geneti
 algorithm for the UMApHMP 671
hoose the hub C, be
ause the 
ost "A-C-B" √
26+

√
2 = 6.51 is lower that the
osts "A-D-B" 3 + 5 = 8 and "A-D-C-B" 3 + 0.75 ·
√

29 +
√

2 = 8.453. Theminimum overall transportation 
osts in the single/multiple allo
ation 
ases areequal to 62.402 and 58.566 respe
tively. The redu
tion in total 
ost in theexample given in Fig.1 by allowing multiple allo
ation is around 6.15% .Hub lo
ation models may involve 
apa
ity restri
tions on the hubs, �xed
osts on both hub and non-hub nodes, predetermined number of hubs et
. Ifthe number of hubs to be lo
ated is �xed to p, we are dealing with p-hublo
ation problems. Capa
itated versions of the hub lo
ation problems are also
onsidered, but the nature of 
apa
ities may be di�erent. The transport betweenhubs or between hub and non-hub nodes 
an be limited. There are also variantsof 
apa
itated hub problems that 
onsider limits on the �ow into/through ea
hhub node.Many variants of the hub lo
ation problems have been studied in the litera-ture, due to their important appli
ation in pra
ti
e. Typi
al appli
ations of hublo
ation problems are: tele
ommuni
ation systems, postal and other deliverynetworks, airline passenger travel, 
argo delivery, 
omputer networks, et
. Re-views of hub lo
ation problems and their 
lassi�
ation 
an be found in Campbellet al. (2002), Campbell (1996).Most of hub lo
ation resear
h has been devoted to hub median problems, inwhi
h the main goal is to design a network with hubs in order to minimize thetotal transportation 
ost and possibly the 
osts of establishing su
h a network.However, the p-hub median formulation 
an sometimes lead to unsatisfa
toryresults, for example, when the worst origin-destination distan
e (
ost) is impor-tant. This may happen, for example, in designing fast delivery systems, wherethe upper bound on the delivery time has to be observed.Di�
ulties of this kind 
an be avoided by using the p-hub 
enter formulation,whi
h was �rst introdu
ed and dis
ussed by Campbell (1994). He de�ned threetypes of p-hub 
enter problems a

ording to di�erent obje
tives: minimizationof the maximum 
ost for any origin-destination pair (important in transportingperishable or time-sensitive items), minimization of the maximum transporta-tion 
ost between any pair of nodes (important in hub networks with 
ertainlimitations on the ar
s), and minimization of the maximum transportation 
ostbetween a hub and non-hub node (important in hub networks with some spe
ialattributes of hub-hub links and/or limitations on hub-origin/destination links).In the literature, there are more 
omplex and realisti
 hub lo
ation modelsthat arise from pra
ti
e. Instead of having 
onstant dis
ount fa
tor for all hub-hub �ows, there are models with �ow-based dis
ounts (Bryan, 1998, and O'Kelly,1998) whi
h have shown to be appropriate for air freight in order to makeallo
ation de
isions based on the ability of �ows to 
apture s
ale e
onomies.O'Kelly and Bryan (1998) proposed a non-linear 
ost-fun
tion whi
h allows
ost to in
rease at a de
reasing rate as �ows in
rease.In Bryan and O'Kelly (1999) the authors 
onsidered the �ow 
apa
ities andminimum �ows on inter-hub links and �ow-dependent 
osts in all network links.



672 Z. STANIMIROVI�Non-linear 
ost-fun
tions are also proposed in Horner and O'Kelly (2001), Wag-ner (2004b) and Kimms (2005).There are also hub models that in
lude hub ar
s (ar
s with dis
ounted 
ostrates), Ni
kel et al. (2001), Campbell et al. (2003, 2005a, b). The obje
tive inthese models is to lo
ate a �xed number of hub ar
s in order to minimize theoverall 
ost. In Podnar et al. (2002) the authors 
onsidered a �ow thresholdmodel where they do not lo
ate hubs but they de
ide on the links with redu
edunit transportation 
osts. In their model, the 
ost of �ow is redu
ed a

ordingto a pres
ribed dis
ount fa
tor, if the �ow through that link is larger than agiven threshold value. The variants of �ow threshold model are also 
onsideredin Aykin (1995), Podnar et al. (2002), Podnar and Skorin-Kapov (2003), Skorin-Kapov (2001, 2005). This model en
ourages the 
on
entration of �ows and use ofa relatively small number of links, re�e
ting a
tual 
hara
teristi
s of the network(that is important for designing high-speed tele
ommuni
ation networks, urbanpubli
 transportation networks,..).Another type of hub models, 
alled the latest arrival hub lo
ation problems,are introdu
ed by Kara and Tansel (1999). They observed that the time spent athubs (for sorting, loading and unloading the �ow) may be signi�
ant 
omparingto total transportation time. The solution was to impose a maximum traveltime 
onstraint and then to minimize the 
ost of setting up su
h a network (thenumber of hubs required), resulting in various hub 
overing problems. Thesemodels have signi�
ant appli
ation in designing 
argo delivery systems (Karaand Tansel, 1999, 2003; Wagner, 2004a; Ernst et al., 2005, and Yaman, 2005).Hub lo
ation models with 
ompetition Marianov et al. (1999) are suitablefor both air passenger and 
argo transportation. In these models, the 
ustomer
apture from 
ompetitor hubs is sought, whi
h happens whenever the lo
ationof a new hub results in the redu
tion of time or distan
e needed from the tra�
generated by the passenger to travel from the origin to the destination node.2. Mathemati
al formulationIn this paper the Un
apa
itated Multiple Allo
ation p-hub Median Problem(UMApHMP) is studied. Campbell was the �rst to formulate the UMApHMPas a linear integer program in Campbell (1992). Several improvements of thisformulation arise in the literature: Skorin-Kapov et al. (1996), Ernst (1998a)and Boland et al. (2004). The mixed integer linear programming formulationproposed in Boland et al. (2004) is used in this paper.Consider a set I = 1, ..., n of n distin
t nodes in the network, where ea
hnode refers to origin/destination or potential hub lo
ation. The distan
e fromnode i to node j is Cij , and the triangle inequality may be assumed (Campbellet al., 2002). The demand from an origin i to a destination j is denoted with
Wij . The number of hubs to be lo
ated is �xed to p. Ea
h path from an originto destination node 
onsists of three 
omponents: transfer from an origin tothe �rst hub, transfer between the hubs and �nally distribution from the last
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 algorithm for the UMApHMP 673hub to a destination. Parameters χ and δ denote unit 
osts for 
olle
tion anddistribution, while α represents a dis
ount fa
tor for the transportation betweenhubs. De
ision variables Hj , Zik, Ykl
i and Xlj

i are used in the formulation asfollows:
Hj = 1, if a hub is lo
ated at node j, 0 otherwise
Zik = the amount of �ow from node i that is 
olle
ted at hub k
Ykl

i = the amount of �ow from node i that is 
olle
ted at hub k, andtransported via hub l
Xlj

i = the amount of �ow from node i to destination j that is distributedvia hub l.The UMApHMP assumes the multiple allo
ation s
heme, whi
h allows ea
hnon-hub node to be allo
ated to more than one hub. The obje
tive is to lo
ateexa
tly p hub fa
ilities, su
h that the total �ow 
ost is minimized. Using thenotation mentioned above, the problem 
an be written as:
min

∑

i

[χ
∑

k

CikZik + α
∑

k

∑

l

CklYkl
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∑

l

∑

j
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t to:

∑
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∑

j
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X i
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∑
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∑
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lk − Zik = 0 for every i, k (5)

Zik ≤
∑

j

WijHk for every i, k (6)
∑

i

X i
lj ≤

∑

i

WijHl for every l, j (7)
X i

lj , Y
i
kl, Zik ≥ 0, Hk ∈ {0, 1} for every i, j, k, l. (8)The obje
tive fun
tion (1) minimizes the sum of the origin-hub, hub-hub andhub-destination �ow 
osts multiplied with parameters χ, α and δ respe
tively.Constraint (2) limits the number of lo
ated hubs to p, while (3)-(5) represent thedivergen
e equations for the network �ow problem for ea
h node i. Constraints(6) and (7) prevent dire
t 
ommuni
ation between non-hub nodes, while (8)re�e
ts non-negative and/or binary representation of de
ision variables.The UMApHMP is known to be NP-hard, with ex
eption of some spe
ial
ases (for example when matrix of �ows Wik is sparse) that are solvable inpolynomial time. If the set of hubs is �xed, the problem 
an also be polynomiallysolved using the shortest-path algorithm in O(n2p) time.



674 Z. STANIMIROVI�2.1. Previous workDue to the number of important appli
ations in pra
ti
e, hub lo
ation problemshave re
eived a lot attention in the past de
ade. However, most of the work has
on
entrated on the single allo
ation 
ase. A re
ent survey of various algorithmsthat have been applied to hub lo
ation problems up to now 
an be found inAlumur and Kara (2008).Several approa
hes for solving the the UMApHMP have been proposed sofar. Campbell (1996) developed a greedy ex
hange heuristi
 for this problem.Aykin (1995) des
ribed an enumeration and greedy inter
hange method for theUMApHMP and its variants. Ernst and Krishnamoorthy (1998a) proposed anexa
t LP based Bran
h-and-Bound method (BnB) and two heuristi
 methodsfor the UMApHMP: a shortest-path based heuristi
 and an expli
it enumera-tion heuristi
. The authors �rst enumerate all possible hub lo
ations for theUMApHMP. On
e the hub lo
ations are �xed, the allo
ation of non-hub nodesis determined by using shortest-paths via the lo
ated hubs. This algorithm is ex-ponential in p, polynomial in n, and 
onsidering the number of hubs in probleminstan
es to be relatively small (p ≤ 5), this approa
h gives exa
t solutions inreasonable 
omputing time. For larger instan
es, the shortest path method 
anbe 
ombined with a Bran
h-and-Bound algorithm of Ernst and Krishnamoorthy(1998b). The shortest path problems are solved to obtain lower bounds thatare used in a Bran
h-and-Bound s
heme to obtain exa
t solutions. In Ernstand Krishnamoorthy (1998b) the authors presented 
omputational results ofthe shortest path method only for CAB (n ≤ 25, p ≤ 4) and smaller size AP(n ≤ 50, p ≤ 5) instan
es. Hybridization with BnB gave results on some largerAP instan
es (n = 100, p ≤ 5 and n = 200, p = 2, 3).Boland et al. (2004) developed an exa
t Bran
h-and-Bound method for solv-ing multiple allo
ation hub lo
ation problems using pre-pro
essing and 
uttingalgorithms. They �rst obtain good upper bounds that are used to 
ut the sizeof bran
h and bound tree, but this approa
h gives results only on CAB (n ≤ 25,
p ≤ 4) and smaller size AP instan
es (n ≤ 50, p ≤ 5).A spe
ial 
ase of the UMApHMP, 
alled 1-stop multiple allo
ation p-hubmedian problem is 
onsidered by Sasaki, Suzuki and Drezner (1999). In thisproblem, ea
h origin-destination path is allowed to use only one hub. Theauthors proposed a mixed integer formulation of the problem and two algorithmsfor solving it: an exa
t BnB algorithm and a greedy-based heuristi
 method.The proposed methods were tested on the standard CAB data set with up to
n = 25 nodes.Many papers in the literature deal with single allo
ation variant of the p-hub median problem-USApHMP: Campbell (1994), Skorin-Kapov et al. (1996),Ernst and Krishnamoorthy (1996) and Ebery (2001). The USApHMP is alsoNP-hard, even if the hub lo
ations are �xed Kara (1999). Obviously, the so-lutions to the UMApHMP represent a lower bound for the optimal solution tothe USApHMP. This fa
t was used in Campbell (1996) to develop two heuris-
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 methods, whi
h derive solution to the USApHMP from the solution to theUMApHMP. Various heuristi
 methods for solving the USApHMP have beenproposed up to now: Ex
hange heuristi
 (Klin
ewi
z, 1991), tabu-sear
h heuris-ti
 (Klin
ewi
z, 1992), Skorin-Kapov (1994), lower bounding method (O'Kellyet al., 1995), simulated annealing heuristi
 (Abadinour-Helm, 1998; Ernst andKrishnamoorthy 1996), et
.Exa
t solution methods, as well as their hybridizations with heuristi
s forsolving the USApHMP and its variants are des
ribed in Sohn and Park (1997,2000), Ernst and Krishnamoorthy (1998b), Pirkul and S
hilling (1998), Ebery(2001), Elhedhli and Hu (2005) et
.3. Geneti
 algorithmGA is a problem-solving metaheuristi
 based on the 
on
ept of natural evolution.The main idea was introdu
ed by Holland (1975), and in past three de
ades thedevelopment of the GA theory and its appli
ations are rapidly growing.The GA approa
h uses the analogies between the individuals in the natureand problem solutions. The main stru
ture that GA is working with is a popu-lation of individuals. Ea
h individual is en
oded as a string of 
hara
ters fromsome alphabet, and it 
orresponds to one solution in the sear
h spa
e. For ea
hindividual the �tness value is 
omputed. It 
arries the information about thesolution quality, and it is not ne
essarily equal to the obje
tive fun
tion. Fromgeneration to generation the GA tries to produ
e the improvement of qualityof every solution, as well as better average �tness of the whole population. Itis obtained by using geneti
 operators: sele
tion, 
rossover and mutation. Formore information about GA see Bä
k et al. (2000a, b).The basi
 s
heme of the GA 
an be represented as:Input_Data(); Population_Init(); while not Finish() dofor i:=1 to Npop dopi := Obje
tive_Fun
tion(i);endforFitness_Fun
tion();Sele
tion();Crossover();Mutation();endwhile Output_Data();/* Npop denotes the number of individuals in a population and pi isobje
tive value of i-th individual */Very su

essful GA appli
ations to some NP-hard problems are given inKrati
a (2000), Krati
a et al. (2001), Ljubi¢ (2004) and Raidl and Ljubi¢ (2002).Geneti
 algorithms 
an also be 
ombined with exa
t Bran
h-and-Cut-and-Pri
emethod (Ljubi¢, 2004).



676 Z. STANIMIROVI�GA approa
hes for solving some other hub lo
ation problems of smaller di-mensions are des
ribed in Abadinour-Helm (1998, 2001), Abadinour-Helm andand Venkataramanan (1998) and Top
uoglu et al. (2005). Unfortunately, theyapply simple GA with roulette-wheel sele
tion, one-point 
rossover and sim-ple mutation. In the literature, GAs are also su
essfully applied to di�erentlarge-s
aled hub lo
ation problems: the Un
apa
itated Single Allo
ation HubLo
ation Problem-USAHLP in Abadinour-Helm and Venkataramanan (1998),the Un
apa
itated Multiple Allo
ation p-Hub Center Problem-UMApHCP inKrati
a and Stanimirovi (2006), the Un
apa
itated Single Allo
ation p-HubMedian problem in Krati
a et al. (2006). Although these problems are similarby names, evolutionary based approa
hes proposed up to now for solving theseproblems have quite di�erent 
hara
teristi
s. For example, di�erent allo
ations
hemes in the UMApHMP and the USApHMP have great impa
t on the prob-lem 
omplexity. For the �xed set of hubs, the multiple allo
ation sub-problemis solved in polynomial O(n2p) time, while the single allo
ation sub-problemremains NP-hard. Therefore, geneti
 algorithms proposed up to now for solvingother hub lo
ation problems, 
an not be applied to the UMApHMP. Therefore,a new GA approa
h is designed and des
ribed in the next se
tion.4. Proposed geneti
 algorithm4.1. Representation and obje
tive fun
tionThe binary en
oding of the individuals is used in this GA implementation. Ea
hsolution is represented by a binary string of length n. Gene 1 in the geneti

ode denotes that parti
ular hub is established, while gene 0 shows that it isnot. Sin
e users 
an be assigned only to opened hub fa
ilities, only array (Hj) isobtained from the geneti
 
ode and the values of Zik, Y i
kl and X i

lj are 
al
ulatedduring the evaluation of the obje
tive fun
tion.For �xed set of hubs (Hj), the modi�ed version of the well-known Floyd-Warsall shortest path algorithm (Ahuja et al., 1993; Ernst and Krishnamoorthy,1998a), is used. After �nding shortest paths between all pair of nodes, it issimple to evaluate obje
tive fun
tion only by summing the shortest distan
esorigin-hub, hub-hub and hub-destination, multiplied with �ows and 
orrespond-ing 
ost parameters χ, α and δ.4.2. Geneti
 operatorsSele
tion The GA implementation uses the �ne-grained tournament sele
tion(FGTS), proposed in Filipovi¢ (1998), that is an improvement of the standardtournament sele
tion operator. Instead of integer parameter Ntour - the size oftournament group, the FGTS depends on real parameter Ftour - desired averagetournament size. The FGTS operator uses two types of tournaments. The �rsttype is held k1 times and its size is [Ftour℄+1. The se
ond type is performed
k2 times with [Ftour℄ individuals parti
ipating. Sin
e the value Ftour = 5.4 is



A geneti
 algorithm for the UMApHMP 677used in this FGTS implementation, the 
orresponding values k1 and k2 (for 50non-elitist individuals) are 20 and 30 respe
tively. The running time of FGTSoperator is O(n * Ftour). In pra
ti
e, Ftour is 
onsidered to be 
onstant (notdepending on n), that gives O(n) time 
omplexity. For detailed informationabout the FGTS operator see Filipovi¢ (1998 and 2006).Crossover After a pair of parents is sele
ted, a 
rossover operator is appliedto them, produ
ing two o�spring. The basi
 
rossover ex
hanges segments oftwo parents' geneti
 
odes after the 
rossover point that is randomly 
hosen.A simple ex
hange of the two segments may produ
e in
orre
t o�spring for theUMApHMP (the number of ones in the 
ode may be
ome di�erent from p),although the parents had exa
tly p ones in their geneti
 
odes. To over
omethis problem, the basi
 
rossover is modi�ed. Modi�ed 
rossover operator issimultaneously tra
ing geneti
 
odes of the parents from right to left, sear
hingfor the position i on whi
h the �rst parent has 1 and se
ond 0. The individualsex
hange genes on the found position (identi�ed as 
rossover point), and similarpro
ess is performed starting from the left side of geneti
 
ode. Operator issear
hing the position j where the �rst parent has 0 and the se
ond 1. Genesare ex
hanged on the j-th position, and the number of lo
ated hubs in bothindividuals is un
hanged. Des
ribed pro
ess is repeated until j ≥ i (see Fig.2).parent1: 001100110101 ---> 001100110101 --->parent2: 011110100001 011110100001->j i<-011100110001 ---> 011100110001 ---> 011101100001 offspring1001101000101 001101000101 001100010101 offspring2j i ->j i<- j iFigure 2. Modi�ed 
rossover operatorThe 
rossover is performed with the rate pcross = 0.85. It means that around85% pairs of individuals take part in produ
ing o�spring.Mutation O�spring generated by the 
rossover operator are subje
t to muta-tion with frozen bits. Mutation operator is performed by 
hanging a randomlysele
ted gene in the geneti
 
ode (0 to 1, 1 to 0), with basi
 mutation rate of0.4/n for non-frozen bits and 1.0/n for frozen bits. These mutation rates are
onstant through GA generations. In ea
h individual the numbers of mutatedones and zeros are 
ounted and 
ompared. In 
ase these numbers are not equal,it is ne
essary to mutate additional genes in order to equalize them. In this waymutation operator preserves p ones in the geneti
 
ode and keeps the mutatedindividual feasible.During the GA exe
ution it may happen that (almost) all individuals inthe population have the same gene on a 
ertain position, as it 
an be seen from



678 Z. STANIMIROVI�gen.
ode 1: 0110010110gen.
ode 2: 1100010110gen.
ode 3: 0111000110gen.
ode 4: 0110010101gen.
ode 5: 0111000110frozen : F F FFFigure 3. Frozen genesFig.3. These genes are 
alled frozen (denoted with 'F' in Fig.3). If the number offrozen genes is l, the sear
h spa
e be
omes 2l times smaller, and the possibilityof premature 
onvergen
e rapidly in
reases. Sele
tion and 
rossover operator
an not 
hange bit value of any frozen gene, and the basi
 mutation rate isoften insu�
iently small to restore the lost subregions of the sear
h spa
e. Ifthe basi
 mutation rate is signi�
antly in
reased, geneti
 algorithm be
omes arandom sear
h. For this reason, the mutation rate is in
reased only on frozengenes, but not more than few times. In this GA implementation, frozen genesare mutated with 2.5 times higher rate than non-frozen ones (1.0/n instead of0.4/n).4.3. Generation repla
ement strategyThe initial population, whi
h numbers 150 individuals, is randomly generated.This approa
h provides maximal diversity of the geneti
 material and bettergradient of the obje
tive fun
tion. One third of the population is repla
ed inevery generation, ex
ept for the best 100 individuals that are dire
tly passing tothe next generation, preserving highly �tted genes. The obje
tive values of eliteindividuals do not need re
al
ulation, sin
e ea
h of them is evaluated in one ofthe previous generations. This approa
h is denoted as steady-state repla
ementwith elitist strategy in the literature (Krati
a, 2000; Krati
a et al., 2001).In order to obtain more 
orre
t individuals in the initial population, theprobability of generating ones in geneti
 
odes is set to p/n. The individualsthat have k, k 6= p ones in their geneti
 
ode are in
orre
t, and they are 
orre
tedby adding/erasing |p − k| ones at/from the end of geneti
 
ode. The appliedgeneti
 operators preserve the �xed number of hubs, so that in
orre
t individualsdo not appear in the following generations.Dupli
ated individuals are removed in every GA generation. Their �tnessvalues are set to zero, so that sele
tion operator prevents them to enter thenext generation. This is a very e�e
tive method for saving the diversity ofgeneti
 material and keeping the algorithm away from premature 
onvergen
e.Individuals with the same obje
tive fun
tion but di�erent geneti
 
odes, in some
ases may dominate in the population. If their 
odes are similar, GA 
an leadto lo
al optimum. For that reason, it is useful to limit their appearan
e to some
onstant Nrv (it is set to 40 in this GA appli
ation).



A geneti
 algorithm for the UMApHMP 6794.4. Ca
hing GAThe running time of the GA is improved by 
a
hing (Krati
a, 1999, 2000).The obje
tive fun
tions evaluations are stored in a 
a
he-queue data stru
ture.When the same 
ode is obtained again, its fun
tion value is taken from thehash-queue table. The least re
ently used (LRU) strategy is used for 
a
hingGA. The number of 
a
hed fun
tion values is limited to Ncache = 5000 in thisimplementation.5. Computational results5.1. Instan
es and 
omputational environmentIn this se
tion the 
omputational results of the GA are presented. All testswere 
arried out on an AMD K7 1.33GHz with 256 MB memory. The algorithmwas 
oded in C programming language. Two sets of ORLIB (Beasley, 1996)instan
es were used:- CAB (Civil Aeronauti
s Board) data set, based on airline passenger�ow between 
ities of United States. It 
ontains 60 instan
es with upto 25 nodes and up to 4 hubs. Colle
tion and distribution 
osts χ and
δ are equal to one, while transferring 
ost α takes values from 0.2 to 1.The distan
es between 
ities satisfy the triangle inequality, and the �owis symmetri
. Detailed information about CAB instan
es 
an be found inBeasley (1996) and Campbell (1996).- AP (Australian Post) data set is derived from the study of Australianpostal delivery system. Its largest instan
e in
ludes 200 nodes (represent-ing post
ode distri
ts), but smaller ones with 10, 20, 25, 50, 100 nodes
an be obtained through the aggregation of nodes. The number of hubs(mail sorting/
onsolidation 
entres) in tested instan
es is up to 20. The�ow matrix Wij is non-symmetri
 and Wii 6= 0, sin
e the mail 
an be sentfrom one pla
e to itself. The AP data set 
an also be taken from Beasley(1996).5.2. Results of the GA and 
omparisons with other methodsThe parameters mentioned above, that proved to be robust and appropriate forthis problem, are used. The maximal number of generations is Ngen = 500 forsmaller, and Ngen = 5000 for larger problem instan
es. Algorithm also stops ifthe best individual or the best obje
tive value remained un
hanged throughNrep= 200 (Nrep = 2000) su

essive generations, respe
tively. On all the instan
eswe 
onsidered, this 
riterion allowed GA to 
onverge to high-quality solutions.Only minor or no improvements in the quality of �nal solutions 
an be expe
tedwhen prolonging the runs, as it 
an be seen from the Tables 1-3.Table 1 provides results of the GA approa
h for CAB instan
es, while Table2 and Table 3 
ontain results obtained for smaller/larger AP instan
es respe
-



680 Z. STANIMIROVI�tively. The GA was run 20 times on ea
h instan
e, ex
ept for larger AP instan
es(with n ≥ 100) that were run only 10 times, be
ause of time 
onsuming obje
tivefun
tion 
omputation.In the �rst 
olumn instan
e dimensions (n, p and possibly α) are given.The se
ond 
olumn 
ontains optimal solution of the 
urrent instan
e, if it ispreviously known. If it is not, the dash (-) appears. The best value of the GAis given in the next 
olumn, with mark opt in 
ases when GA rea
hed optimalsolution known in advan
e. Average time needed to dete
t the best value isgiven in t[s] 
olumn, while ttot[s] represents the total time needed to exe
uteall 500/5000 generations. The GA 
on
ept 
annot prove optimality and anadequate �nishing 
riterion that will �ne-tune solution quality does not exist.Therefore, the algorithm runs through additional ttot − t time (until �nishing
riterion is satis�ed), although it already rea
hed its best/optimal solution. Onaverage, the best/optimal value has been rea
hed after gen generations.The solution quality in all 20/10 exe
utions is evaluated as a per
entage gapwith respe
t to the optimal 
ost OPTsol or GAbest, with standard deviation ofthe average gap σ. The last two 
olumns are related to 
a
hing: eval representsthe average number of needed evaluations, while cache[%] displays savings (inper
ent) a
hieved by using the 
a
hing te
hnique.It is evident from Tables 1 and 2 that the proposed GA method qui
klyrea
hes all previously known optimal solutions on CAB and smaller AP in-stan
es. For the CAB data set, the optimal solution was dete
ted in t[s] ≤ 0.048,while the total running time ttot[s] ≤ 0.161 se
onds. For AP data set, the CPUtimes were t[s] ≤ 0.571 and ttot[s] ≤ 1.282 se
onds. On average, instead ofmaking 25 000 
alls of the obje
tive fun
tion, between 82.1% and 97.2% of thevalues from the 
a
he-queue table were re-used while solving CAB instan
es,and between 65% and 98.5% while solving smaller AP instan
es (see cache[%]
olumns). Table 3 provides results of the proposed GA approa
h for 42 largeAP instan
es with 40 ≤ n ≤ 200 nodes and 2 ≤ p ≤ 20 hubs. For only 9 largeAP instan
es the optimal solution is known from the literature, and for the re-maining 33 instan
es no optimal or any other solution is given in the literatureso far. As it 
an be seen from the Table 3, the GA rea
hes all optimal solutions,but also provides results on the unsolved AP instan
es in a reasonable 
ompu-tational time. For the largest AP instan
e with n = 200, p = 20, the best GAsolution was found in t[s] = 1935.840 se
onds, while the total running time was
ttot[s] = 2425.588. The values stored in the 
a
he table provided between 42.3%and 96.1% of savings, instead of 250 000 
al
ulations of the obje
tive fun
tion.The detailed 
omparisons of the proposed GA with the best-known heuristi
and exa
t methods for solving the UMApHMP are presented in Tables 4-6. Thebest GA results on the CAB and AP data sets were 
ompared with the resultsobtained by the Shortest-Path Based Heuristi
 (SPBH), Expli
it Enu-meration Heuristi
 (EEH) and Exa
t Shortest Path Based Bran
h-and-Bound Algorithm (SPBnB), whi
h were proposed in Ernst and Krish-namoorthy (1998b) and tested on DEC 3000/700 (200MHz alpha 
hip).
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Table 1. GA results on CAB instan
es

n p α OPTsol GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]20 2 0.2 972.251 opt 0.006 0.046 209 0.0 0.0 296 97.220 2 0.4 1013.358 opt 0.004 0.045 210 0.0 0.0 296 97.220 2 0.6 1046.895 opt 0.006 0.046 210 0.0 0.0 296 97.220 2 0.8 1075.301 opt 0.003 0.044 201 0.0 0.0 297 97.120 2 1.0 1090.628 opt 0.004 0.045 204 0.0 0.0 296 97.120 3 0.2 712.090 opt 0.013 0.066 213 0.0 0.0 950 91.220 3 0.4 803.810 opt 0.014 0.067 213 0.0 0.0 938 91.320 3 0.6 884.636 opt 0.016 0.068 215 0.0 0.0 944 91.320 3 0.8 948.415 opt 0.009 0.064 208 0.0 0.0 949 91.020 3 1.0 975.532 opt 0.013 0.068 209 0.0 0.0 948 91.120 4 0.2 568.505 opt 0.027 0.101 226 0.0 0.0 1656 85.520 4 0.4 694.557 opt 0.018 0.099 210 0.0 0.0 1603 85.020 4 0.6 788.594 opt 0.024 0.102 215 0.0 0.0 1596 85.420 4 0.8 870.076 opt 0.022 0.102 215 0.0 0.0 1595 85.420 4 1.0 934.083 opt 0.023 0.103 216 0.0 0.0 1586 85.525 2 0.2 996.022 opt 0.003 0.053 201 0.0 0.0 410 96.025 2 0.4 1072.489 opt 0.003 0.052 201 0.0 0.0 407 96.025 2 0.6 1137.081 opt 0.002 0.054 201 0.0 0.0 409 96.025 2 0.8 1180.020 opt 0.003 0.054 201 0.0 0.0 410 96.025 2 1.0 1206.620 opt 0.003 0.053 201 0.0 0.0 410 96.025 3 0.2 752.907 opt 0.022 0.095 218 0.0 0.0 1237 88.825 3 0.4 859.636 opt 0.017 0.093 209 0.0 0.0 1236 88.425 3 0.6 949.230 opt 0.017 0.094 209 0.0 0.0 1246 88.325 3 0.8 1020.037 opt 0.017 0.095 209 0.0 0.0 1249 88.225 3 1.0 1062.144 opt 0.021 0.099 213 0.0 0.0 1250 88.425 4 0.2 618.483 opt 0.048 0.153 233 0.0 0.0 2028 82.825 4 0.4 754.489 opt 0.045 0.153 228 0.0 0.0 1982 82.925 4 0.6 866.445 opt 0.023 0.145 209 0.0 0.0 1892 82.225 4 0.8 951.755 opt 0.027 0.152 210 0.0 0.0 1910 82.125 4 1.0 1006.657 opt 0.029 0.161 210 0.0 0.0 2021 81.1
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Table 2. GA results on AP instan
es

n p OPTsol GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]10 2 163603.94 opt 0.001 0.037 201 0.000 0.000 156 98.510 3 131581.79 opt 0.001 0.038 201 0.000 0.000 268 97.410 4 107354.73 opt 0.004 0.040 204 0.000 0.000 351 96.610 5 86028.88 opt 0.003 0.042 201 0.000 0.000 384 96.210 6 72427.73 opt 0.002 0.042 201 0.000 0.000 341 96.610 7 63466.81 opt 0.002 0.041 202 0.000 0.000 273 97.310 8 54628.75 opt 0.002 0.041 202 0.000 0.000 196 98.120 2 168599.79 opt 0.004 0.045 201 0.000 0.000 297 97.120 3 148048.30 opt 0.012 0.065 210 0.000 0.000 883 91.720 4 131665.43 opt 0.017 0.091 213 0.000 0.000 1461 86.520 5 118934.97 opt 0.020 0.119 210 0.000 0.000 1809 83.020 6 107005.85 opt 0.045 0.161 226 0.000 0.000 2239 80.420 7 97697.75 opt 0.031 0.184 209 0.000 0.000 2301 78.420 8 91454.83 opt 0.060 0.211 227 0.000 0.000 2313 79.825 2 171298.10 opt 0.003 0.051 201 0.000 0.000 411 96.025 3 151080.66 opt 0.016 0.088 209 0.000 0.000 1130 89.325 4 135638.58 opt 0.028 0.139 212 0.000 0.000 1851 82.825 5 120581.99 opt 0.051 0.208 223 0.000 0.000 2464 78.225 6 110835.82 opt 0.094 0.277 246 0.000 0.000 2913 76.525 7 103880.23 opt 0.139 0.374 257 0.000 0.000 3461 73.225 8 97795.59 opt 0.155 0.453 252 0.000 0.000 3750 70.540 2 173415.96 opt 0.025 0.102 211 0.000 0.000 783 92.740 3 155458.61 opt 0.073 0.245 226 0.000 0.000 2062 82.040 4 140682.74 opt 0.131 0.452 234 0.000 0.000 3265 72.540 5 130384.74 opt 0.358 0.788 299 0.024 0.060 4667 68.850 2 174390.03 opt 0.061 0.173 228 0.000 0.000 1078 90.650 3 156014.72 opt 0.240 0.511 288 0.000 0.000 3069 78.650 4 141153.38 opt 0.384 0.885 285 0.000 0.000 4419 69.050 5 129412.60 opt 0.571 1.282 301 0.015 0.036 5280 65.0
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Table 3. GA results on large AP instan
es

n p OPTsol GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]40 6 122171.26 opt 0.247 4.834 2039 0.000 0.000 23349 77.140 7 - 116036.38 0.467 6.002 2086 0.000 0.000 25307 75.840 8 - 109971.92 0.579 7.655 2085 0.000 0.000 28348 72.940 9 - 104212.42 0.884 9.010 2127 0.000 0.000 29598 72.240 10 - 99452.67 0.779 9.491 2085 0.000 0.000 27863 73.350 6 121671.76 opt 1.537 9.150 2284 0.000 0.000 31036 72.950 7 - 115911.64 4.872 15.725 2851 0.000 0.000 46503 67.450 8 - 109926.60 4.294 17.188 2591 0.000 0.000 44043 66.050 9 - 104968.27 2.869 17.252 2298 0.000 0.000 38930 66.250 10 100508.95 opt 4.333 21.136 2412 0.000 0.000 42743 64.750 11 - 96186.22 5.294 24.675 2454 0.000 0.000 44999 63.450 12 - 93171.96 3.714 23.870 2267 0.000 0.000 39458 65.250 13 - 90409.79 4.255 27.221 2281 0.000 0.000 41079 64.150 14 - 87654.61 3.972 29.098 2238 0.000 0.000 40315 64.150 15 - 85032.89 7.463 35.493 2456 0.000 0.000 45615 62.950 20 - 73490.33 2.824 39.859 2094 0.000 0.000 38133 63.6100 2 176245.38 opt 0.639 2.736 2089 0.000 0.000 4088 96.1100 3 157869.93 opt 2.195 13.227 2207 0.000 0.000 21017 81.0100 4 143004.31 opt 9.007 32.848 2652 0.000 0.000 44346 66.6100 5 133482.57 opt 20.067 54.389 3097 0.000 0.000 60475 60.9100 6 - 126107.56 58.421 99.973 4350 0.000 0.000 94424 56.6100 7 - 120165.15 45.945 100.118 3553 0.011 0.024 80659 54.6100 8 - 114295.92 77.750 125.793 3891 0.228 0.355 87852 54.8100 9 - 109448.87 54.651 126.037 3409 0.002 0.005 77693 54.6100 10 - 104794.05 63.355 146.263 3421 0.001 0.002 79849 53.4100 15 - 88882.05 150.193 270.956 4004 0.093 0.162 93755 53.1100 20 - 79191.02 195.747 377.160 3828 0.139 0.152 96737 49.5200 2 178093.99 opt 8.123 35.686 2129 0.000 0.000 10048 90.6200 3 159725.11 opt 43.393 174.900 2520 0.000 0.000 40939 67.6200 4 - 144508.20 172.663 376.815 3585 0.001 0.002 78983 56.0200 5 - 136761.83 357.326 562.245 4231 0.096 0.092 103391 51.2200 6 - 129560.60 393.868 681.338 4281 0.046 0.062 111529 47.9200 7 - 123609.44 460.543 766.016 4219 0.051 0.070 112515 46.7200 8 - 117709.98 566.177 879.377 4237 0.213 0.189 115253 45.8200 9 - 112380.66 869.886 1096.180 4809 0.066 0.146 131684 45.3200 10 - 107846.82 847.216 1157.049 4591 0.090 0.189 127817 44.4200 15 - 92669.64 1246.186 1750.105 4699 0.397 0.275 135060 42.6200 20 - 83385.94 1935.840 2425.588 4924 0.169 0.232 142223 42.3
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Table 4. Comparisons on CAB instan
esGA SPBH EEH SPBnB

n p α Optsol best gap[%] ttot[s] gap[%] t[s] gap[%] t[s] nodes t[s]20 2 0.2 972.251 opt 0.0 0.046 0.0 0.04 0.0 0.05 103 0.1120 2 0.4 1013.358 opt 0.0 0.045 0.0 0.04 0.0 0.05 83 0.1120 2 0.6 1046.895 opt 0.0 0.046 0.0 0.04 0.0 0.05 76 0.1120 2 0.8 1075.301 opt 0.0 0.044 0.0 0.04 0.0 0.05 83 0.1120 2 1.0 1090.628 opt 0.0 0.045 0.0 0.04 0.0 0.05 90 0.1120 3 0.2 712.090 opt 0.0 0.066 0.0 0.09 0.0 0.43 102 0.2220 3 0.4 803.810 opt 0.0 0.067 0.0 0.09 0.0 0.43 92 0.2220 3 0.6 884.636 opt 0.0 0.068 0.0 0.09 0.0 0.43 116 0.2520 3 0.8 948.415 opt 0.0 0.064 0.0 0.10 0.0 0.43 138 0.2720 3 1.0 975.532 opt 0.0 0.068 0.0 0.09 0.0 0.43 92 0.2320 4 0.2 568.505 opt 0.0 0.101 0.0 0.20 0.0 2.43 161 0.4020 4 0.4 694.557 opt 0.0 0.099 0.0 0.19 0.0 2.41 177 0.4420 4 0.6 788.594 opt 0.0 0.102 0.0 0.19 0.0 2.43 184 0.4620 4 0.8 870.076 opt 0.0 0.102 0.0 0.18 0.0 2.40 190 0.4920 4 1.0 934.083 opt 0.0 0.103 0.0 0.18 0.0 2.46 261 0.5725 2 0.2 996.022 opt 0.0 0.053 0.0 0.08 0.0 0.12 76 0.1625 2 0.4 1072.489 opt 0.0 0.052 0.0 0.07 0.0 0.12 73 0.1825 2 0.6 1137.081 opt 0.0 0.054 0.0 0.07 0.0 0.12 77 0.2125 2 0.8 1180.020 opt 0.0 0.054 0.0 0.08 0.0 0.12 87 0.2025 2 1.0 1206.620 opt 0.0 0.053 0.0 0.08 0.0 0.12 93 0.2025 3 0.2 752.907 opt 0.0 0.095 0.0 0.18 0.0 1.28 148 0.4525 3 0.4 859.636 opt 0.0 0.093 0.0 0.19 0.0 1.30 151 0.4925 3 0.6 949.230 opt 0.0 0.094 0.0 0.19 0.0 1.32 152 0.4925 3 0.8 1020.037 opt 0.0 0.095 0.0 0.19 0.0 1.29 177 0.5525 3 1.0 1062.144 opt 0.0 0.099 0.0 0.20 0.0 1.29 176 0.5225 4 0.2 618.483 opt 0.0 0.153 0.0 0.45 0.0 9.17 257 1.0325 4 0.4 754.489 opt 0.0 0.153 0.0 0.47 0.0 9.29 304 1.1425 4 0.6 866.445 opt 0.0 0.145 0.0 0.42 0.0 9.18 386 1.1425 4 0.8 951.755 opt 0.0 0.152 0.0 0.49 0.0 9.11 399 1.4425 4 1.0 1006.657 opt 0.0 0.161 0.0 0.44 0.0 9.14 364 1.30
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Table 5. Comparisons on AP instan
esGA SPBH SPBnB
n p Optsol best gap[%] ttot[s] gap[%] t[s] nodes t[s]10 2 163603.94 opt 0.000 0.037 0.00 0.00 23 0.0110 3 131581.79 opt 0.000 0.038 0.00 0.01 56 0.0210 4 107354.73 opt 0.000 0.040 0.00 0.02 92 0.0310 5 86028.88 opt 0.000 0.042 0.00 0.02 92 0.0420 2 168599.79 opt 0.000 0.045 0.00 0.04 38 0.0820 3 148048.30 opt 0.000 0.065 0.00 0.09 160 0.2520 4 131665.43 opt 0.000 0.091 0.00 0.19 456 0.7020 5 118934.97 opt 0.000 0.119 0.00 0.33 889 1.3925 2 171298.10 opt 0.000 0.051 0.00 0.08 45 0.1325 3 151080.66 opt 0.000 0.088 0.00 0.18 213 0.5125 4 135638.58 opt 0.000 0.139 0.77 0.40 708 1.6825 5 120581.99 opt 0.000 0.208 0.00 0.67 1053 3.1540 2 173415.96 opt 0.000 0.102 0.00 0.44 91 0.7640 3 155458.61 opt 0.000 0.245 0.00 1.11 521 3.5640 4 140682.74 opt 0.000 0.452 0.00 2.52 1869 13.8240 5 130384.74 opt 0.024 0.788 0.00 4.43 6310 50.7250 2 174390.03 opt 0.000 0.173 0.00 1.24 119 2.0050 3 156014.72 opt 0.000 0.511 0.00 3.37 765 8.9150 4 141153.38 opt 0.000 0.885 0.00 7.06 3183 40.1450 5 129412.60 opt 0.015 1.282 0.00 10.95 10187 143.48
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Table 6. Comparisons on large AP instan
esGA SPBnB

n p Optsol best gap[%] ttot[s] nodes t[s]40 6 122171.26 opt 0.000 4.834 23 3242.1540 7 - 116036.38 0.000 6.002 - -40 8 - 109971.92 0.000 7.655 - -40 9 - 104212.42 0.000 9.010 - -40 10 - 99452.67 0.000 9.491 - -50 6 121671.76 opt 0.000 9.150 60 18472.8450 7 - 115911.64 0.000 15.725 - -50 8 - 109926.60 0.000 17.188 - -50 9 - 104968.27 0.000 17.252 - -50 10 100508.95 opt 0.000 21.136 2125737 57243.3050 11 - 96186.22 0.000 24.675 - -50 12 - 93171.96 0.000 23.870 - -50 13 - 90409.79 0.000 27.221 - -50 14 - 87654.61 0.000 29.098 - -50 15 - 85032.89 0.000 35.493 - -50 20 - 73490.33 0.000 39.859 - -100 2 176245.38 opt 0.000 2.736 400 25.54100 3 157869.93 opt 0.000 13.227 3198 162.63100 4 143004.31 opt 0.000 32.848 25780 1097.19100 5 133482.57 opt 0.000 54.389 153266 7687.75100 6 - 126107.56 0.000 99.973 - -100 7 - 120165.15 0.011 100.118 - -100 8 - 114295.92 0.228 125.793 - -100 9 - 109448.87 0.002 126.037 - -100 10 - 104794.05 0.001 146.263 - -100 15 - 88882.05 0.093 270.956 - -100 20 - 79191.02 0.139 377.160 - -200 2 178093.99 opt 0.000 35.686 1432 384.67200 3 159725.11 opt 0.000 174.900 25349 3636.64200 4 - 144508.20 0.001 376.815 - -200 5 - 136761.83 0.096 562.245 - -200 6 - 129560.60 0.046 681.338 - -200 7 - 123609.44 0.051 766.016 - -200 8 - 117709.98 0.213 879.377 - -200 9 - 112380.66 0.066 1096.180 - -200 10 - 107846.82 0.090 1157.049 - -200 15 - 92669.64 0.397 1750.105 - -200 20 - 83385.94 0.169 2425.588 - -



A geneti
 algorithm for the UMApHMP 687The proposed GA and SPBH, EEH and SPBnB methods were not tested onthe same platform, so exa
t 
omparisons 
an not be 
arried out. A

ording tothe SPEC-fp95 SPEC-fp2000 ben
hmarks (www.spe
.org), 
omputers AMD at1.33GHz and DEC 3000/700 have average (base) speedup values 29.4 and 5.71respe
tively. In order to provide some des
riptive 
omparisons of CPU times,we observe t[s] and ttot[s] times of the GA multiplied by 29.4/5.71 = 5.2 fa
tor.As it 
an be seen from Table 4, all three heuristi
 methods obtain optimalsolutions on CAB instan
es. The total running times of the GA (multipliedby 5.2 fa
tor) and the SPBH are similar, while the the exa
t SPBnB is slightlyslower. The EEH is several times slower in 
omparison with other three methods.The results of the EEH on smaller size AP instan
es were not presented inErnst and Krishnamoorthy (1998b), so in Table 5 only the 
omparisons of theGA, SPBH and SPBnB results are given. The SPBH method did not rea
hoptimal solution on AP n = 25, p = 5 (the average gap is 0.77%), while the GArea
hed optimal solutions in all 
ases. The running time of the GA (multipliedby 5.2 fa
tor) is similar or slightly slower in 
omparison with SPBH. The SPBnBmethod is signi�
antly slower in 
omparison with both GA and SPBH. Forexample, on AP instan
e n = 50, p = 5, the SPBnB gives optimal solution in
t[s] = 143.48 se
onds, the SPBH in t[s] = 10.95 and the GA in ttot[s] ∗ 5.2 =
1.282 ∗ 5.2 ≈ 6.66 se
onds.In Table 6, the 
omparisons of the GA and SPBnB method are presented,sin
e the results of the SPBH and EEH were not reported in Ernst and Krish-namoorthy (1998b). The proposed GA rea
hed all optimal solutions previouslyobtained by exa
t SPBnB method (on 9 out of 42 large AP instan
es). Com-paring the values in 
olumn ttot[s] (multiplied by 5.2 fa
tor) and 
olumn t[s],it 
an be seen that the GA 
on
ept rea
hed optimal solution in several timesshorter CPU time 
ompared to the SPBnB. For example, for the largest APinstan
e n = 200, p = 3 that was solved to optimality, the CPU times of theSPBnB and the GA are t[s] = 3636.64 and ttot[s] ∗ 5.2 = 174.9 ∗ 5.2 ≈ 909.48se
onds, respe
tively. For the remaining 33 large AP instan
es that 
ould notbe solved by the SPBnB or any other method up to now, the total running timeof the proposed GA is reasonably short (ttot[s] ≤ 41 min).6. Con
lusionsIn this paper a geneti
 algorithm based on the binary en
oding for the UMApHMPis proposed. The initial population is randomly generated with p/n probabilityof generating ones in the genes. Unfeasible individuals in the initial populationare 
orre
ted to be feasible. Shortest-path obje
tive fun
tion is used in thisGA approa
h. New geneti
 operators, adopted to the problem are 
onstru
ted.They keep the feasibility of individuals by preserving exa
tly p ones in their ge-neti
 
odes. By applying mutation with frozen bits, and by limiting the numberof individuals with the same obje
tive fun
tion and di�erent geneti
 
odes, thediversibility of geneti
 material is 
onsiderably in
reased. Implemented 
a
hing



688 Z. STANIMIROVI�GA te
hnique improves the running time signi�
antly.The algorithm rea
hes all best (optimal) solutions known from the literature.The GA also gives results on the 
hallenging AP instan
es unsolved before. Be-
ause of these 
hara
teristi
s, the proposed GA approa
h is a valuable additionto the repertoire of algorithms for solving hub lo
ation problems.Future work will be dire
ted to: parallel implementation, in
orporation ofsome problem-dependent lo
al sear
h heuristi
s and solving similar hub lo
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