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Abstract: In this paper the Uncapacitated Multiple Alloca-
tion p-hub Median Problem (the UMApHMP) is considered. A new
heuristic method based on a genetic algorithm approach (GA) for
solving UMApHMP is proposed. The described GA uses binary
representation of the solutions. Genetic operators which keep the
feasibility of individuals in the population are designed and imple-
mented. The mutation operator with frozen bits is used to increase
the diversibility of the genetic material. The running time of the GA
is improved by caching technique. Proposed GA approach is bench-
marked on the well known CAB and AP data sets and compared with
the existing methods for solving the UMApHMP. Computational re-
sults show that the GA quickly reaches all previously known optimal
solutions, and also gives results on large scale AP instances (up to
n=200, p=20) that were not considered in the literature so far.
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1. Introduction

Hub networks are widely used in modern transport and telecommunication sys-
tems. Instead of serving each user from its assigned facility with a direct link,
hub networks route the flow via established hub network. Hubs serve as con-
solidation and connection points between two locations. There is economy of
scale incorporated by a discount factor for transportation between the hubs and
no direct transportation between two non-hub nodes is allowed. By employing
hub nodes as switching points in the network, and by increasing transportation
between them, capacity network can be used more efficiently.

The hub location problem is concerned with locating hub facilities and al-
locating non-hub nodes to hubs. Depending on how the non-hub nodes are
allocated to the hubs, there are two basic allocation schemes in the hub net-
work: single allocation and multiple allocation scheme.

*Submitted: January 2006; Accepted: September 2008.
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1) In the single allocation scheme each origin/destination node must be as-
signed to exactly one hub. All of the flow from/to each non-hub node is
transported only via specified hub.

2) Multiple allocation scheme allows each non-hub node to communicate with
more than one hub.

The difference between single and multiple allocation schemes is illustrated
in Fig.1. In a network with n = 5 nodes, given by their (x,y) coordinates in
the plane, p = 2 hub nodes are to be located in order to minimize the overall
transportation costs. The corresponding distance matrix is:

0 4 V26 3 V26
4 0 V2 5 V34
D=| V26 v2 0 V29 42
3 5 /29 0 V5
V26 V34 4v2 V50

The unit rates for transportation origin-hub, hub-hub and hub-destination
are equal to 1, 0.75 and 1 respectively. The optimal solutions in single/multiple
allocation case are presented in the middle/on the right side of Fig.1. As can
be seen from the diagrams, the optimal solutions differ significantly, not only in
the allocations but also in the hub locations.
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Figure 1. The optimal solution to a single and a multiple allocation p-hub
problem in a network with n =5, p=2, y=606=1, a =0.75

In the case of single allocation scheme, hubs are located at nodes B and D,
while non-hub nodes A and E are allocated to (exactly one) hub D and non-hub
node C is allocated to (exactly one) hub B. In the multiple allocation case, nodes
C and D are chosen to be hubs, while non-hub nodes are allowed to communicate
via more than one hub: non-hub nodes A, B and E may communicate via hub C
or D, depending on the transportation cost. For example, for the transportation
from origin node A to destination node E via hub C, transportation costs along
the path "A-C-E" are V2 + /34 = 7.25 . If we choose to transport via hub
D, the transportation costs for the path "A-D-E" are lower 3 + v/5 = 5.23.
However, for the transportation from origin-node A to destination-node B we
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choose the hub C, because the cost "A-C-B" V26 4+ /2 = 6.51 is lower that the
costs "A-D-B" 3+ 5 = 8 and "A-D-C-B" 3+ 0.75 - v/29 + v/2 = 8.453. The
minimum overall transportation costs in the single/multiple allocation cases are
equal to 62.402 and 58.566 respectively. The reduction in total cost in the
example given in Fig.1 by allowing multiple allocation is around 6.15% .

Hub location models may involve capacity restrictions on the hubs, fixed
costs on both hub and non-hub nodes, predetermined number of hubs etc. If
the number of hubs to be located is fixed to p, we are dealing with p-hub
location problems. Capacitated versions of the hub location problems are also
considered, but the nature of capacities may be different. The transport between
hubs or between hub and non-hub nodes can be limited. There are also variants
of capacitated hub problems that consider limits on the flow into/through each
hub node.

Many variants of the hub location problems have been studied in the litera-
ture, due to their important application in practice. Typical applications of hub
location problems are: telecommunication systems, postal and other delivery
networks, airline passenger travel, cargo delivery, computer networks, etc. Re-
views of hub location problems and their classification can be found in Campbell
et al. (2002), Campbell (1996).

Most of hub location research has been devoted to hub median problems, in
which the main goal is to design a network with hubs in order to minimize the
total transportation cost and possibly the costs of establishing such a network.
However, the p-hub median formulation can sometimes lead to unsatisfactory
results, for example, when the worst origin-destination distance (cost) is impor-
tant. This may happen, for example, in designing fast delivery systems, where
the upper bound on the delivery time has to be observed.

Difficulties of this kind can be avoided by using the p-hub center formulation,
which was first introduced and discussed by Campbell (1994). He defined three
types of p-hub center problems according to different objectives: minimization
of the maximum cost for any origin-destination pair (important in transporting
perishable or time-sensitive items), minimization of the maximum transporta-
tion cost between any pair of nodes (important in hub networks with certain
limitations on the arcs), and minimization of the maximum transportation cost
between a hub and non-hub node (important in hub networks with some special
attributes of hub-hub links and/or limitations on hub-origin/destination links).

In the literature, there are more complex and realistic hub location models
that arise from practice. Instead of having constant discount factor for all hub-
hub flows, there are models with flow-based discounts (Bryan, 1998, and O’Kelly,
1998) which have shown to be appropriate for air freight in order to make
allocation decisions based on the ability of flows to capture scale economies.
O’Kelly and Bryan (1998) proposed a non-linear cost-function which allows
cost to increase at a decreasing rate as flows increase.

In Bryan and O’Kelly (1999) the authors considered the flow capacities and
minimum flows on inter-hub links and flow-dependent costs in all network links.
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Non-linear cost-functions are also proposed in Horner and O’Kelly (2001), Wag-
ner (2004b) and Kimms (2005).

There are also hub models that include hub arcs (arcs with discounted cost
rates), Nickel et al. (2001), Campbell et al. (2003, 2005a, b). The objective in
these models is to locate a fixed number of hub arcs in order to minimize the
overall cost. In Podnar et al. (2002) the authors considered a flow threshold
model where they do not locate hubs but they decide on the links with reduced
unit transportation costs. In their model, the cost of flow is reduced according
to a prescribed discount factor, if the flow through that link is larger than a
given threshold value. The variants of flow threshold model are also considered
in Aykin (1995), Podnar et al. (2002), Podnar and Skorin-Kapov (2003), Skorin-
Kapov (2001, 2005). This model encourages the concentration of flows and use of
a relatively small number of links, reflecting actual characteristics of the network
(that is important for designing high-speed telecommunication networks, urban
public transportation networks,..).

Another type of hub models, called the latest arrival hub location problems,
are introduced by Kara and Tansel (1999). They observed that the time spent at
hubs (for sorting, loading and unloading the flow) may be significant comparing
to total transportation time. The solution was to impose a maximum travel
time constraint and then to minimize the cost of setting up such a network (the
number of hubs required), resulting in various hub covering problems. These
models have significant application in designing cargo delivery systems (Kara
and Tansel, 1999, 2003; Wagner, 2004a; Ernst et al., 2005, and Yaman, 2005).

Hub location models with competition Marianov et al. (1999) are suitable
for both air passenger and cargo transportation. In these models, the customer
capture from competitor hubs is sought, which happens whenever the location
of a new hub results in the reduction of time or distance needed from the traffic
generated by the passenger to travel from the origin to the destination node.

2. Mathematical formulation

In this paper the Uncapacitated Multiple Allocation p-hub Median Problem
(UMApHMP) is studied. Campbell was the first to formulate the UMApHMP
as a linear integer program in Campbell (1992). Several improvements of this
formulation arise in the literature: Skorin-Kapov et al. (1996), Ernst (1998a)
and Boland et al. (2004). The mixed integer linear programming formulation
proposed in Boland et al. (2004) is used in this paper.

Consider a set I = 1,...,n of n distinct nodes in the network, where each
node refers to origin/destination or potential hub location. The distance from
node i to node j is Cj;, and the triangle inequality may be assumed (Campbell
et al., 2002). The demand from an origin ¢ to a destination j is denoted with
Wi;;. The number of hubs to be located is fixed to p. Each path from an origin
to destination node consists of three components: transfer from an origin to
the first hub, transfer between the hubs and finally distribution from the last
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hub to a destination. Parameters y and § denote unit costs for collection and
distribution, while « represents a discount factor for the transportation between
hubs. Decision variables H;, Z,;, ;" and X;;" are used in the formulation as
follows:

H; =1, if a hub is located at node j, 0 otherwise

Z;. — the amount of flow from node ¢ that is collected at hub &

Y}, = the amount of flow from node i that is collected at hub k, and

transported via hub [

X;;* = the amount of flow from node i to destination j that is distributed

via hub .

The UMApHMP assumes the multiple allocation scheme, which allows each
non-hub node to be allocated to more than one hub. The objective is to locate
exactly p hub facilities, such that the total flow cost is minimized. Using the
notation mentioned above, the problem can be written as:

minZ[XZOikZik+Oézzcklykli+5zzclj)(lji] (1)
i k ko1 1
subject to: J

Z H;=p (2)
Z Zip = Z W;; for every i (3)
k J

ZX;J' =W;; for every i,j (4)
zl:y,jl +Y Xiy— > Vi~ Zi =0 forevery ik (5)
1 j 1

Zi. < Z I/JVink for every i, k (6)
ZXZJ ; Z Wi;H, for every [, j (7)

XZE,Y,Q,ZZ-;Z 0,Hy € {0,1} for every i,7,k,l. (8)

The objective function (1) minimizes the sum of the origin-hub, hub-hub and
hub-destination flow costs multiplied with parameters x, o and ¢ respectively.
Constraint (2) limits the number of located hubs to p, while (3)-(5) represent the
divergence equations for the network flow problem for each node i. Constraints
(6) and (7) prevent direct communication between non-hub nodes, while (8)
reflects non-negative and/or binary representation of decision variables.

The UMApHMP is known to be NP-hard, with exception of some special
cases (for example when matrix of flows W;; is sparse) that are solvable in
polynomial time. If the set of hubs is fixed, the problem can also be polynomially
solved using the shortest-path algorithm in O(n?p) time.
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2.1. Previous work

Due to the number of important applications in practice, hub location problems
have received a lot attention in the past decade. However, most of the work has
concentrated on the single allocation case. A recent survey of various algorithms
that have been applied to hub location problems up to now can be found in
Alumur and Kara (2008).

Several approaches for solving the the UMApHMP have been proposed so
far. Campbell (1996) developed a greedy exchange heuristic for this problem.
Aykin (1995) described an enumeration and greedy interchange method for the
UMApHMP and its variants. Ernst and Krishnamoorthy (1998a) proposed an
exact LP based Branch-and-Bound method (BnB) and two heuristic methods
for the UMApHMP: a shortest-path based heuristic and an explicit enumera-
tion heuristic. The authors first enumerate all possible hub locations for the
UMApHMP. Once the hub locations are fixed, the allocation of non-hub nodes
is determined by using shortest-paths via the located hubs. This algorithm is ex-
ponential in p, polynomial in n, and considering the number of hubs in problem
instances to be relatively small (p < 5), this approach gives exact solutions in
reasonable computing time. For larger instances, the shortest path method can
be combined with a Branch-and-Bound algorithm of Ernst and Krishnamoorthy
(1998b). The shortest path problems are solved to obtain lower bounds that
are used in a Branch-and-Bound scheme to obtain exact solutions. In Ernst
and Krishnamoorthy (1998b) the authors presented computational results of
the shortest path method only for CAB (n < 25, p < 4) and smaller size AP
(n <50, p <5) instances. Hybridization with BnB gave results on some larger
AP instances (n =100, p < 5 and n = 200, p = 2, 3).

Boland et al. (2004) developed an exact Branch-and-Bound method for solv-
ing multiple allocation hub location problems using pre-processing and cutting
algorithms. They first obtain good upper bounds that are used to cut the size
of branch and bound tree, but this approach gives results only on CAB (n < 25,
p < 4) and smaller size AP instances (n < 50, p < 5).

A special case of the UMApHMP, called 1-stop multiple allocation p-hub
median problem is considered by Sasaki, Suzuki and Drezner (1999). In this
problem, each origin-destination path is allowed to use only one hub. The
authors proposed a mixed integer formulation of the problem and two algorithms
for solving it: an exact BnB algorithm and a greedy-based heuristic method.
The proposed methods were tested on the standard CAB data set with up to
n = 25 nodes.

Many papers in the literature deal with single allocation variant of the p-
hub median problem-USApHMP: Campbell (1994), Skorin-Kapov et al. (1996),
Ernst and Krishnamoorthy (1996) and Ebery (2001). The USApHMP is also
NP-hard, even if the hub locations are fixed Kara (1999). Obviously, the so-
lutions to the UMApHMP represent a lower bound for the optimal solution to
the USApHMP. This fact was used in Campbell (1996) to develop two heuris-
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tic methods, which derive solution to the USApHMP from the solution to the
UMApHMP. Various heuristic methods for solving the USApHMP have been
proposed up to now: Exchange heuristic (Klincewicz, 1991), tabu-search heuris-
tic (Klincewicz, 1992), Skorin-Kapov (1994), lower bounding method (O’Kelly
et al., 1995), simulated annealing heuristic (Abadinour-Helm, 1998; Ernst and
Krishnamoorthy 1996), etc.

Exact solution methods, as well as their hybridizations with heuristics for
solving the USApHMP and its variants are described in Sohn and Park (1997,
2000), Ernst and Krishnamoorthy (1998b), Pirkul and Schilling (1998), Ebery
(2001), Elhedhli and Hu (2005) etc.

3. Genetic algorithm

GA is a problem-solving metaheuristic based on the concept of natural evolution.
The main idea was introduced by Holland (1975), and in past three decades the
development of the GA theory and its applications are rapidly growing.

The GA approach uses the analogies between the individuals in the nature
and problem solutions. The main structure that GA is working with is a popu-
lation of individuals. Each individual is encoded as a string of characters from
some alphabet, and it corresponds to one solution in the search space. For each
individual the fitness value is computed. It carries the information about the
solution quality, and it is not necessarily equal to the objective function. From
generation to generation the GA tries to produce the improvement of quality
of every solution, as well as better average fitness of the whole population. It
is obtained by using genetic operators: selection, crossover and mutation. For
more information about GA see Béck et al. (2000a, b).

The basic scheme of the GA can be represented as:

Input_Data(); Population_Init(); while not Finish() do

for i:=1 to Npop do

pi := Objective_Function(i);

endfor

Fitness_Function();

Selection();

Crossover() ;

Mutation() ;
endwhile Output_Data();

/* Npop denotes the number of individuals in a population and pi is
objective value of i-th individual */

Very successful GA applications to some NP-hard problems are given in
Kratica (2000), Kratica et al. (2001), Ljubi¢ (2004) and Raidl and Ljubi¢ (2002).
Genetic algorithms can also be combined with exact Branch-and-Cut-and-Price
method (Ljubié, 2004).
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GA approaches for solving some other hub location problems of smaller di-
mensions are described in Abadinour-Helm (1998, 2001), Abadinour-Helm and
and Venkataramanan (1998) and Topcuoglu et al. (2005). Unfortunately, they
apply simple GA with roulette-wheel selection, one-point crossover and sim-
ple mutation. In the literature, GAs are also sucessfully applied to different
large-scaled hub location problems: the Uncapacitated Single Allocation Hub
Location Problem-USAHLP in Abadinour-Helm and Venkataramanan (1998),
the Uncapacitated Multiple Allocation p-Hub Center Problem-UMApHCP in
Kratica and Stanimirovi (2006), the Uncapacitated Single Allocation p-Hub
Median problem in Kratica et al. (2006). Although these problems are similar
by names, evolutionary based approaches proposed up to now for solving these
problems have quite different characteristics. For example, different allocation
schemes in the UMApHMP and the USApHMP have great impact on the prob-
lem complexity. For the fixed set of hubs, the multiple allocation sub-problem
is solved in polynomial O(n?p) time, while the single allocation sub-problem
remains NP-hard. Therefore, genetic algorithms proposed up to now for solving
other hub location problems, can not be applied to the UMApHMP. Therefore,
a new GA approach is designed and described in the next section.

4. Proposed genetic algorithm
4.1. Representation and objective function

The binary encoding of the individuals is used in this GA implementation. Each
solution is represented by a binary string of length n. Gene 1 in the genetic
code denotes that particular hub is established, while gene 0 shows that it is
not. Since users can be assigned only to opened hub facilities, only array (H;) is
obtained from the genetic code and the values of Z;x, Y3, and X lij are calculated
during the evaluation of the objective function.

For fixed set of hubs (H;), the modified version of the well-known Floyd-
Warsall shortest path algorithm (Ahuja et al., 1993; Ernst and Krishnamoorthy,
1998a), is used. After finding shortest paths between all pair of nodes, it is
simple to evaluate objective function only by summing the shortest distances
origin-hub, hub-hub and hub-destination, multiplied with flows and correspond-
ing cost parameters y, « and 4.

4.2, Genetic operators

Selection The GA implementation uses the fine-grained tournament selection
(FGTS), proposed in Filipovi¢ (1998), that is an improvement of the standard
tournament selection operator. Instead of integer parameter Ny, - the size of
tournament group, the FGTS depends on real parameter F,,, - desired average
tournament size. The FGTS operator uses two types of tournaments. The first
type is held k; times and its size is [Fiour]+1. The second type is performed
ko times with [Fioyr] individuals participating. Since the value Figyr = 5.4 is
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used in this FGTS implementation, the corresponding values k1 and ko (for 50
non-elitist individuals) are 20 and 30 respectively. The running time of FGTS
operator is O(n * Fiuyr). In practice, Fioy,- is considered to be constant (not
depending on n), that gives O(n) time complexity. For detailed information
about the FGTS operator see Filipovi¢ (1998 and 2006).

Crossover After a pair of parents is selected, a crossover operator is applied
to them, producing two offspring. The basic crossover exchanges segments of
two parents’ genetic codes after the crossover point that is randomly chosen.
A simple exchange of the two segments may produce incorrect offspring for the
UMApHMP (the number of ones in the code may become different from p),
although the parents had exactly p ones in their genetic codes. To overcome
this problem, the basic crossover is modified. Modified crossover operator is
simultaneously tracing genetic codes of the parents from right to left, searching
for the position ¢ on which the first parent has 1 and second 0. The individuals
exchange genes on the found position (identified as crossover point), and similar
process is performed starting from the left side of genetic code. Operator is
searching the position j where the first parent has 0 and the second 1. Genes
are exchanged on the j-th position, and the number of located hubs in both
individuals is unchanged. Described process is repeated until j > i (see Fig.2).

parentl: 001100110101 ---> 001100110101 --->
parent2: 011110100001 011110100001
->j i<-

011100110001 ---> 011100110001 ---> 011101100001 offspringl
001101000101 001101000101 001100010101 offspring2
j i ->j i<- ji

Figure 2. Modified crossover operator

The crossover is performed with the rate peross = 0.85. It means that around
85% pairs of individuals take part in producing offspring.

Mutation Offspring generated by the crossover operator are subject to muta-
tion with frozen bits. Mutation operator is performed by changing a randomly
selected gene in the genetic code (0 to 1, 1 to 0), with basic mutation rate of
0.4/n for non-frozen bits and 1.0/n for frozen bits. These mutation rates are
constant through GA generations. In each individual the numbers of mutated
ones and zeros are counted and compared. In case these numbers are not equal,
it is necessary to mutate additional genes in order to equalize them. In this way
mutation operator preserves p ones in the genetic code and keeps the mutated
individual feasible.

During the GA execution it may happen that (almost) all individuals in
the population have the same gene on a certain position, as it can be seen from
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gen.code 1: 0110010110
gen.code 2: 1100010110
gen.code 3: 0111000110
gen.code 4: 0110010101
gen.code 5: 0111000110
frozen : F F FF

Figure 3. Frozen genes

Fig.3. These genes are called frozen (denoted with 'F’ in Fig.3). If the number of
frozen genes is [, the search space becomes 2! times smaller, and the possibility
of premature convergence rapidly increases. Selection and crossover operator
can not change bit value of any frozen gene, and the basic mutation rate is
often insufficiently small to restore the lost subregions of the search space. If
the basic mutation rate is significantly increased, genetic algorithm becomes a
random search. For this reason, the mutation rate is increased only on frozen
genes, but not more than few times. In this GA implementation, frozen genes
are mutated with 2.5 times higher rate than non-frozen ones (1.0/n instead of
0.4/n).

4.3. Generation replacement strategy

The initial population, which numbers 150 individuals, is randomly generated.
This approach provides maximal diversity of the genetic material and better
gradient of the objective function. One third of the population is replaced in
every generation, except for the best 100 individuals that are directly passing to
the next generation, preserving highly fitted genes. The objective values of elite
individuals do not need recalculation, since each of them is evaluated in one of
the previous generations. This approach is denoted as steady-state replacement
with elitist strategy in the literature (Kratica, 2000; Kratica et al., 2001).

In order to obtain more correct individuals in the initial population, the
probability of generating ones in genetic codes is set to p/n. The individuals
that have k, k # p ones in their genetic code are incorrect, and they are corrected
by adding/erasing |p — k| ones at/from the end of genetic code. The applied
genetic operators preserve the fixed number of hubs, so that incorrect individuals
do not appear in the following generations.

Duplicated individuals are removed in every GA generation. Their fitness
values are set to zero, so that selection operator prevents them to enter the
next generation. This is a very effective method for saving the diversity of
genetic material and keeping the algorithm away from premature convergence.
Individuals with the same objective function but different genetic codes, in some
cases may dominate in the population. If their codes are similar, GA can lead
to local optimum. For that reason, it is useful to limit their appearance to some
constant N,., (it is set to 40 in this GA application).
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4.4. Caching GA

The running time of the GA is improved by caching (Kratica, 1999, 2000).
The objective functions evaluations are stored in a cache-queue data structure.
When the same code is obtained again, its function value is taken from the
hash-queue table. The least recently used (LRU) strategy is used for caching
GA. The number of cached function values is limited to N.gche = 5000 in this
implementation.

5. Computational results
5.1. Imnstances and computational environment

In this section the computational results of the GA are presented. All tests
were carried out on an AMD K7 1.33GHz with 256 MB memory. The algorithm
was coded in C programming language. Two sets of ORLIB (Beasley, 1996)
instances were used:

- CAB (Civil Aeronautics Board) data set, based on airline passenger
flow between cities of United States. It contains 60 instances with up
to 25 nodes and up to 4 hubs. Collection and distribution costs x and
0 are equal to one, while transferring cost « takes values from 0.2 to 1.
The distances between cities satisfy the triangle inequality, and the flow
is symmetric. Detailed information about CAB instances can be found in
Beasley (1996) and Campbell (1996).

- AP (Australian Post) data set is derived from the study of Australian
postal delivery system. Its largest instance includes 200 nodes (represent-
ing postcode districts), but smaller ones with 10, 20, 25, 50, 100 nodes
can be obtained through the aggregation of nodes. The number of hubs
(mail sorting/consolidation centres) in tested instances is up to 20. The
flow matrix Wj; is non-symmetric and W;; # 0, since the mail can be sent
from one place to itself. The AP data set can also be taken from Beasley
(1996).

5.2. Results of the GA and comparisons with other methods

The parameters mentioned above, that proved to be robust and appropriate for
this problem, are used. The maximal number of generations is Nge, = 500 for
smaller, and Nge, = 5000 for larger problem instances. Algorithm also stops if
the best individual or the best objective value remained unchanged through Ny,
= 200 (Nyep = 2000) successive generations, respectively. On all the instances
we considered, this criterion allowed GA to converge to high-quality solutions.
Only minor or no improvements in the quality of final solutions can be expected
when prolonging the runs, as it can be seen from the Tables 1-3.

Table 1 provides results of the GA approach for CAB instances, while Table
2 and Table 3 contain results obtained for smaller/larger AP instances respec-
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tively. The GA was run 20 times on each instance, except for larger AP instances
(with n > 100) that were run only 10 times, because of time consuming objective
function computation.

In the first column instance dimensions (n, p and possibly «) are given.
The second column contains optimal solution of the current instance, if it is
previously known. If it is not, the dash (-) appears. The best value of the GA
is given in the next column, with mark opt in cases when GA reached optimal
solution known in advance. Average time needed to detect the best value is
given in t[s] column, while t;,:[s] represents the total time needed to execute
all 500/5000 generations. The GA concept cannot prove optimality and an
adequate finishing criterion that will fine-tune solution quality does not exist.
Therefore, the algorithm runs through additional ¢;,; — ¢ time (until finishing
criterion is satisfied), although it already reached its best/optimal solution. On
average, the best/optimal value has been reached after gen generations.

The solution quality in all 20/10 executions is evaluated as a percentage gap
with respect to the optimal cost OPTy,; or G Apest, with standard deviation of
the average gap o. The last two columns are related to caching: eval represents
the average number of needed evaluations, while cache[%)] displays savings (in
percent) achieved by using the caching technique.

It is evident from Tables 1 and 2 that the proposed GA method quickly
reaches all previously known optimal solutions on CAB and smaller AP in-
stances. For the CAB data set, the optimal solution was detected in t[s] < 0.048,
while the total running time ¢;,:[s] < 0.161 seconds. For AP data set, the CPU
times were t[s] < 0.571 and #;0:[s] < 1.282 seconds. On average, instead of
making 25 000 calls of the objective function, between 82.1% and 97.2% of the
values from the cache-queue table were re-used while solving CAB instances,
and between 65% and 98.5% while solving smaller AP instances (see cache|%)]
columns). Table 3 provides results of the proposed GA approach for 42 large
AP instances with 40 < n < 200 nodes and 2 < p < 20 hubs. For only 9 large
AP instances the optimal solution is known from the literature, and for the re-
maining 33 instances no optimal or any other solution is given in the literature
so far. As it can be seen from the Table 3, the GA reaches all optimal solutions,
but also provides results on the unsolved AP instances in a reasonable compu-
tational time. For the largest AP instance with n = 200,p = 20, the best GA
solution was found in ¢[s] = 1935.840 seconds, while the total running time was
tiot[s] = 2425.588. The values stored in the cache table provided between 42.3%
and 96.1% of savings, instead of 250 000 calculations of the objective function.

The detailed comparisons of the proposed GA with the best-known heuristic
and exact methods for solving the UMApHMP are presented in Tables 4-6. The
best GA results on the CAB and AP data sets were compared with the results
obtained by the Shortest-Path Based Heuristic (SPBH), Explicit Enu-
meration Heuristic (EEH) and Exact Shortest Path Based Branch-
and-Bound Algorithm (SPBnB), which were proposed in Ernst and Krish-
namoorthy (1998b) and tested on DEC 3000/700 (200MHz alpha chip).
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Table 1. GA results on CAB instances

‘ npa ‘ OPT,o ‘ GAvpest | t[s] tiot[s] gen ‘ gap[%] o[%] | eval cache[%)]
202 0.2 972.251 opt [0.006 0.046 209 0.0 0.0] 296 97.2
202 0.4(1013.358 | opt |0.004 0.045 210 0.0 0.0] 296 97.2
202 0.6 1046.895| opt |0.006 0.046 210 0.0 0.0] 296 97.2
202 0.8(1075.301| opt |[0.003 0.044 201 0.0 0.0] 297 97.1
20 2 1.0(1090.628 | opt |0.004 0.045 204 0.0 0.0] 296 97.1
20 3 0.2 | 712.090 opt [0.013 0.066 213 0.0 0.0] 950 91.2
20 3 0.4 | 803.810 opt |0.014 0.067 213 0.0 0.0 938 91.3
20 3 0.6 | 884.636 opt [0.016 0.068 215 0.0 0.0] 944 91.3
20 3 0.8 | 948.415 opt |0.009 0.064 208 0.0 0.0] 949 91.0
203 1.0 975.532 opt [0.013 0.068 209 0.0 0.0] 948 91.1
20 4 0.2 | 568.505 opt [0.027 0.101 226 0.0 0.0]1656 85.5
204 0.4 | 694.557 opt [0.018 0.099 210 0.0 0.0]1603 85.0
204 0.6 | 788.594 opt [0.024 0.102 215 0.0 0.0]1596 85.4
204 0.8 | 870.076 opt [0.022 0.102 215 0.0 0.0]1595 85.4
204 1.0 934.083 opt [0.023 0.103 216 0.0 0.0]1586 85.5
2520.2| 996.022 opt [0.003 0.053 201 0.0 0.0] 410 96.0
2520.4(1072.489 | opt |0.003 0.052 201 0.0 0.0} 407 96.0
2520.6(1137.081| opt |[0.002 0.054 201 0.0 0.0] 409 96.0
252 0.8(1180.020 | opt |0.003 0.054 201 0.0 0.0] 410 96.0
2521.0(1206.620 | opt |[0.003 0.053 201 0.0 0.0] 410 96.0
253 0.2 | 752.907 opt [0.022 0.095 218 0.0 0.0]1237 88.8
253 0.4 859.636 opt [0.017 0.093 209 0.0 0.0]1236 88.4
253 0.6 | 949.230 opt [0.017 0.094 209 0.0 0.0]1246 88.3
253 0.8(1020.037| opt |0.017 0.095 209 0.0 0.0(1249 88.2
2531.0(1062.144| opt |0.021 0.099 213 0.0 0.0]1250 88.4
2540.2| 618.483 opt |0.048 0.153 233 0.0 0.0]2028 82.8
254 0.4 754.489 opt |0.045 0.153 228 0.0 0.0]1982 82.9
254 0.6 | 866.445 opt [0.023 0.145 209 0.0 0.0]1892 82.2
254 0.8 951.755 opt [0.027 0.152 210 0.0 0.0]1910 82.1
2541.0(1006.657 | opt |0.029 0.161 210 0.0 0.0]2021 81.1
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Table 2. GA results on AP instances
‘ np ‘ OPT,, ‘ GAvest | t[s] ttot[s] gen ‘ gap|%] ol%] | eval cache[%)]

10 2 1163603.94 | opt |0.001 0.037 201| 0.000 0.000| 156 98.5
10 3| 131581.79 | opt |[0.001 0.038 201 | 0.000 0.000| 268 97.4
10 4|107354.73 | opt |0.004 0.040 204| 0.000 0.000 | 351 96.6
10 5| 86028.88 opt |0.003 0.042 201| 0.000 0.000| 384 96.2
10 6 | 72427.73 opt [0.002 0.042 201| 0.000 0.000 | 341 96.6
10 7| 63466.81 opt [0.002 0.041 202 0.000 0.000| 273 97.3
10 8| 54628.75 opt |0.002 0.041 202| 0.000 0.000| 196 98.1
20 21168599.79 | opt |0.004 0.045 201| 0.000 0.000| 297 97.1
20 3 |148048.30 | opt |0.012 0.065 210| 0.000 0.000| 883 91.7
20 4)1131665.43 | opt |0.017 0.091 213| 0.000 0.000 | 1461 86.5
20 5(118934.97| opt |0.020 0.119 210| 0.000 0.000 | 1809 83.0
20 6 [ 107005.85| opt |0.045 0.161 226| 0.000 0.000 |2239 80.4
20 7| 97697.75 opt [0.031 0.184 209 | 0.000 0.000 | 2301 78.4
20 8| 91454.83 opt |0.060 0.211 227 | 0.000 0.000 |2313 79.8
252|171298.10 | opt |0.003 0.051 201| 0.000 0.000 | 411 96.0
25 3|151080.66 | opt |0.016 0.088 209| 0.000 0.000 1130 89.3
25 41135638.58 | opt |0.028 0.139 212| 0.000 0.000 |1851 82.8
25 512058199 | opt |0.051 0.208 223| 0.000 0.000 | 2464 78.2
25 6(110835.82| opt |0.094 0.277 246| 0.000 0.000 |2913 76.5
25 71103880.23 | opt |0.139 0.374 257| 0.000 0.000 | 3461 73.2
25 8| 97795.59 opt [0.155 0.453 252 0.000 0.000 |3750 70.5
40 217341596 | opt |[0.025 0.102 211 | 0.000 0.000 | 783 92.7
40 3 155458.61 | opt |0.073 0.245 226| 0.000 0.000 |2062 82.0
40 4|140682.74 | opt |[0.131 0.452 234 | 0.000 0.000 | 3265 72.5
40 5|130384.74 | opt |0.358 0.788 299 | 0.024 0.060 | 4667 68.8
50 2[174390.03 | opt |0.061 0.173 228| 0.000 0.000|1078 90.6
50 3 156014.72 | opt |0.240 0.511 288| 0.000 0.000 | 3069 78.6
50 4|141153.38 | opt |0.384 0.885 285| 0.000 0.000 |4419 69.0
50 5]129412.60 | opt |0.571 1.282 301| 0.015 0.036 | 5280 65.0
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Table 3. GA results on large AP instances

‘ np ‘ OPT.o ‘ GApest ‘ t[s] tiot[s]  gen ‘ gap]%]  o[%] eval cache[%]
40 6 122171.26 opt 0.247 4.834 2039 | 0.000 0.000| 23349 77.1
40 7 - 116036.38 0.467 6.002 2086 | 0.000 0.000| 25307 75.8
40 8 - 109971.92 0.579 7.655 2085 | 0.000 0.000| 28348 72.9
40 9 - 104212.42 0.884 9.010 2127 | 0.000 0.000| 29598 72.2
40 10 - 99452.67 0.779 9.491 2085 | 0.000 0.000| 27863 73.3
50 6 121671.76 opt 1.537 9.150 2284 | 0.000 0.000| 31036 72.9
50 7 - 115911.64 4.872 15.725 2851 | 0.000 0.000| 46503 67.4
50 8 - 109926.60 4.294 17.188 2591 | 0.000 0.000| 44043 66.0
509 - 104968.27 2.869 17.252 2298 | 0.000 0.000| 38930 66.2
50 10 |100508.95 opt 4.333 21.136 2412 | 0.000 0.000| 42743 64.7
50 11 - 96186.22 5.294 24.675 2454 | 0.000 0.000 | 44999 63.4
50 12 - 93171.96 3.714 23.870 2267 | 0.000 0.000| 39458 65.2
50 13 - 90409.79 4.255 27.221 2281 | 0.000 0.000| 41079 64.1
50 14 - 87654.61 3.972 29.098 2238 | 0.000 0.000| 40315 64.1
50 15 - 85032.89 7.463 35.493 2456 | 0.000 0.000| 45615 62.9
50 20 - 73490.33 2.824 39.859 2094 | 0.000 0.000| 38133 63.6
100 2 |176245.38 opt 0.639 2.736 2089 | 0.000 0.000 4088 96.1
100 3 |157869.93 opt 2.195 13.227 2207 | 0.000 0.000| 21017 81.0
100 4 |143004.31 opt 9.007 32.848 2652 | 0.000 0.000 | 44346 66.6
100 5 |133482.57 opt 20.067 54.389 3097 | 0.000 0.000| 60475 60.9
100 6 - 126107.56 58.421 99.973 4350 | 0.000 0.000 | 94424 56.6
100 7 - 120165.15 45.945 100.118 3553 | 0.011 0.024 | 80659 54.6
100 8 - 114295.92 77.750 125.793 3891 | 0.228 0.355| 87852 54.8
100 9 - 109448.87 54.651 126.037 3409 | 0.002 0.005| 77693 54.6
100 10 - 104794.05 63.355 146.263 3421 | 0.001 0.002| 79849 53.4
100 15 - 88882.05 150.193 270.956 4004 | 0.093 0.162| 93755 53.1
100 20 - 79191.02 195.747 377.160 3828 | 0.139 0.152| 96737 49.5
200 2 |178093.99 opt 8.123 35.686 2129 | 0.000 0.000| 10048 90.6
200 3 [159725.11 opt 43.393 174.900 2520 | 0.000 0.000| 40939 67.6
200 4 - 144508.20 | 172.663 376.815 3585 | 0.001 0.002| 78983 56.0
200 5 - 136761.83 | 357.326 562.245 4231 | 0.096 0.092| 103391 51.2
200 6 - 129560.60 | 393.868 681.338 4281 | 0.046 0.062| 111529 47.9
200 7 - 123609.44 | 460.543 766.016 4219 | 0.051 0.070|112515 46.7
200 8 - 117709.98 | 566.177 879.377 4237 | 0.213 0.189| 115253 45.8
200 9 - 112380.66 | 869.886 1096.180 4809 | 0.066 0.146 | 131684 45.3
200 10 - 107846.82 | 847.216 1157.049 4591 | 0.090 0.189 | 127817 44 .4
200 15 - 92669.64 | 1246.186 1750.105 4699 | 0.397 0.275 | 135060 42.6
200 20 - 83385.94 | 1935.840 2425.588 4924 | 0.169 0.232| 142223 42.3
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Table 4. Comparisons on CAB instances

GA SPBH EEH SPBnB
n |p| a | Optsa |best|gap[%]|tiot]s] | gap(%] | tis] | gap[%] | t[s] | nodes | t[s]
20(210.2| 972.251 | opt 0.0 0.046 0.0 [0.04] 0.0 ]0.05| 103 |(0.11
20(210.4(1013.358 | opt 0.0 0.045 0.0 [0.04] 00 |0.05| 83 |0.11
20120.6|1046.895 | opt 0.0 0.046 0.0 |0.04f 0.0 |0.05| 76 |0.11
20(210.8(1075.301 | opt 0.0 0.044 0.0 [0.04] 00 |0.05| 83 |0.11
20(2]1.0(1090.628 | opt 0.0 0.045 0.0 [0.04] 0.0 |0.05| 90 {0.11
20130.2| 712.090 | opt 0.0 0.066 0.0 [0.09| 0.0 |0.43| 102 [0.22
2013|104 | 803.810 | opt 0.0 0.067 0.0 [0.09| 0.0 |043| 92 |[0.22
2013]0.6| 884.636 | opt 0.0 0.068 0.0 0.09] 0.0 |0.43| 116 |0.25
20(3]0.8| 948.415 | opt 0.0 0.064 0.0 (0.10| 0.0 |0.43| 138 [0.27
2013 |1.0| 975.532 | opt 0.0 0.068 0.0 [0.09| 00 |043| 92 |[0.23
20(410.2| 568.505 | opt 0.0 0.101 0.0 [0.20| 0.0 |2.43| 161 [0.40
2014|104 694.557 | opt 0.0 0.099 0.0 [0.19| 0.0 |2.41| 177 [0.44
2014106 | 788.594 | opt 0.0 0.102 0.0 0.19| 0.0 |2.43| 184 |0.46
20(4|0.8| 870.076 | opt 0.0 0.102 0.0 [0.18| 0.0 |2.40| 190 [0.49
20(4]1.0( 934.083 | opt 0.0 0.103 0.0 [0.18]| 0.0 |2.46| 261 [0.57
25(1210.2| 996.022 | opt 0.0 0.053 0.0 [0.08| 00 |0.12| 76 |[0.16
25(210.4(1072.489 | opt 0.0 0.052 0.0 [0.07| 00 |0.12| 73 |[0.18
25(210.6|1137.081 | opt 0.0 0.054 0.0 (0.07| 00 012 77 |(0.21
25(210.8(1180.020 | opt 0.0 0.054 0.0 [0.08| 00 |0.12| 87 [0.20
25(211.0(1206.620 | opt 0.0 0.053 0.0 |0.08] 0.0 {0.12| 93 |0.20
25130.2| 752.907 | opt 0.0 0.095 0.0 [0.18| 0.0 |1.28| 148 [0.45
2513|104 859.636 | opt 0.0 0.093 0.0 (0.19| 0.0 |1.30| 151 [0.49
251306 949.230 | opt 0.0 0.094 0.0 0.19| 0.0 |1.32| 152 |0.49
2513/0.8|1020.037 | opt 0.0 0.095 0.0 [(0.19] 0.0 |1.29| 177 [0.55
25(311.0(1062.144 | opt 0.0 0.099 0.0 (020 0.0 |1.29| 176 |[0.52
25(410.2| 618.483 | opt 0.0 0.153 0.0 [(045| 0.0 |9.17| 257 [1.03
2514104 | 754.489 | opt 0.0 0.153 0.0 (047 00 |9.29| 304 [1.14
2514106 | 866.445 | opt 0.0 0.145 0.0 |042| 0.0 9.18| 386 |[1.14
2514108 951.755 | opt 0.0 0.152 0.0 [049| 00 |9.11| 399 [1.44
2514|1.0|1006.657 | opt 0.0 0.161 0.0 [044] 0.0 9.14| 364 |[1.30
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Table 5. Comparisons on AP instances

GA SPBH SPBnB
n |p| Optsor |best|gap|%]|tiot]s] | gap[%]| t[s] |nodes| ¢[s]
10| 2]163603.94 | opt | 0.000 | 0.037 | 0.00 | 0.00 23 0.01
10 | 3| 131581.79 | opt | 0.000 | 0.038 | 0.00 | 0.01 56 0.02
10 |4]107354.73 | opt | 0.000 | 0.040 | 0.00 | 0.02 92 0.03
10 | 5| 86028.88 | opt | 0.000 | 0.042 | 0.00 | 0.02 92 0.04
20|2]168599.79 | opt | 0.000 | 0.045 | 0.00 | 0.04 38 0.08
20| 3|148048.30 | opt | 0.000 | 0.065 | 0.00 | 0.09 | 160 0.25
20| 4]131665.43 | opt | 0.000 | 0.091 | 0.00 | 0.19 | 456 0.70
20(5|118934.97 | opt | 0.000 |0.119 | 0.00 | 0.33 | 889 1.39
25(21171298.10 | opt | 0.000 | 0.051 | 0.00 | 0.08 45 0.13
25(3]151080.66 | opt | 0.000 | 0.088 | 0.00 | 0.18 | 213 0.51
25|4]135638.58 | opt | 0.000 | 0.139 | 0.77 | 0.40 | 708 1.68
2515(120581.99 | opt | 0.000 | 0.208 | 0.00 | 0.67 | 1053 | 3.15
402 (173415.96 | opt | 0.000 | 0.102 | 0.00 | 0.44 91 0.76
40 | 3| 155458.61 | opt | 0.000 | 0.245 | 0.00 | 1.11 | 521 3.56
40| 4|140682.74 | opt | 0.000 | 0.452 | 0.00 | 2.52 | 1869 | 13.82
405 (130384.74 | opt | 0.024 | 0.788 | 0.00 | 4.43 | 6310 | 50.72
50 (2|174390.03 | opt | 0.000 | 0.173 | 0.00 | 1.24 | 119 2.00
50 |3 |156014.72 | opt | 0.000 | 0.511 [ 0.00 | 3.37 | 765 8.91
50 (4 |141153.38 | opt | 0.000 [ 0.885 | 0.00 | 7.06 | 3183 | 40.14
50| 5|129412.60 | opt | 0.015 | 1.282 | 0.00 |10.95|10187 |143.48
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Table 6. Comparisons on large AP instances
GA SPBnB

n | p| Optsa best gap|%] | tiotls] nodes t[s]
40 | 6 |122171.26 opt 0.000 4.834 23 3242.15
40 | 7 - 116036.38 | 0.000 6.002 - -
40 | 8 - 109971.92 | 0.000 7.655 - -
40 | 9 - 104212.42 | 0.000 9.010 - -
40 |10 - 99452.67 | 0.000 9.491 - -
50 | 6 | 121671.76 opt 0.000 9.150 60 18472.84
50 | 7 - 115911.64 | 0.000 | 15.725 - -
50 | 8 - 109926.60 | 0.000 | 17.188 - -
50 | 9 - 104968.27 | 0.000 | 17.252 - -
50 |10]100508.95 opt 0.000 | 21.136 |2125737|57243.30
50 |11 - 96186.22 | 0.000 | 24.675 - -
50 |12 - 93171.96 | 0.000 | 23.870 - -
50 |13 - 90409.79 | 0.000 | 27.221 - -
50 |14 - 87654.61 | 0.000 | 29.098 - -
50 |15 - 85032.89 | 0.000 | 35.493 - -
50 |20 - 73490.33 | 0.000 | 39.859 - -
100 | 2 | 176245.38 opt 0.000 2.736 400 25.54
100 | 3 | 157869.93 opt 0.000 | 13.227 3198 162.63
100 | 4 | 143004.31 opt 0.000 | 32.848 25780 | 1097.19
100 | 5 | 133482.57 opt 0.000 | 54.389 | 153266 | 7687.75
100 | 6 - 126107.56 | 0.000 | 99.973 - -
100 7 - 120165.15 | 0.011 | 100.118 - -
100 | 8 - 114295.92 | 0.228 | 125.793 - -
100 9 - 109448.87 | 0.002 | 126.037 - -
100 | 10 - 104794.05 | 0.001 | 146.263 - -
100 | 15 - 88882.05 | 0.093 | 270.956 - -
100 | 20 - 79191.02 | 0.139 | 377.160 - -
200| 2 | 178093.99 opt 0.000 | 35.686 1432 384.67
200 3 | 159725.11 opt 0.000 | 174.900 | 25349 | 3636.64
200| 4 - 144508.20 | 0.001 | 376.815 - -
200 5 - 136761.83 | 0.096 | 562.245 - -
200 6 - 129560.60 | 0.046 | 681.338 - -
200 7 - 123609.44 | 0.051 | 766.016 - -
2001 8 - 117709.98 | 0.213 | 879.377 - -
20010 9 - 112380.66 | 0.066 |1096.180 - -
20010 - 107846.82 | 0.090 |1157.049 - -
20015 - 92669.64 | 0.397 |1750.105 - -
200120 - 83385.94 | 0.169 |2425.588 - -
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The proposed GA and SPBH, EEH and SPBnB methods were not tested on
the same platform, so exact comparisons can not be carried out. According to
the SPEC-fp95 SPEC-fp2000 benchmarks (www.spec.org), computers AMD at
1.33GHz and DEC 3000/700 have average (base) speedup values 29.4 and 5.71
respectively. In order to provide some descriptive comparisons of CPU times,
we observe t[s] and t;,:[s] times of the GA multiplied by 29.4/5.71 = 5.2 factor.

As it can be seen from Table 4, all three heuristic methods obtain optimal
solutions on CAB instances. The total running times of the GA (multiplied
by 5.2 factor) and the SPBH are similar, while the the exact SPBnB is slightly
slower. The EEH is several times slower in comparison with other three methods.

The results of the EEH on smaller size AP instances were not presented in
Ernst and Krishnamoorthy (1998b), so in Table 5 only the comparisons of the
GA, SPBH and SPBnB results are given. The SPBH method did not reach
optimal solution on AP n = 25,p =5 (the average gap is 0.77%), while the GA
reached optimal solutions in all cases. The running time of the GA (multiplied
by 5.2 factor) is similar or slightly slower in comparison with SPBH. The SPBnB
method is significantly slower in comparison with both GA and SPBH. For
example, on AP instance n = 50,p = 5, the SPBnB gives optimal solution in
t[s] = 143.48 seconds, the SPBH in ¢[s] = 10.95 and the GA in t;n[s] * 5.2 =
1.282 % 5.2 =~ 6.66 seconds.

In Table 6, the comparisons of the GA and SPBnB method are presented,
since the results of the SPBH and EEH were not reported in Ernst and Krish-
namoorthy (1998b). The proposed GA reached all optimal solutions previously
obtained by exact SPBnB method (on 9 out of 42 large AP instances). Com-
paring the values in column t¢;0.[s] (multiplied by 5.2 factor) and column ¢[s],
it can be seen that the GA concept reached optimal solution in several times
shorter CPU time compared to the SPBnB. For example, for the largest AP
instance n = 200,p = 3 that was solved to optimality, the CPU times of the
SPBuB and the GA are t[s] = 3636.64 and t;0¢[s] * 5.2 = 174.9 % 5.2 ~ 909.48
seconds, respectively. For the remaining 33 large AP instances that could not
be solved by the SPBnB or any other method up to now, the total running time
of the proposed GA is reasonably short (¢;0[s] < 41 min).

6. Conclusions

In this paper a genetic algorithm based on the binary encoding for the UMApHMP
is proposed. The initial population is randomly generated with p/n probability
of generating ones in the genes. Unfeasible individuals in the initial population
are corrected to be feasible. Shortest-path objective function is used in this
GA approach. New genetic operators, adopted to the problem are constructed.
They keep the feasibility of individuals by preserving exactly p ones in their ge-
netic codes. By applying mutation with frozen bits, and by limiting the number
of individuals with the same objective function and different genetic codes, the
diversibility of genetic material is considerably increased. Implemented caching
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GA technique improves the running time significantly.

The algorithm reaches all best (optimal) solutions known from the literature.
The GA also gives results on the challenging AP instances unsolved before. Be-
cause of these characteristics, the proposed GA approach is a valuable addition
to the repertoire of algorithms for solving hub location problems.

Future work will be directed to: parallel implementation, incorporation of
some problem-dependent local search heuristics and solving similar hub location
problems.
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