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hnologyFa
ulty of Me
hani
al EngineeringDepartment of Thermal Te
hnologyKrasi
kiego 54, 26-600 Radom, PolandAbstra
t: Energy generation is one of the most 
ompli
atedindustrial pro
esses. Be
ause of its 
omplexity, there is no a

urate
onventional model of a power unit. Fuzzy logi
 
on
epts might bee�e
tively implemented in this �eld. In the paper a universal methodof 
reating a fuzzy logi
 model is presented. To 
he
k the usefulnessof the method in the 
ase of real industrial issues, a fuzzy model oftemperature di�eren
e in a 
ondenser was automati
ally generated.The modelling experiment and the assessment of model quality arepresented in the paper.Keywords: learning, fuzzy models, geneti
 algorithms, fuzzystatisti
s and data analysis, large-s
ale systems, linguisti
 modelling.1. Introdu
tionEnergy generation is a very 
omplex produ
tion te
hnology. To 
arry it in theproper way, people who are responsible for power plant supervision need to havea

ess to a great number of data from ea
h part of the plant (Paj¡k, 2001). Fora power unit 
ontaining the 13K215 turbine it is ne
essary to analyse about1000 pie
es of information in real time to drive the unit with high e�
ien
y(Laudyn, Pawlik, Strzel
zyk, 1995). Only 
omputerized systems of power plantmonitoring 
an make it possible. Before power industry had been 
omputerised,the power units were operated in an approximate way. Of 
ourse, e�
ien
y wasvery poor. As an example, failure rate 
ould be 
onsidered. Failure rate is
al
ulated a

ording to the formula
FAR =

n
∑

i=1

Tai

n
∑

i=1

(Tpi + Tai )
· 100% (1)
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566 M. PAJ�Kwhere: FAR � failure rate [%℄,
Tai � length of outage be
ause of failure for power unit no i [h/a℄,
Tpi � operation time of power unit no i [h/a℄,
n � number of analysed power units.Before the implementation of 
omputer monitoring the rate was about 20.1%,while now it is at the level of 2.4% (Long-term ..., 2003).Unfortunately, a lot of data are of very low quality. In a situation like thisit 
ould be very useful to have a model of a power unit, whi
h 
an qualify the
olle
ted data and generate the missing information.The energy generation pro
ess is 
arried out in the power plant exploitationsystem. The system is very 
omplex in view of high number of input data andthe 
ross 
onne
tions between them. There are three di�erent levels of infor-mation. Ea
h level is 
hara
terised by di�erent range, frequen
y of 
hanges andimportan
e period (Kalotka, Paj¡k, 2006). Additionally, the pro
esses 
arriedout in the power unit exploitation system are highly di�erentiated (thermody-nami
al, ele
tri
al, me
hani
al). Therefore, it is very hard to develop a 
on-ventional model able to simulate the operation of the whole power unit. In theliterature one 
an �nd studies meant to 
reate a mathemati
al model of a powerunit (Jani
zek, 1992; Szl�k, Wilk, 1998; Badyda, Niwi«ski, 2007; Gªodek, 2004).All these models 
an estimate power unit operation only in a limited range ofpro
esses and require wide range of measured parameters. In 
ase of a realindustrial plant only a limited number of operation parameters are a

essibleon-line. Therefore, a problem with model implementation arises (Paj¡k, 2007).So, the problem des
ribed o�ers a typi
al 
ase for implementation of the fuzzylogi
 theory (Paj¡k. 2002).The set of the model input data 
ould be divided into two groups. The �rstgroup 
onsists of the data des
ribed in the form of 
ontinuously measured values.The se
ond one 
onsists of the data assessed digitally (Mu±lewski, Woropay,2005). To 
ombine both types of data in one 
oherent assessment system, fuzzymodelling should be implemented. Espe
ially, the Mamdani model makes itpossible very easily (Ruano, 2005).To obtain the a

urate fuzzy model it is ne
essary to optimise its databaseand rule base. So, it is ne
essary to implement one of the optimisation te
h-niques. The optimisation problems in the domain of fuzzy model stru
tureoptimisation are des
ribed by dis
rete (often integer) values. Su
h problemsare very di�
ult to optimise from the 
omputational point of view (Smutni
ki,2002). The reason is the la
k of su
h analyti
al features as di�erentiabilityor linearity. Often, multimodality and high dimensionality of solution spa
eare observed. All of that, and the limitation of the response time 
auses theuselessness of implementation of su
h algorithms as B&B (Bran
h-and-Bound),dynami
 programming or linear and non-linear programming in these 
ases.Therefore, a good solution in this kind of optimisation problems is to imple-ment the approximate methods. These methods enable to �nd the approximatesolution and the quality of solution in
reases with 
al
ulation time.



Geneti
 fuzzy systems in fuzzy modelling of temperature di�eren
e 567The approximate methods 
an be divided into two groups. The �rst group is
onstituted by the 
onstru
tion and 
orre
tion ones. The 
onstru
tion methodsare fast and 
an be easily implemented, but generated solutions are not verya

urate. The 
orre
tion methods are slower and they need a starting point,whi
h is 
orre
ted during the algorithm operation, but they yield a solution ofvery good quality. Owing to the implementation of the 
orre
tion method it ispossible to 
reate the 
ompromise between response time and solution qualityin a �exible way. This kind of optimisation method is 
urrently being stronglydeveloped, and there is a lot of promising algorithms making it possible to gethigh quality solutions. Unfortunately, these new methods are not stable yet sothat they should be examined before implementing them in pra
ti
e.In 
ase of a real industrial problem the implemented optimisation methodshould be stable and well examined. All the enumerated above requirementsare ful�lled by the geneti
 algorithms (Goldberg, 2003).Due to the reasons mentioned above, the arti�
ial intelligen
e te
hnology inthe form of fuzzy logi
 and geneti
 algorithms was used in this �eld.The main obje
tive of presented study was implementation of a universalmethod of fuzzy model generation in the 
ase of a real industrial problem. Inthe paper, generation of a fuzzy model of temperature di�eren
e in a 13K215steam turbine 
ondenser is presented. The model is the �rst step to 
reation ofa fuzzy model of a power unit.2. Preliminaries: geneti
 fuzzy systemsGeneti
 fuzzy systems are a 
lass of fuzzy systems. The stru
ture and form ofgeneti
 fuzzy systems are generated by using the geneti
 algorithms.The main part of a fuzzy system is a rule base. The rule base is a set ofrules having the following form:IF a set of 
onditions are satis�ed THEN a set of 
onsequents 
anbe inferred.The rule base 
overs information about the modelled obje
t or pro
ess.At the beginning of fuzzy system operation, 
risp input data are transformedto their fuzzy form. The pro
ess is 
alled fuzzi�
ation and is based on databaseof a fuzzy system. A database 
ontains the linguisti
 term sets 
onsidered inthe linguisti
 rules and the membership fun
tions de�ning the semanti
s of thelinguisti
 labels (Herrera, 2008). Next, during the inferen
e pro
ess, the fuzzyoutput is generated. The inferen
e pro
ess depends on input data fuzzy valuesand rule base of the system. The latest step of fuzzy system operation is thedefuzzi�
ation pro
ess. On the basis of fuzzy system database, a

ording to theused defuzzi�
ation operator, the fuzzy output is transformed to its 
risp form.Generation of the rule base and de�nition of the database are the main goalsof the fuzzy system learning pro
ess. This 
ould be a

omplished automati
allyusing the training data set (input and output values). For this purpose, the



568 M. PAJ�Klearning pro
ess 
ould be interpreted as an optimisation or sear
h problem.From this point of view, the learning pro
ess attempts to �nd the optimalstru
ture of the rule base and database of fuzzy system in the spa
e of allpossible rule base and database stru
tures.In the 
ase of geneti
 fuzzy systems, de�ned above, the sear
h problem isbeing solved using geneti
 algorithms.Geneti
 algorithms are general purpose sear
h algorithms, whi
h use theprin
iples inspired by natural geneti
s to evolve solutions to problems. Thebasi
 idea is to maintain a population of 
hromosomes (representing 
andidatesolutions to the 
on
rete problem being solved) that evolves over time througha pro
ess of 
ompetition and 
ontrolled variation. During su

essive iterations,
alled generations, 
hromosomes in the population are rated for their adaptationas solutions, and on the basis of these evaluations, a new population of 
hro-mosomes is formed using a sele
tion me
hanism and spe
i�
 geneti
 operatorssu
h as 
rossover and mutation (Cordon et al., 2004).Owing to geneti
 fuzzy systems implementation it is possible to 
reate au-tomati
ally the fuzzy models of 
onsidered problems on the basis of the input-output data set.3. Chara
teristi
s of analysed pro
essA power unit 
ondenser is the pla
e where isobari
 
ondensation o

urs (Gªodek,2004). The pressure of an isobari
 pro
ess depends on 
ooling 
onditions in the
ondenser.For a 
ondenser we 
an write down the following temperature equation:
Tps = Tw1 + ∆Tw + δT (2)where: Tps � temperature of 
ondenser in
oming steam [K℄

Tw1 � temperature of 
ondenser in
oming 
ooling water [K℄
∆Tw � temperature rise of 
ooling water [K℄
δT � di�eren
e between saturation temperature in 
ondenserand outgoing 
ooling water [K℄.The mean value of the 
ooling water temperature rise is about 8 to 12 K(Miller, 1998) and is des
ribed by the formula:

∆Tw = Tw2 − Tw1 (3)where: Tw1 � temperature of 
ondenser in
oming 
ooling water [K℄
Tw2 � temperature of 
ondenser outgoing 
ooling water [K℄.So, it is possible to establish the following formula:

Tps = Tw2 + δT. (4)



Geneti
 fuzzy systems in fuzzy modelling of temperature di�eren
e 569The mean value of the temperature di�eren
e in a 
ondenser is about 2 to4 K (Z�baty, 1990). From (4), the temperature di�eren
e in a 
ondenser is
δT = Tps − Tw2. (5)The above enables the 
al
ulation of the temperature di�eren
e in a 
ondenser,based on measured data. So, it is possible to learn and 
he
k the quality of thefuzzy model 
reated in the next stages of the proje
t.4. Analysis of data 
olle
ted from a real industrial obje
tReal obje
t data were 
olle
ted within the biggest hard 
oal �red power plantin Poland. In the analysis, the data 
overing �fteen months of power plantoperation were 
onsidered (Computerised System ..., 1999). In this data setthere were over 600,000 data ve
tors, ea
h 
onsisting of 34 parameters des
ribingthe operation state of the power unit.The analysed data were of di�erent quality. To ex
lude poor quality mea-surement data, a �lter system was designed. The system re�e
ts the 
orre
tvalue ranges of the exploitation parameters for a power unit 200MW (OP-650boiler and 13K215 turbine). The size of the �lter window was expressed as thefun
tion of the a
tive load of the power unit. Below, the �ltering 
ondition forthe amount of main steam is presented as an example:
Ṁms[t/h] =

{

0 ÷ 300 for P < 110MW

f(x) ± 20 where x = P
200 for P > 110MW

(6)
f(x) =

0.943238 + 567098.904568x− 944124.470704x2

1000

+
1026960.170082x3 − 358343.972234x4

1000where: Ṁms � amount of main steam [t/h℄
P � a
tive load [MW℄.By applying the �ltering system, the poor quality parameters and the ve
-tors with the data, whose values were not in
luded in the �ltering windows,were removed. In the end, 61,168 data re
ords were left. Unfortunately, thetemperature di�eren
e in the 
ondenser was not a measured value. So, it was
al
ulated using the formula (5), where the temperature of 
ondenser in
omingsteam was 
al
ulated as the saturation temperature for the 
urrent pressure of
ondenser in
oming steam. The obtained data ve
tors were divided into twoequal sets. The �rst set 
onsisted of the data for the earlier time and was usedfor fuzzy model learning. The se
ond one 
onsisted of the data re
orded laterand was used to test the generated model.



570 M. PAJ�K5. Fuzzy analysis of measured parametersThe fuzzy modelling pro
ess was based on the analysis of the measurementdata re
orded on a real industrial obje
t. The main problem was to 
hoose onlysigni�
ant inputs for the fuzzy model. This was performed a

ording to thefuzzy 
urves theory (Lin and Cunningham, 1995). A

ording to this theory, forthe 
hosen �xed values of ea
h parameter a part of the surfa
e is 
al
ulated:
δT = f(z1, ..., zn) ∧ n = 34 (7)where: zn � n-index parameter.At the beginning, it is ne
essary to fuzzify the part of the �xed value. Thisshould be done to avoid problems resulting from irregularly spa
ed measurementpoints in the solution area. As the membership fun
tion the Gaussian 
urve isused:
µ(z∗m) = exp

(

−
(

z∗m − zm

bm

)2
)

. (8)For ea
h se
tion, the mean value is 
al
ulated a

ording to the following formula:
δTmv(zm) =

t
∑

k=1

µm(zmk) · δTk

t
∑

k=1

µm(zmk)

(9)where: δTmv � mean value
m � index of input
k � index of parameter.Mean values of ea
h part de�ne the 
urve. The range of the 
urve is the fa
torof the dependen
e between the input and output parameters. During the studythe power unit measurement data were analysed, by 
hanging the parametersof 
al
ulations. To shorten the time of 
al
ulations the measurement data wereredu
ed with the redu
tion radius equal 1%. The redu
tion pro
ess separatedthe groups of measurement ve
tors pla
ed 
loser than the assumed distan
e inthe solution spa
e a

ording to the formula:

∀
mimj∈M

|mi − mj | < τ (10)where: m � set of measurements
τ � redu
tion radius.The groups of measurement ve
tors were substituted by one ve
tor. Thispro
ess de
reased the number of measurement ve
tors to 2,250. To simplify thepro
ess of analysis, the results of the 
al
ulations were presented in the form ofgradient and spe
trum diagrams. The spe
trum diagram presents the range offuzzy 
urves for all the parameters (Fig. 2). The gradient diagram 
ould help



Geneti
 fuzzy systems in fuzzy modelling of temperature di�eren
e 571in making a de
ision about the signi�
an
e of the fuzzy model inputs (Fig. 1).Fig. 3 presents the diagram of fuzzy 
urves for one of the most signi�
ant inputs.Thanks to the experiments 
arried out the most signi�
ant inputs were separateda

ording to the following list:1. Tpwn � temperature of output steam from the low pressure turbine [K℄2. psk � pressure in 
ondenser [MPa℄3. Twchd � temperature of input water to the 
ondenser [K℄4. Twchw � temperature of output water from the 
ondenser [K℄5. Tkond � temperature of 
ondensate [K℄.

0,0000

0,5000

1,0000

1,5000

2,0000

2,5000

3,0000

3,5000

4,0000

4,5000

5,0000

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334

number of parameter

d
y

 [
K

]

Figure 1. Gradient diagram of input parameters
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Figure 2. Spe
trum diagram of input parameters
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Figure 3. Fuzzy 
urve diagram for pressure in 
ondenser6. Fuzzy model generation algorithmFuzzy model generation was 
arried out on the basis of the measurement data,using a geneti
 algorithm (Herrera, Lozano, Verdegay, 1998). The model gener-ation algorithm 
onsists of three separate steps: rule base generation, rule basesimpli�
ation and rule base tuning. The rule base generation is an iterative pro-
ess, whi
h makes a de�nite number of geneti
 algorithm steps in ea
h iteration.As a result of fun
tioning of the geneti
 algorithm a fuzzy rule is obtained. Forea
h sample from the learning data set the 
ompatibility degree is 
al
ulated onthe basis of the generated rule. Then, for ea
h sample from the learning dataset, the 
overing degree is 
al
ulated as a sum of 
ompatibility degrees for allfuzzy rules. The data samples having a greater or equal 
overing degree thanthe �xed value are removed from the data set. When the generation pro
ess
reates a fuzzy rule, for whi
h the 
ompatibility degree for ea
h sample is zero,the algorithm removes su
h a rule and in
reases the mutation probability of thegeneti
 algorithm a

ording to the following formula:
P ′

m = Pm +
(1 − Pm)

n
(11)where: Pm � mutation probability

P ′
m � modi�ed mutation probability

n � �xed number of useless steps of generation pro
ess.
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 fuzzy systems in fuzzy modelling of temperature di�eren
e 573When the generating pro
ess 
reates the fuzzy rule, for whi
h the 
ompatibil-ity degree of any sample is not zero, then the mutation probability is de
reasedto the start value and the pro
ess is repeated. However, if in n steps there areno results, the algorithm enables us to ex
hange the geneti
 material on thebasis of the remaining samples and restarts the generation pro
ess, keeping thealready generated rules, or generates the rules based on the remaining samplesusing the same generation method as in the initial population. The generationpro
ess is 
ontinued until all the data samples are removed.The population in the geneti
 algorithm 
onsists of 
hromosomes represent-ing individual rules. The 
hromosomes are evaluated from the point of viewof the �tness fun
tion. To in
rease the quality of the algorithm, the evolutionstrategy is applied as a tool for lo
al tuning of generated rules.To des
ribe the input data, several linguisti
 values are established for ea
hparameter. Ea
h linguisti
 value is a fuzzy set de�ned over the range of themeasured value. The �rst fuzzy set is of L type and the last one is of Γ type.All the remaining sets are of Λ type (�a
hwa, 2001). All the input and outputvariables are partitioned in the same way. Thus, it is possible to fuzzify ea
hmeasurement ve
tor. For the real value of a variable the value of membershipfun
tion for ea
h fuzzy set is 
al
ulated. The fuzzy value is 
onstituted by theset of obtained membership values. In the rule base generation pro
ess the real
oded geneti
 algorithms are used.The knowledge base 
onsists of fuzzy rules in the following form:If z1 is Li1(z1) . . . and zn is Lin(zn) then y is Lin+1(y) (12)where: zi � model input
Li � linguisti
 value of parameter
y � model output.A 
hromosome 
onsists of two parts. The �rst part represents linguisti
values of the input and output of the model and the se
ond one represents
hara
teristi
 values for ea
h fuzzy set pla
ed in the �rst part:

C = C1C2 (13)
C1 = (Li1, . . . , Lin, Lin+1) (14)
C2 = (aLi1, bLi1, cLi1, . . . , aLin+1, bLin+1, cLin+1). (15)The initial generation 
onsists of three equal parts. The �rst part 
onsistsof the 
hromosomes generated on the basis of the measured data assuming thevalues of the �rst 
hromosome part as numbers of fuzzy sets whose membershipvalue is the highest. The se
ond part of the initial population 
onsists of 
hro-mosomes having the same �rst 
hromosome part and the randomly generatedse
ond one. The third part is entirely randomly generated.The �tness fun
tion is des
ribed by the following formula:
Q(Ri) = CZM (Ri) · SPZ (Ri) · WWNZ (Ri) · WIW (Ri) (16)



574 M. PAJ�Kwhere: M � measurement data set
Ri � analysed rule.The 
omponents of �tness fun
tion are des
ribed below:

CZM (Ri) � frequen
y of fuzzy rule
CZM (Ri) =

p
∑

l=1

WZi(ml )

p
(17)where: p � number of measurement samples

ml � value of measurement ve
tor l ∈ (1, ..., p);
WZi(ml) � 
ompatibility degree between Ri and sample ml

WZi(ml ) = ◦(µLi1 (z1 (ml)), . . . , µLin(zn(ml )), µLn+1 (zn+1 (ml )) (18)where: ◦µLi � sele
ted t-norm;
SPZ (Ri) � average 
overing degree over positive examples

SPZ (Ri) =
∑

ml∈M+(Ri)

WZi(ml )

p+(Ri)
(19)where: p+(Ri) � number of positive examples;

M+(Ri) � set of positive examples
M+(Ri) = {ml ∈ M : WZi(ml ) > ω} (20)where: ω � 
ompatibility degree;

WWNZ (Ri) � penalty on negative examples
WWNZ (Ri) =

{

1 for p−(Ri) 6 k · p+(Ri)
1

p−(Ri) − k · p+(Ri) + exp(1)
for p−(Ri) > k · p+(Ri)(21)where: k � fa
tor of ratio of negative to positive examples k ∈ [0, 1]

p−(Ri) � number of negative examples,
pi(Ri) = |M−(Ri)|
M−(Ri) = {ml ∈ M : WZi(ml ) = 0 ∧ INi(ml ) > 0} (22)
INi(ml ) = ◦(µLi1 (z1 (ml)), . . . , µLin(zn(ml )))

WIW (Ri) � ni
he iteration rate
WIW (Ri) = 1 − max{WZi(Wh)} (23)where: Wh � an already generated rule h = 1,. . . ,H

H � number of already generated rules.



Geneti
 fuzzy systems in fuzzy modelling of temperature di�eren
e 575The geneti
 algorithms maximize the value of the �tness fun
tion.One step of geneti
 algorithm 
onsists of three operations: 
rossing, mutationand evolution strategy. The 
rossing pro
ess uses di�erent 
rossing operatorsdepending on 
rossed 
hromosomes. If we want to 
ross 
hromosomes withequal C1 parts then to 
ross C2 parts we use the arithmeti
al min-max 
rossingoperator. The o�spring 
onsist of C1 part of the parent 
hromosome and themodi�ed C2 part. Four 
hromosomes are generated:
Hk = (hk

1 , ..., hk
i , ..., hk

n) where k = 1, 2, 3, 4 (24)
h1

i = λc1
i + (1 − λ)c2

i (25)
h2

i = λc2
i + (1 − λ)c1

i λ (26)
h3

i = min{c2
i , c

1
i } (27)

h4
i = max{c2

i , c
1
i } (28)and the two best ones repla
e their parents. If C1 parts are di�erent, then simple
rossing takes pla
e on C1 parts and appropriate genes of C2 are 
opied. Twoo�spring are generated and they repla
e their parents. C1 parts of the o�springare generated a

ording to the following formula:

H1 = (c1
1, c

1
2, ..., c

1
i , c

2
i+1, ..., c

2
n) (29)

H2 = (c2
1, c

2
2, ..., c

2
i , c

1
i+1, ..., c

1
n). (30)

C2 parts are appropriate genes of the original 
hromosomes.Mutation also uses two operators. If the 
hosen mutation point is a gene from
C2 part, then the Mi
halewi
z non-uniform mutation operator is used. If themutation point is in C1 part then its value is randomly in
reased or de
reasedby one. If this is not possible be
ause of the interval of performan
e of thegene, the opposite operation is 
arried out. The 
hanging value of the C1 partis 
onne
ted with the adequate genes from modi�
ation of C2.The last operation of the geneti
 algorithm is evolution strategy. It is appliedto the best 
hromosomes in the population. The operation modi�es the valuesof the genes from the se
ond part of the 
hromosome a

ording to the followingformula:

c′i = ci + gi (31)where: gi � randomly generated value based on uniform distribution from in-terval [0, σi]

σi = σ · cr − cl

4
(32)where: cr,cl � extreme values of the gene;
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σ value is mutated a

ording to the formula:

σ′ =











σ
n
√

c
for p > 1

5

σ · n
√

c for p < 1
5

σ for p = 1
5

(33)where: p � relative frequen
y of positive mutations,
n � number of mutations,
c � evolution strategy 
oe�
ient.If the modi�ed 
hromosome is better from the �tness fun
tion point of view,it repla
es the parent one. Otherwise it is removed. If the pro
ess does notgenerate better 
hromosomes during more than a given number of steps, it isstopped.The result of the generation pro
ess is a set of fuzzy rules. Be
ause ofits iterative 
hara
teristi
, two similar or 
on�i
ting rules might exist in thegenerated set. Therefore, the next step of the fuzzy model generation is the rulebase simpli�
ation.For the purpose of simpli�
ation, rule bases are expressed in the form ofbinary 
oded 
hromosomes. Ea
h 
hromosome represents a 
omplete rule base.If a given rule exists in a des
ribed rule base, a 
orresponding gene of the
hromosome has value 1, otherwise its value is 0. The initial population 
onsistsof randomly generated 
hromosomes ex
ept for the 
hromosome representing therule base obtained as a result of the previous part of 
al
ulations. The binary
oded geneti
 algorithm runs a �xed number of generations. One step of thegeneti
 algorithm 
onsists of 
rossing and mutation using an elitist sele
tionand a uniform random sampling me
hanism. The mutation operator 
hangesthe value of the gene to the opposite number. The two point 
rossing operatoris used. It divides 
hromosomes into three parts and 
hanges one of them. Thealgorithm tries to minimize the value of the �tness fun
tion, whi
h 
ould beexpressed in the following form:

F (Cj) =

{

E(Cj) for SZ (Cj ) > τ
1
2 ·∑ml∈M y(ml)

2 for SZ (Cj ) < τ
(34)where: τ � �xed threshold value of 
ompatibility degree between rule base andthe training data set;

SZ (Cj ) � 
ompatibility degree between the rule base and the training dataset:
SZ (Cj ) = min

{

∑h

i=1
WZi(m1 ), . . . ,

∑h

i=1
WZi(mp)

} (35)where: h � number of generated rules,
p � number of data samples;
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E(Cj) � the mean square error is 
al
ulated as follows:

E(Cj) =
1

2 · p
∑

ml∈M

(y(ml) − Y (ml))
2 (36)where: Y (ml) � fuzzy model output value for measurement ve
tor ml.The last step of the pro
ess is the rule base tuning. It is done using a ge-neti
 algorithm again, but in this step the real 
oded version is used. Ea
h
hromosome des
ribes a 
omplete rule base. Chara
teristi
 parameters of lin-guisti
 values for ea
h real variable are 
oded in the form of 
hromosome genes.So, an individual 
hromosome 
an be presented in the forms mentioned earlier,i.e. (13, 14, 15). The initial population 
onsists of randomly generated 
hromo-somes, ex
ept for one 
hromosome, whi
h represents the rule base obtained asa result of the previous part of 
al
ulations. The arithmeti
al min-max 
rossingoperator and the Mi
halewi
z non-uniform mutation operator are implemented.The algorithm tries to minimize the value of the �tness fun
tion (36).7. Generation of fuzzy model of temperature di�eren
e ina 
ondenserThe algorithm presented above was used to 
reate a fuzzy model of temperaturedi�eren
e in a 
ondenser. The parameters of model generation pro
ess are givenin Table 1. As it was already mentioned (in Se
tion 4) the training data set
onsisted of 2,250 samples. The number of training samples was the result ofthe redu
tion pro
ess 
arried out to de
rease the time of 
al
ulations. To 
he
kthe in�uen
e of the redu
tion pro
ess on quality of generated model, the �rststep of model generation was 
arried out on the basis of the full training set(15,420 samples) and the redu
ed one (2,250 samples). The quality measures ofgenerated models are presented in Tables 2 and 3. The di�eren
es in the errorvalues are not signi�
ant but the 
orrelation value is mu
h better in the 
aseof the redu
ed training data set. Additionally, the redu
tion pro
ess de
reasedthe 
al
ulation time (about ten times). So, the next steps of model generationwere 
arried out on the basis of the redu
ed training set.In the 
ase of the redu
ed data set the generation algorithm removed 2,246samples. Next the ex
hange of the geneti
 material was 
arried out. The algo-rithm removed the next three samples. On the basis of the last sample a fuzzyrule was generated. Then, the obtained rule base was simpli�ed and tuneda

ording to the algorithm.To make the generation pro
ess possible, ea
h data ve
tor was fuzzi�ed usinglinguisti
 values, de�ned for ea
h variable. The range of ea
h variable waspartitioned into seven linguisti
 values. As it was already mentioned (Se
tion5) the �rst of the linguisti
 values was des
ribed by the L type fuzzy set, thelast one by the Γ type fuzzy set, and the other ones by Λ type fuzzy sets.In the same way the fuzzy model output value was defuzzi�ed. During the



578 M. PAJ�KTable 1. Parameters of model generation pro
essNo Parameter name Value1. Compatibility degree 1.02. Threshold of sample 0.053. Negative to positive samples fa
tor k 0.14. Threshold of 
ompatibility degree between rule baseand samples set 0.255. T-norm used in rule base generation pro
ess MINIMUM6. Number of geneti
 algorithm generations runs in oneiteration step 507. Number of useless evolution strategy modi�
ationsruns to stop 258. Number of 
hromosomes modi�ed by evolution strategy 20% of population9. Mutation parameter 
 of evolution strategy 0.910. Number of generations in simpli�
ation pro
ess 50011. Number of generations in tuning pro
ess 100012. Number of simpli�
ation pro
ess initial population
hromosomes 6113. Number of tuning pro
ess initial population
hromosomes 6114. Parameter b of non-uniform Mi
halewi
z mutation 515. Crossing probability of generation pro
ess 0.616. Crossing probability of simpli�
ation pro
ess 0.617. Crossing probability of tuning pro
ess 0.618. Mutation probability of generation pro
ess 0.119. Mutation probability of simpli�
ation pro
ess 0.120. Mutation probability of tuning pro
ess 0.121. Min-max arithmeti
al operator 
oe�
ient 0.3522. Aggregation operator of fuzzy model MINIMUM23. Impli
ation operator of fuzzy model MINIMUM24. A

umulation operator of fuzzy model MAXIMUM25. Defuzzy�
ation operator of fuzzy model 
entre of weightTable 2. Quality measures of temperature di�eren
e fuzzy model after �rst stepof the generation pro
ess (full data set)Maximum error [%℄ 73.4014Minimum error [%℄ 0.0065Correlation [%℄ 43.86Mean square error 0.4247Mean square error [%℄ 0.1330Mean absolute error [%℄ 15.1918Number of maximum error examples 1Number of rules 37
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e 579Table 3. Quality measures of temperature di�eren
e fuzzy model after �rst stepof the generation pro
ess (redu
ed data set)Maximum error [%℄ 88.4636Minimum error [%℄ 0.0196Correlation [%℄ 66.0760Mean square error 0.6515Mean square error [%℄ 0.1647Mean absolute error [%℄ 19.5801Number of maximum error examples 1Number of rules 32

Figure 4. Linguisti
 values of temperature of water in�ow to the 
ondenser
00,20,40,60,81
3,0578 5,0578 7,0578 9,0578 11,0578 13,0578 15,0578 17,0578 19,0578temperature difference in condenser [K]memb ershi pf uncti ons

Figure 5. Linguisti
 values of temperature di�eren
e in the 
ondensertuning step of the generation pro
ess the 
hara
teristi
 points of the linguisti
values were 
hanged to in
rease the quality of the model. For illustration, thelinguisti
 values for temperature of water in�owing to the 
ondenser (Fig. 4)and temperature di�eren
e in 
ondenser (Fig. 5) are presented.As a result of the 
omplete generation pro
ess the fuzzy model was obtained.The rule base of the model 
onsists of 21 rules. All the rules have the same



580 M. PAJ�Kform. They are built of �ve premises and one 
onsequent. All �ve premises are
onne
ted with the AND operator (12). Some exemplary rules are presentedbelow
Tpwn = L1

Tpwn ∧ psk = L1
psk ∧ Twchd = L2

Twchd ∧ Twchw

= L2
Twchw ∧ Tkond = L2

Tkond ⇒ δT = L1
δT

Tpwn = L3
Tpwn ∧ psk = L3

psk ∧ Twchd = L6
Twchd ∧ Twchw

= L5
Twchw ∧ Tkond = L5

Tkond ⇒ δT = L0
δT (37)

Tpwn = L5
Tpwn ∧ psk = L5

psk ∧ Twchd = L3
Twchd ∧ Twchw

= L3
Twchw ∧ Tkond = L4

Tkond ⇒ δT = L5
δTwhere: Li

Tpwn � linguisti
 value no. i of temperature of steam�owing out of low pressure turbine [K℄
Li

psk � linguisti
 value no. i of pressure in 
ondenser [MPa℄
Li

Twchd � linguisti
 value no. i of temperature of input waterto the 
ondenser [K℄
Li

Twchw � linguisti
 value no. i of temperature of output waterfrom the 
ondenser [K℄
Li

Tkond � linguisti
 value no. i of temperature of 
ondensate [K℄
Li

δT � linguisti
 value no. i of temperature di�eren
ein 
ondenser [K℄.A

ording to the Mamdani model 
hara
teristi
 (Piegat, 1999) the rules arenot evenly distributed in the solution spa
e. The regions, where the solutionspa
e 
hanges its shape fast are 
overed by a higher number of fuzzy rules.Thanks to this the model of the form 
onsidered 
an de
rease the number ofrules and keep high a

ura
y of the response.The fuzzy model developed was tested using a testing data set. The testingdata set 
onsisted of 15,420 samples. The testing data set was as big as possibleto guarantee 
ertainty of the testing results. The results of model testing arepresented in Table 4.Table 4. Quality measures of temperature di�eren
e fuzzy modelMaximum error [%℄ 44.1898Minimum error [%℄ 0.0030Correlation [%℄ 83.3495Mean square error 0.1366Mean square error [%℄ 0.0754Mean absolute error [%℄ 11.2652Number of maximum error examples 1Number of rules 21
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e 581To 
he
k the quality of the generated model the following measures wereapplied:� the relative maximum error:
δmax = max

{

∀
ml∈M

|y(ml) − Y (ml)|
y(ml)

} (38)where: y(ml) � output of obje
t for ml sample [K℄
Y (ml) � output of model for ml sample [K℄;� the number of examples generated with the maximum error;� the relative minimum error:

δmin = min

{

∀
ml∈M

|y(ml) − Y (ml)|
y(ml)

}

; (39)� the number of examples generated with no error� the relative absolute error
δma =

p
∑

l=1

|y(ml)−Y (ml)|
y(ml)

p
. (40)However, the most important measures of model quality are the mean squareerror (36), the value of the 
orrelation fun
tion (41) and the relative mean squareerror (42):

ryY =

p
∑

l=1

(y(ml) − ȳ) · (Y (ml) − Ȳ )

√

p
∑

l=1

(y(ml) − ȳ)2 ·
p
∑

l=1

(Y (ml) − Ȳ )2

, (41)
δrw =

1

(ymax − ymin)

√

√

√

√

∑

ml∈M

(y(ml) − Y (ml))2

p · (p + 1)
. (42)8. Con
lusionsUpon analysing the results obtained we 
an say that the quality of the fuzzymodel is pretty good, espe
ially the value of the relative mean square error,whi
h is very small. The experiment 
arried out proves the 
orre
tness of theused algorithms and methods. Looking at the results of modelling of the tem-perature di�eren
e in a 
ondenser we 
an say that it is possible to put intopra
ti
e the software 
reated and to use it to model real industrial obje
ts.
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