Control and Cybernetics

vol. 37 (2008) No. 3

Fuzzy modelling of temperature difference in 200 MW
power unit condenser using genetic fuzzy systems*

by
Michal Pajak

Radom University of Technology
Faculty of Mechanical Engineering
Department of Thermal Technology

Krasickiego 54, 26-600 Radom, Poland

Abstract: Energy generation is one of the most complicated
industrial processes. Because of its complexity, there is no accurate
conventional model of a power unit. Fuzzy logic concepts might be
effectively implemented in this field. In the paper a universal method
of creating a fuzzy logic model is presented. To check the usefulness
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temperature difference in a condenser was automatically generated.
The modelling experiment and the assessment of model quality are
presented in the paper.
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1. Introduction

Energy generation is a very complex production technology. To carry it in the
proper way, people who are responsible for power plant supervision need to have
access to a great number of data from each part of the plant (Pajak, 2001). For
a power unit containing the 13K215 turbine it is necessary to analyse about
1000 pieces of information in real time to drive the unit with high efficiency
(Laudyn, Pawlik, Strzelczyk, 1995). Only computerized systems of power plant
monitoring can make it possible. Before power industry had been computerised,
the power units were operated in an approximate way. Of course, efficiency was
very poor. As an example, failure rate could be considered. Failure rate is
calculated according to the formula

Z Tai
FAR=—"=1 . 100% (1)
(Tpi + Tai)
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where: FAR - failure rate [%],

T.i  — length of outage because of failure for power unit no ¢ [h/al,
T,;  — operation time of power unit no ¢ [h/a],
n — number of analysed power units.

Before the implementation of computer monitoring the rate was about 20.1%,
while now it is at the level of 2.4% (Long-term ..., 2003).

Unfortunately, a lot of data are of very low quality. In a situation like this
it could be very useful to have a model of a power unit, which can qualify the
collected data and generate the missing information.

The energy generation process is carried out in the power plant exploitation
system. The system is very complex in view of high number of input data and
the cross connections between them. There are three different levels of infor-
mation. Each level is characterised by different range, frequency of changes and
importance period (Kalotka, Pajak, 2006). Additionally, the processes carried
out in the power unit exploitation system are highly differentiated (thermody-
namical, electrical, mechanical). Therefore, it is very hard to develop a con-
ventional model able to simulate the operation of the whole power unit. In the
literature one can find studies meant to create a mathematical model of a power
unit (Janiczek, 1992; Szlek, Wilk, 1998; Badyda, Niwinski, 2007; Glodek, 2004).
All these models can estimate power unit operation only in a limited range of
processes and require wide range of measured parameters. In case of a real
industrial plant only a limited number of operation parameters are accessible
on-line. Therefore, a problem with model implementation arises (Pajak, 2007).
So, the problem described offers a typical case for implementation of the fuzzy
logic theory (Pajak. 2002).

The set of the model input data could be divided into two groups. The first
group consists of the data described in the form of continuously measured values.
The second one consists of the data assessed digitally (Muslewski, Woropay,
2005). To combine both types of data in one coherent assessment system, fuzzy
modelling should be implemented. Especially, the Mamdani model makes it
possible very easily (Ruano, 2005).

To obtain the accurate fuzzy model it is necessary to optimise its database
and rule base. So, it is necessary to implement one of the optimisation tech-
niques. The optimisation problems in the domain of fuzzy model structure
optimisation are described by discrete (often integer) values. Such problems
are very difficult to optimise from the computational point of view (Smutnicki,
2002). The reason is the lack of such analytical features as differentiability
or linearity. Often, multimodality and high dimensionality of solution space
are observed. All of that, and the limitation of the response time causes the
uselessness of implementation of such algorithms as B&B (Branch-and-Bound),
dynamic programming or linear and non-linear programming in these cases.
Therefore, a good solution in this kind of optimisation problems is to imple-
ment the approximate methods. These methods enable to find the approximate
solution and the quality of solution increases with calculation time.
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The approximate methods can be divided into two groups. The first group is
constituted by the construction and correction ones. The construction methods
are fast and can be easily implemented, but generated solutions are not very
accurate. The correction methods are slower and they need a starting point,
which is corrected during the algorithm operation, but they yield a solution of
very good quality. Owing to the implementation of the correction method it is
possible to create the compromise between response time and solution quality
in a flexible way. This kind of optimisation method is currently being strongly
developed, and there is a lot of promising algorithms making it possible to get
high quality solutions. Unfortunately, these new methods are not stable yet so
that they should be examined before implementing them in practice.

In case of a real industrial problem the implemented optimisation method
should be stable and well examined. All the enumerated above requirements
are fulfilled by the genetic algorithms (Goldberg, 2003).

Due to the reasons mentioned above, the artificial intelligence technology in
the form of fuzzy logic and genetic algorithms was used in this field.

The main objective of presented study was implementation of a universal
method of fuzzy model generation in the case of a real industrial problem. In
the paper, generation of a fuzzy model of temperature difference in a 13K215
steam turbine condenser is presented. The model is the first step to creation of
a fuzzy model of a power unit.

2. Preliminaries: genetic fuzzy systems

Genetic fuzzy systems are a class of fuzzy systems. The structure and form of
genetic fuzzy systems are generated by using the genetic algorithms.

The main part of a fuzzy system is a rule base. The rule base is a set of
rules having the following form:

IF a set of conditions are satisfied THEN a set of consequents can
be inferred.

The rule base covers information about the modelled object or process.

At the beginning of fuzzy system operation, crisp input data are transformed
to their fuzzy form. The process is called fuzzification and is based on database
of a fuzzy system. A database contains the linguistic term sets considered in
the linguistic rules and the membership functions defining the semantics of the
linguistic labels (Herrera, 2008). Next, during the inference process, the fuzzy
output is generated. The inference process depends on input data fuzzy values
and rule base of the system. The latest step of fuzzy system operation is the
defuzzification process. On the basis of fuzzy system database, according to the
used defuzzification operator, the fuzzy output is transformed to its crisp form.

Generation of the rule base and definition of the database are the main goals
of the fuzzy system learning process. This could be accomplished automatically
using the training data set (input and output values). For this purpose, the
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learning process could be interpreted as an optimisation or search problem.
From this point of view, the learning process attempts to find the optimal
structure of the rule base and database of fuzzy system in the space of all
possible rule base and database structures.

In the case of genetic fuzzy systems, defined above, the search problem is
being solved using genetic algorithms.

Genetic algorithms are general purpose search algorithms, which use the
principles inspired by natural genetics to evolve solutions to problems. The
basic idea is to maintain a population of chromosomes (representing candidate
solutions to the concrete problem being solved) that evolves over time through
a process of competition and controlled variation. During successive iterations,
called generations, chromosomes in the population are rated for their adaptation
as solutions, and on the basis of these evaluations, a new population of chro-
mosomes is formed using a selection mechanism and specific genetic operators
such as crossover and mutation (Cordon et al., 2004).

Owing to genetic fuzzy systems implementation it is possible to create au-
tomatically the fuzzy models of considered problems on the basis of the input-
output data set.

3. Characteristics of analysed process

A power unit condenser is the place where isobaric condensation occurs (Glodek,
2004). The pressure of an isobaric process depends on cooling conditions in the
condenser.

For a condenser we can write down the following temperature equation:

Tps = Tw1 + ATy + 6T (2)
where: T,,  — temperature of condenser incoming steam [K]
Tw1 — temperature of condenser incoming cooling water [K]
AT, - temperature rise of cooling water [K]
oT — difference between saturation temperature in condenser

and outgoing cooling water [K].

The mean value of the cooling water temperature rise is about 8 to 12 K
(Miller, 1998) and is described by the formula:

A{Z—‘w = Lw2 — Twl (3)
where: T,1 — temperature of condenser incoming cooling water [K]
Tw2 — temperature of condenser outgoing cooling water [K].

So, it is possible to establish the following formula:

Tps = T + 6T (4)
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The mean value of the temperature difference in a condenser is about 2 to
4 K (Zebaty, 1990). From (4), the temperature difference in a condenser is

8T = Tps — Ta. (5)

The above enables the calculation of the temperature difference in a condenser,
based on measured data. So, it is possible to learn and check the quality of the
fuzzy model created in the next stages of the project.

4. Analysis of data collected from a real industrial object

Real object data were collected within the biggest hard coal fired power plant
in Poland. In the analysis, the data covering fifteen months of power plant
operation were considered (Computerised System ..., 1999). In this data set
there were over 600,000 data vectors, each consisting of 34 parameters describing
the operation state of the power unit.

The analysed data were of different quality. To exclude poor quality mea-
surement, data, a filter system was designed. The system reflects the correct
value ranges of the exploitation parameters for a power unit 200MW (OP-650
boiler and 13K215 turbine). The size of the filter window was expressed as the
function of the active load of the power unit. Below, the filtering condition for
the amount of main steam is presented as an example:

AL Tt h] = 0+ 300 for P < 110MW 6

ms[t/h] = f(x) £ 20 where 2 = oby  for P > 110MW (6)
@) 0.943238 + 567098.904568z — 944124.4707042>

€Tr) =

1000
n 1026960.17008223 — 358343.972234x*
1000
where:  M,,s — amount of main steam [t/h]
P — active load [MW].

By applying the filtering system, the poor quality parameters and the vec-
tors with the data, whose values were not included in the filtering windows,
were removed. In the end, 61,168 data records were left. Unfortunately, the
temperature difference in the condenser was not a measured value. So, it was
calculated using the formula (5), where the temperature of condenser incoming
steam was calculated as the saturation temperature for the current pressure of
condenser incoming steam. The obtained data vectors were divided into two
equal sets. The first set consisted of the data for the earlier time and was used
for fuzzy model learning. The second one consisted of the data recorded later
and was used to test the generated model.
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5. Fuzzy analysis of measured parameters

The fuzzy modelling process was based on the analysis of the measurement
data recorded on a real industrial object. The main problem was to choose only
significant inputs for the fuzzy model. This was performed according to the
fuzzy curves theory (Lin and Cunningham, 1995). According to this theory, for
the chosen fixed values of each parameter a part of the surface is calculated:

0T = f(#1,..,2n) A = 34 (7)

where: z, — n-index parameter.

At the beginning, it is necessary to fuzzify the part of the fixed value. This
should be done to avoid problems resulting from irregularly spaced measurement
points in the solution area. As the membership function the Gaussian curve is

used:
u(z) = exp (— (%)) | ®)

For each section, the mean value is calculated according to the following formula:

t
Z HUm (ka) 6Ty
k=1

0Ty (2m) = - 9)
k=1
where: 07,,, — mean value
m — index of input
k — index of parameter.

Mean values of each part define the curve. The range of the curve is the factor
of the dependence between the input and output parameters. During the study
the power unit measurement data were analysed, by changing the parameters
of calculations. To shorten the time of calculations the measurement data were
reduced with the reduction radius equal 1%. The reduction process separated
the groups of measurement vectors placed closer than the assumed distance in
the solution space according to the formula:

|mi — mj| <T (10)
mim;eM
where: m — set of measurements
7  —reduction radius.

The groups of measurement vectors were substituted by one vector. This
process decreased the number of measurement vectors to 2,250. To simplify the
process of analysis, the results of the calculations were presented in the form of
gradient and spectrum diagrams. The spectrum diagram presents the range of
fuzzy curves for all the parameters (Fig. 2). The gradient diagram could help
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in making a decision about the significance of the fuzzy model inputs (Fig. 1).
Fig. 3 presents the diagram of fuzzy curves for one of the most significant inputs.
Thanks to the experiments carried out the most significant inputs were separated
according to the following list:

1. Tpwn — temperature of output steam from the low pressure turbine [K]
. Psk — pressure in condenser [MPa|

. Twena — temperature of input water to the condenser [K]

. Twenw — temperature of output water from the condenser [K]

T = W N

. Tkona — temperature of condensate [K].
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Figure 1. Gradient diagram of input parameters
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Figure 2. Spectrum diagram of input parameters
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Figure 3. Fuzzy curve diagram for pressure in condenser

6. Fuzzy model generation algorithm

Fuzzy model generation was carried out on the basis of the measurement data,
using a genetic algorithm (Herrera, Lozano, Verdegay, 1998). The model gener-
ation algorithm consists of three separate steps: rule base generation, rule base
simplification and rule base tuning. The rule base generation is an iterative pro-
cess, which makes a definite number of genetic algorithm steps in each iteration.
As a result of functioning of the genetic algorithm a fuzzy rule is obtained. For
each sample from the learning data set the compatibility degree is calculated on
the basis of the generated rule. Then, for each sample from the learning data
set, the covering degree is calculated as a sum of compatibility degrees for all
fuzzy rules. The data samples having a greater or equal covering degree than
the fixed value are removed from the data set. When the generation process
creates a fuzzy rule, for which the compatibility degree for each sample is zero,
the algorithm removes such a rule and increases the mutation probability of the
genetic algorithm according to the following formula:

1-P,
Pl = b+ L) (1)
n
where: P,, — mutation probability

P/, — modified mutation probability
n — fixed number of useless steps of generation process.
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When the generating process creates the fuzzy rule, for which the compatibil-
ity degree of any sample is not zero, then the mutation probability is decreased
to the start value and the process is repeated. However, if in n steps there are
no results, the algorithm enables us to exchange the genetic material on the
basis of the remaining samples and restarts the generation process, keeping the
already generated rules, or generates the rules based on the remaining samples
using the same generation method as in the initial population. The generation
process is continued until all the data samples are removed.

The population in the genetic algorithm consists of chromosomes represent-
ing individual rules. The chromosomes are evaluated from the point of view
of the fitness function. To increase the quality of the algorithm, the evolution
strategy is applied as a tool for local tuning of generated rules.

To describe the input data, several linguistic values are established for each
parameter. Each linguistic value is a fuzzy set defined over the range of the
measured value. The first fuzzy set is of L type and the last one is of T" type.
All the remaining sets are of A type (Lachwa, 2001). All the input and output
variables are partitioned in the same way. Thus, it is possible to fuzzify each
measurement vector. For the real value of a variable the value of membership
function for each fuzzy set is calculated. The fuzzy value is constituted by the
set of obtained membership values. In the rule base generation process the real
coded genetic algorithms are used.

The knowledge base consists of fuzzy rules in the following form:

If 21 is Li1(21) ... and zy, i8 Ly (2,) then yis Lipy1(y) (12)
where: z; — model input
L; - linguistic value of parameter
y  — model output.

A chromosome consists of two parts. The first part represents linguistic
values of the input and output of the model and the second one represents
characteristic values for each fuzzy set placed in the first part:

C =0y (13)
Cr = (Lit, -, Lin, Lint1) (14)
Co = (ari1,brit,CLit, - -, GLin+1, OLint1, CLin+1)- (15)

The initial generation consists of three equal parts. The first part consists
of the chromosomes generated on the basis of the measured data assuming the
values of the first chromosome part as numbers of fuzzy sets whose membership
value is the highest. The second part of the initial population consists of chro-
mosomes having the same first chromosome part and the randomly generated
second one. The third part is entirely randomly generated.

The fitness function is described by the following formula:

Q(R;) = CZu(R;) - SPZ(R;) - WWNZ(R;) - WIW (R;) (16)
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where: M — measurement data set
R; — analysed rule.

The components of fitness function are described below:

CZy (R;) — frequency of fuzzy rule

P
> Wzi(m)
Cop(Ri) = E—— (17)
p
where: p — number of measurement samples
m; - value of measurement vector [ € (1,...,p);

WZ;(m;) — compatibility degree between R; and sample my
WZi(my) = o(priz (21 (ma)), - - s prrin (20 (m2)), frrn 1 (2 1 () (18)

where: ouy; — selected ¢-norm;
SPZ(R;) — average covering degree over positive examples

WZz;
SPZ(R;) = # (19)
mz€M+(RZ) Pt ¢
where: py(R;) — number of positive examples;
M, (R;) — set of positive examples
My(R) ={mie M : WZ;(my) > w} (20)
where: w — compatibility degree;
WWNZ(R;) — penalty on negative examples
WWNZ(R) { 1 for p_(R;) < k- pi(R;)
) — 1
v fi (R;) > k- R;
(R~ Fop (R Toxp(n) 10" P () > kbR
(21)
where: k — factor of ratio of negative to positive examples k € [0, 1]

p—(R;) — number of negative examples,
pi(Ri) = |[M_(R;)|
M_(R;))={m; € M : WZ;(m;) = 0 N IN;(m;) > 0} (22)
IN;(my) = o(prir (21 (m2)),s - oy prin (zn(mi)))
WIW (R;) — niche iteration rate
WIW (R;) = 1 — max{ WZ;(Wp)} (23)

where: Wj,, —an already generated rule h = 1,... H
H  — number of already generated rules.
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The genetic algorithms maximize the value of the fitness function.

One step of genetic algorithm consists of three operations: crossing, mutation
and evolution strategy. The crossing process uses different crossing operators
depending on crossed chromosomes. If we want to cross chromosomes with
equal Cp parts then to cross Cy parts we use the arithmetical min-max crossing
operator. The offspring consist of Cy part of the parent chromosome and the
modified Cy part. Four chromosomes are generated:

Hy, = (h¥, ... nF . hF) wherek=1,2,3,4 (24)
hl = Al 4+ (1= N\)é? (25)
h? = Ac? + (1 — Aeid (26)
h3 = min{c?, c} (27)
hf = max{cf, cl1 (28)

and the two best ones replace their parents. If C; parts are different, then simple
crossing takes place on C; parts and appropriate genes of Cs are copied. Two
offspring are generated and they replace their parents. C; parts of the offspring
are generated according to the following formula:

Hy = (c1, €3y sy Coiqy ey C) (29)

H2 = (C%,C%,...,C?,C}Jrl,...,C}L). (30)

Cs parts are appropriate genes of the original chromosomes.

Mutation also uses two operators. If the chosen mutation point is a gene from
Cs part, then the Michalewicz non-uniform mutation operator is used. If the
mutation point is in Cy part then its value is randomly increased or decreased
by one. If this is not possible because of the interval of performance of the
gene, the opposite operation is carried out. The changing value of the C; part
is connected with the adequate genes from modification of Cs.

The last operation of the genetic algorithm is evolution strategy. It is applied
to the best chromosomes in the population. The operation modifies the values
of the genes from the second part of the chromosome according to the following
formula:

¢ = ¢+ gi (31)
where: g; — randomly generated value based on uniform distribution from in-
terval [0, o]

Cr —C

- (32)

O, =0

where: ¢, ¢; — extreme values of the gene;
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o value is mutated according to the formula:

-z forp> 1
c
o = 0\/-_{‘/5 for p < & (33)
o for p = é
where: p - relative frequency of positive mutations,
n  — number of mutations,
¢ — evolution strategy coefficient.

If the modified chromosome is better from the fitness function point of view,
it replaces the parent one. Otherwise it is removed. If the process does not
generate better chromosomes during more than a given number of steps, it is
stopped.

The result of the generation process is a set of fuzzy rules. Because of
its iterative characteristic, two similar or conflicting rules might exist in the
generated set. Therefore, the next step of the fuzzy model generation is the rule
base simplification.

For the purpose of simplification, rule bases are expressed in the form of
binary coded chromosomes. Each chromosome represents a complete rule base.
If a given rule exists in a described rule base, a corresponding gene of the
chromosome has value 1, otherwise its value is 0. The initial population consists
of randomly generated chromosomes except for the chromosome representing the
rule base obtained as a result of the previous part of calculations. The binary
coded genetic algorithm runs a fixed number of generations. One step of the
genetic algorithm consists of crossing and mutation using an elitist selection
and a uniform random sampling mechanism. The mutation operator changes
the value of the gene to the opposite number. The two point crossing operator
is used. It divides chromosomes into three parts and changes one of them. The
algorithm tries to minimize the value of the fitness function, which could be
expressed in the following form:

E(Cj) for SZ(Cj) =T
% 'ZmleM y(my)?  for SZ(Cj) <7

where: 7 — fixed threshold value of compatibility degree between rule base and
the training data set;

riey = { (34)

SZ(C;) — compatibility degree between the rule base and the training data
set:

SZ(C]-)_mm{Zl WZ;(my) ZF WZ;(m, } (35)

where: h — number of generated rules,
p — number of data samples;
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E(Cj) — the mean square error is calculated as follows:

E(C)) =5— > (y(m) =Y (m))? (36)

1
2.pml€M

where: Y (m;) — fuzzy model output value for measurement vector m;.

The last step of the process is the rule base tuning. It is done using a ge-
netic algorithm again, but in this step the real coded version is used. Each
chromosome describes a complete rule base. Characteristic parameters of lin-
guistic values for each real variable are coded in the form of chromosome genes.
So, an individual chromosome can be presented in the forms mentioned earlier,
i.e. (13, 14, 15). The initial population consists of randomly generated chromo-
somes, except for one chromosome, which represents the rule base obtained as
a result of the previous part of calculations. The arithmetical min-max crossing
operator and the Michalewicz non-uniform mutation operator are implemented.
The algorithm tries to minimize the value of the fitness function (36).

7. Generation of fuzzy model of temperature difference in
a condenser

The algorithm presented above was used to create a fuzzy model of temperature
difference in a condenser. The parameters of model generation process are given
in Table 1. As it was already mentioned (in Section 4) the training data set
consisted of 2,250 samples. The number of training samples was the result of
the reduction process carried out to decrease the time of calculations. To check
the influence of the reduction process on quality of generated model, the first
step of model generation was carried out on the basis of the full training set
(15,420 samples) and the reduced one (2,250 samples). The quality measures of
generated models are presented in Tables 2 and 3. The differences in the error
values are not significant but the correlation value is much better in the case
of the reduced training data set. Additionally, the reduction process decreased
the calculation time (about ten times). So, the next steps of model generation
were carried out on the basis of the reduced training set.

In the case of the reduced data set the generation algorithm removed 2,246
samples. Next the exchange of the genetic material was carried out. The algo-
rithm removed the next three samples. On the basis of the last sample a fuzzy
rule was generated. Then, the obtained rule base was simplified and tuned
according to the algorithm.

To make the generation process possible, each data vector was fuzzified using
linguistic values, defined for each variable. The range of each variable was
partitioned into seven linguistic values. As it was already mentioned (Section
5) the first of the linguistic values was described by the L type fuzzy set, the
last one by the I' type fuzzy set, and the other ones by A type fuzzy sets.
In the same way the fuzzy model output value was defuzzified. During the
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Table 1. Parameters of model generation process
No | Parameter name Value
1. Compatibility degree 1.0
2. Threshold of sample 0.05
3. Negative to positive samples factor k 0.1
4. Threshold of compatibility degree between rule base
and samples set 0.25
5. T-norm used in rule base generation process MINIMUM
6. Number of genetic algorithm generations runs in one
iteration step 50
7. Number of useless evolution strategy modifications
runs to stop 25
8. Number of chromosomes modified by evolution strategy | 20% of population
9. Mutation parameter c¢ of evolution strategy 0.9
10. | Number of generations in simplification process 500
11. | Number of generations in tuning process 1000
12. | Number of simplification process initial population
chromosomes 61
13. | Number of tuning process initial population
chromosomes 61
14. | Parameter b of non-uniform Michalewicz mutation 5
15. | Crossing probability of generation process 0.6
16. | Crossing probability of simplification process 0.6
17. | Crossing probability of tuning process 0.6
18. | Mutation probability of generation process 0.1
19. | Mutation probability of simplification process 0.1
20. | Mutation probability of tuning process 0.1
21. | Min-max arithmetical operator coeflicient 0.35
22. | Aggregation operator of fuzzy model MINIMUM
23. | Implication operator of fuzzy model MINIMUM
24. | Accumulation operator of fuzzy model MAXIMUM
25. | Defuzzyfication operator of fuzzy model centre of weight

Table 2. Quality measures of temperature difference fuzzy model after first step
of the generation process (full data set)

Maximum error [%] 73.4014
Minimum error [%)] 0.0065
Correlation [%)] 43.86
Mean square error 0.4247
Mean square error [%] 0.1330
Mean absolute error [%)] 15.1918
Number of maximum error examples 1

Number of rules

37
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Table 3. Quality measures of temperature difference fuzzy model after first step
of the generation process (reduced data set)

Maximum error [%)] 88.4636
Minimum error [%)] 0.0196
Correlation [%] 66.0760
Mean square error 0.6515
Mean square error [%] 0.1647
Mean absolute error [%] 19.5801
Number of maximum error examples 1
Number of rules 32
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Figure 4. Linguistic values of temperature of water inflow to the condenser

membership functions

30578 5,0578 7.0578 9,0578 11,0578 13,0578 15,0578 17,0578 19,0578

temperature difference in condenser [K]

Figure 5. Linguistic values of temperature difference in the condenser

tuning step of the generation process the characteristic points of the linguistic
values were changed to increase the quality of the model. For illustration, the
linguistic values for temperature of water inflowing to the condenser (Fig. 4)
and temperature difference in condenser (Fig. 5) are presented.

As aresult of the complete generation process the fuzzy model was obtained.
The rule base of the model consists of 21 rules. All the rules have the same
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form. They are built of five premises and one consequent. All five premises are
connected with the AND operator (12). Some exemplary rules are presented
below

Town = Lipun APsk = Lpgk A Tuwchd = LT yena A Twehw

= L2 onw A Thond = L3vong = 0T = Ly
Tpuwn = Lipun A Psk = Lyg, A Tucha = Lypena A Twehuw

= L wenw N Thond = Ly yona = 0T = LYz (37)
Tpwn = Lpun APsk = Lpsi A Twehd = Liweng N Tuwehuw

3 4 5
= LTwchw A Tkond = LT/cond = 0T = L6T

where: iprn — linguistic value no. i of temperature of steam

flowing out of low pressure turbine [K]

;Sk — linguistic value no. i of pressure in condenser [MPa]

rwehg ~ — linguistic value no. ¢ of temperature of input water
to the condenser [K]

Y wenw  — linguistic value no. i of temperature of output water
from the condenser [K]

Liyona  — linguistic value no. i of temperature of condensate [K]
ir — linguistic value no. 7 of temperature difference

in condenser [K].

According to the Mamdani model characteristic (Piegat, 1999) the rules are
not evenly distributed in the solution space. The regions, where the solution
space changes its shape fast are covered by a higher number of fuzzy rules.
Thanks to this the model of the form considered can decrease the number of
rules and keep high accuracy of the response.

The fuzzy model developed was tested using a testing data set. The testing
data set consisted of 15,420 samples. The testing data set was as big as possible
to guarantee certainty of the testing results. The results of model testing are
presented in Table 4.

Table 4. Quality measures of temperature difference fuzzy model

Maximum error |%] 44.1898
Minimum error [%)] 0.0030
Correlation [%] 83.3495
Mean square error 0.1366
Mean square error [%] 0.0754
Mean absolute error [%] 11.2652

Number of maximum error examples 1
Number of rules 21
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To check the quality of the generated model the following measures were
applied:

— the relative maximum error:

max = max {mle W}

where:  y(m;) — output of object for m; sample [K]
Y (m;) — output of model for m; sample [K];
— the number of examples generated with the maximum error;
the relative minimum error:

b =iy )Yl 59)

myeM y(ml)

— the number of examples generated with no error
the relative absolute error

p
ly(mi) =Y (my)]
l; y(my)

5771(1 -

» (40)

However, the most important measures of model quality are the mean square
error (36), the value of the correlation function (41) and the relative mean square
error (42):

ry = = : (41)
\/E:l (y(mu) — 9)? l; (Y (my) = Y)2
1 m;EM (y(ml) B Y(ml))2
O = (ymax - ymin) p- (p + 1) ’ (42)

8. Conclusions

Upon analysing the results obtained we can say that the quality of the fuzzy
model is pretty good, especially the value of the relative mean square error,
which is very small. The experiment carried out proves the correctness of the
used algorithms and methods. Looking at the results of modelling of the tem-
perature difference in a condenser we can say that it is possible to put into
practice the software created and to use it to model real industrial objects.
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