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Abstract: The paper deals with the problem of determining
Hurwitz stability of a ball of polynomials defined by a weighted [,
norm in the coefficient space where p is an arbitrary positive integer
including infinity. The solution of the case when the weights are
supposed to be the same for coefficient being above and below its
nominal value corresponding to symmetric ball has been given by
Tsypkin and Polyak. However, sometimes it seems to be useful to
have a possibility to consider these weights as different, resulting
in the asymmetric ball. This is, for example, the situation where
the weights express our level of confidence that the real value of a
coefficient lies in some interval. Such approach is used if the value
of a coefficient is estimated by an expert.

Solution of the problem is based on frequency domain plot in the
complex plane and on applying the Zero Exclusion Theorem. The
main idea consists in separation of the original problem into four sub-
problems and using an appropriate coordinate transformation which
makes the value set independent of frequency. This transformation
makes it possible to move the relative value set into the origin of the
complex plane and to easily formulate the necessary and sufficient
condition of Hurwitz stability of asymmetric ball of polynomials with
prescribed radius or determine the maximum radius preserving sta-
bility. The whole graphical procedure consists of four plots instead
of one, needed in the symmetric case.

Keywords: robust stability, parametric uncertainty, continuous-
time systems.

1. Introduction

Since the publication of the celebrated Kharitonov theorem, Kharitonov (1978),
the area of robust stability analysis of linear systems with parametric un-
certainty has been intensively developed. A comprehensive survey of results
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achieved in last decades can be found in Barmish (1994) and Bhattacharyya et
al. (1995). Several results have been achieved especially for interval systems.
A very simple proof of the Kharitonov theorem was pointed out by Dasgupta
(1988). The simplification of the Kharitonov theorem for low order systems was
given in Anderson et al. (1987), while Mansour et al. (1989) and Kraus et
al. (1988) have given several counterpart results on robust Schur stability and
strong Kharitonov theorems for Schur interval systems. A unifying frequency
domain approach for robust stability analysis was presented in Dasgupta et al.
(1991).

A more general case represents consideration of an uncertain polynomial
where the coefficients are constrained by some [, weighted norm, p being a
positive integer. Hurwitz stability margin of such a ball of polynomials was
determined by Tsypkin and Polyak (1991). The graphical method developed by
them is based on a complex plane frequency domain plot. The main idea consists
in transforming the coordinates of traditional frequency plot such that the value
set becomes independent of frequency. This idea is stressed in Mansour (1994).

Based on that the generalization of Tsypkin-Polyak locus is given, in this
paper we take into account the case of different weights, considered for the
coefficient being above and below its nominal value. This consideration is useful
if the weights reflect our level of confidence that the true value of a coefficient lies
in some interval. The nominal value need not be necessarily equal to the center
of the interval. Such approach is adopted e.g. by Bondia and Pico (2003a) in
the concept of fuzzy linear systems where the uncertain parameters of a linear
system are described by fuzzy numbers. In Bondia and Picoé (2003b) fuzzy
numbers are used to distinguish between the most-cases and the worst-cases
behavior of a system.

2. The Zero Exclusion Principle

In this section a modification of the fundamental stability criterion in frequency
domain will be presented.

Let A be a connected region in the (n+1)-dimensional space. Let us consider
a family of polynomials

p(s,A)=ap+a1s+ - +aps",a; € R,a=ag,...,a,],a € A. (1)

DEFINITION 1 Polynomial p(s,a) is said to be D-stable if and only if all its
roots lie in an open connected domain D C C.

DEFINITION 2 A family of polynomials p(s, A) is said to be D-stable if and only
if all its members are D-stable, i.e. p(s,a) is D-stable polynomial Va € A.

To derive the main result of this paper the well-known boundary crossing
theorem will be used.
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THEOREM 1 (BOUNDARY CROSSING THEOREM) The family of polynomials
p(s, A) (1) of invariant degree is D-stable if and only if

a) there exists a D-stable polynomial p(s,a*), a* € A,

b) s* ¢ roots(p(s, A)), Vs* € 0D

where D stands for boundary of D.

This intuitive result simply states the fact that the first encounter of polyno-
mial with fixed degree (i.e. coefficient a,, does not include zero) with instability
has to be on the boundary of stability domain. Computationally more efficient
version of the boundary crossing theorem is formulated by the zero exclusion
principle.

THEOREM 2 (ZERO EXCLUSION PRINCIPLE) The family of polynomials p(s, A)
(1) is D-stable if and only if

a) there exists a D-stable polynomial p(s,a*), a* € A,

b) 0 ¢ p(s*, A),Vs* € 9D,

¢) coefficient a,, does not include 0.

The set p(s*, A),s* € 9D is called the value set. In the case of Hurwitz
stability 0D corresponds to the imaginary axis (semiaxis) of the complex plane.

Considering p;(w) = h(w) + jwg(w) instead of p(jw) = h(w) + jg(w) where
h(s) and sg(s) are the even and odd parts of the polynomial p(s), respectively,
the following theorem can be stated.

THEOREM 3 The family of polynomials p(s, A) (1) is Hurwitz stable if and only
if

a) there exists a Hurwitz stable polynomial p(s,a*), a* € A,

b) 0 ¢ pl(waA)v Vw >0,

¢) the coefficient a,, does not include 0,

d) for w = 0 the value set p1(w, A) does not include points on the imaginary
azxis.

REMARK 1 From the monotonic phase increase property for Hurwitz polynomi-
als follows that the frequency plot of p(s,a*) in the complex plane goes through
n quadrants in the counterclockwise direction.

REMARK 2 Part d) of Theorem 3 is equivalent to the condition that the coefhi-
cient ag does not include 0 because h(0) = 0 is equivalent to ag = 0.

Since dividing of the even and odd parts of a polynomial by some positive
functions cannot affect zero exclusion or inclusion in the value set we can replace
p1(w) by pa(w) = h(w)/S(w) + jg((w)/S(w)) where S(w) and T'(w) are positive
functions of w > 0. Moreover, if lim,, o h(w)/S(w) and lim, o g(w)/T (w)
are finite, we can replace condition c) of Theorem 3 by the condition c) of the
following theorem.
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THEOREM 4 The family of polynomials p(s, A) (1) is Hurwitz stable if and only
if

a) there exists a Hurwitz stable polynomial p(s,a*), a* € A,

b) 0 ¢ pa(w, A)Vw > 0,

¢) for w = oo the value set pa(w, A) does not include points on the imaginary
axis for n even or points on the real axis for n odd,

d) for w = 0 the value set pa(w, A) does not include points on the imaginary
azis.

The equivalence of condition c) of Theorem 4 with condition ¢) of Theorem 3

is based on the fact that if and only if a,, is zero then h(w)/S(w) or g(w)/T (w)
vanishes for w = oo.

3. The generalized Tsypkin-Polyak locus

Let us consider a family of polynomials (1) centered at a nominal point a =
[ad,a?,...,al] with the coefficients lying in the asymmetric weighted [, ball of
radius p,
1
n o|p|r
ap — ag

A:=<a: —= < 2
S = ®

where oy = oy, for a; < ag and oy = aj, for ag > ag.

In (2) o > 0 and @ > 0 are given weights for coefficients being below and
above their nominal values respectively, 1 < p < oo is a fixed integer, p > 0 is
the radius of the ball. The family of polynomials (1) associated with the set (2)
is loosely referred to as the asymmetric ball of polynomials. The objective is to
check if the asymmetric {,, ball of polynomials (2) with prescribed p is robustly
Hurwitz stable or not and also to determine the maximal p preserving robust
stability of (2).

Let us again decompose a member of family of polynomials (1) into its even
and odd parts. For s = jw we can write

p(jw,a) = h(w,a) + jwg(w,a),a € A. (3)

The nominal polynomial pg(s) evaluated in s = jw can then be written as

po(jw) = p(jw,a’) = ho(w) + jwgo(w) (4)
where
ho(w) = af — adw? + afw* — - -
0 1 ()

go(w) = af — adw? + adw* — - .
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Denote by Aay = ax — al and p, = Aay/ay. The deviations of even and
odd parts of a polynomial then can be expressed as

Ah(w) = h{w,a)—ho(w) = Y (~1)"*Agyw*

keven

Aglw) = glw,a) = go(w) =D (=" V2 Aaput ! (6)
koda

respectively.
Let us discuss four different cases according to the signs of Ah(w) and Ag(w).

Case 1. Ah(w) > 0,Ag(w) > 0:
For Ah(w) > 0 we can write

Ahw) < Y maret = Y s (7)
k/2even k/zodd

For its absolute value we have

An)] < | Y mawet| | Y —prone®
k/2even k/20dd
< D lmaet|+ D [—mane]. (®)
k/2even k/20dd

By applying Holders inequality one obtains

1

|AR(W)] < (Z Iuk|p> Yo @)+ Y (awh) (9)

keven k/2even k/204d

Q=

where ¢ is the index conjugate to p:

11
—4+-=1 10
i (10)

Analogically, for Ag(w) > 0 we have

Agw)< > mapw®Y - Y e (11)
(k_l)/2even (k_l)/20dd
and
1 1
P q
[Ag()l < | D Il > @)+ Y ()
kodd (kil)/2even (kil)/2odd

(12)
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Let us introduce

Q=

Spiw) = Y @)+ > (aww*)? (13)
k/2even k/2644
and
]
Taw)=| > (@u* )+ Y (™)) . (14)
(k=1)/2even (k=1)/26q4

Let us note that Sp1 (w) and Tp1 (w) are positive functions of w > 0. Moreover,
limy, o0 h(w,a)/Sp1(w) and lim,, .o g(w, a)/Tp1(w) are finite for all p(s,a),a €
A defined by (2).

Substituting (13) and (14) into (9), (12) and (2) gives

AR (1Ag@)\" ) PNy <
(Spl(w) ) * (Tp1(w)> = Z [l + Z |l = kZ:O|Mk| <p (15)

keven kodd

or equivalently

mmmgﬁ <mmm01i

+ < p. 16
{( Sp1(w) Tp1(w) =7 (16)
It means that the value set of the polynomial (1) specified by (2) with

Ah(w) > 0, Ag(w) > 0 evaluated in the coordinates (h(w)/Sp1(w), g(w)/Tp1(w))
is the upper right quarter of [,-disc centered at the nominal polynomial

(ho(w)/Sp1(w), go(w)/Tp1(w))

with radius p for any w > 0. Since the parameters in Ah(w) and Ag(w) are
independent, any point of the upper right quarter of [,-disc (including those
on its boundary) can be reached. By applying Theorem 4 we get the following
result.

Denote by Dp3(p) the quarter of I, disc with radius (p) in the third quadrant
in the complex plane:

Dya(p) i= { (2,9) : 2 < 0,y < 0; lal” + [yl")? < p}. (17)

THEOREM 5 The family of polynomials (1) specified by (2) with Ah(w) > 0 and
Ag(w) > 0 is Hurwitz stable if and only if the frequency plot of the nominal
polynomial p(s,a’) in the complex plane h(w)/Sp (w) + j(g(w)/Tp1)

a) goes through n quadrants in the counterclockwise direction,

b) does not intersect the quarter of l, disc with radius p in the 3rd quadrant,

Dp3(p)a
¢) ad > pay forn=4i+2,4i+3,i=0,1,2,....
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REMARK 3 The condition 5¢) comes from 4c), the condition 4d) is always sat-
isfied.

Case 2. Ah(w) <0,Ag(w) <0:
For Ah(w) < 0 we have

Ah(w) > Z purow® — Z purtrw” (18)

or equivalently, for its absolute value

Bh@) < | Y manwt| + | Y At
k/2even k/20dd
< D lmanet|+ D [maret]. (19)
k/2even k/20dd

Using Holders inequality we obtain

Q=

|Ah(w)] < (Z Iuk|p>p Y (@) + Y (@) (20)

keven k/2even k/zodd

where ¢ is the index conjugate to p.
Analogically, for Ag(w) we have

Agw)> Y maw®™ D+ Y —pageY (21)
(k—=1)/2¢ven (k=1)/2444

and for the absolute value

p

Q=

Bg)l < [ Xl | [ X w0y P @ty
kodd (k—1)/2aven (k=1)/2044
(22)
Introduce
1
Spw) = | 3 () + 3 (@t (23)
k/2even k/20dd
and
1
q
Tpo(w) = Z (%w(kfl))q+ Z (a—kw(kfl))q ' (24)

(k—=1)/2¢ven (k_l)/2odd
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Similarly to previous case, Sp2(w) and T2 (w) are positive functions of w > 0
and both lim,_, h(w,a)/Sp2(w) and lim, . g(w, a)/Tp2(w) are finite for all
p(s,a),a € A defined by (2).

Substituting (23) and (24) into (20), (22) and (2) gives

AR, (1Ag@)\" , P N" <
( Sp2(w) ) - (sz(w) ) < Z | l” + Z || = kZ:O|Mk| <p (25)

keven kodd

or equivalently

1

|Ah(W)|>p (IAQ(W)l)p] v
+ <p. 26
(o) +(2e) | = 20
It means that the value set of the polynomial (1) specified by (2) with
Ah(w) <0, Ag(w) < 0 evaluated in the coordinates (h(w)/Sp2(w), g(w)/Tp2(w))
is the lower left quarter of I,,-disc centered at the nominal polynomial (ho(w)/Spe

(w), go(w)/Tp2(w)) with radius p for any w > 0. Using the same arguments as
above, application of Theorem 4 leads to the following result.

Denote by D,1(p) the quarter of I, disc with radius (p) in the first quadrant
in the complex plane:

Dyi(p) 1= { (5,9) s 2> 0,y > 0; lal? + [ylP)> < p}. (27)

THEOREM 6 The family of polynomials (1) specified by (2) with Ah(w) < 0 and
Ag(w) < 0 is Hurwitz stable if and only if the frequency plot of the nominal
polynomial p(s,a’) in the complex plane h(w)/Sp2(w) + j(g(w)/Tp2)

a) goes through n quadrants in the counterclockwise direction,

b) does not intersect the quarter of l, disc with radius p in the 1st quadrant,

Dpl(p),
¢) a) > pay, forn=4i,4i+1,i=0,1,2,...,
d) ad > pay.

REMARK 4 Conditions 6¢) and 6d) are equivalent to conditions 4c¢) and 4d),
respectively.

Using similar reasoning for the cases Ah(w) < 0, Ag(w) > 0 and Ah(w) > 0,
Ag(w) < 0 the following theorems can be derived.

Denote by Dpa(p) and Dp4(p) the quarter of I, disc with radius (p) in the
second and fourth quadrant in the complex plane, respectively:

Dpalp) = {(@9):2 <0,y =02 + lyl"]? < p}

Dpalp) = {(@y):w >0,y <0s[la +[y]¥ < p}. (28)

s =
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THEOREM 7 The family of polynomials (1) specified by (2) with Ah(w) < 0 and
Ag(w) > 0 is Hurwitz stable if and only if the frequency plot of the nominal
polynomial p(s,a®) in the complex plane h(w)/Sp2(w) + j(g9(w)/Tp1(w))

a) goes through n quadrants in the counterclockwise direction,

b) does not intersect the quarter of l, disc with radius p in the 4th quadrant,
DP4(p)7

¢) al > pay, forn =4i,4i+1,i=0,1,2,...,

d) ad > pag.

THEOREM 8 The family of polynomials (1) specified by (2) with Ah(w) > 0 and
Ag(w) < 0 is Hurwitz stable if and only if the frequency plot of the nominal
polynomial p(s,a°) in the complex plane h(w)/Sp1(w) + j(g(w)/Tp2(w))

a) goes through n quadrants in the counterclockwise direction,

b) does not intersect the quarter of l, disc with radius p in the 2nd quadrant,

Dp2(p)a
¢) ad > pay forn=4i+2,4i+3,i=0,1,2,....

Since the frequency plot of any member of the asymmetric ball of polyno-
mials (2) jumps between four cases, mentioned above, depending on frequency,
it is obvious that the asymmetric ball is robustly Hurwitz stable if and only if
the conditions of Theorems 5-8 are met all at once. From those theorems it also
directly follows that the maximum p preserving stability of (2) is equal to the
maximum p satisfying the conditions of Theorems 5-8.

THEOREM 9 Let us denote the particular stability margins satisfying conditions
of Theorems 5-8 by pp1, pp2, Pp3 and pps respectively. Then the mazimum
radius preserving stability of asymmetric ball of polynomials (2) is ppmax =
min{pp1, Pp2; Pps3; Ppat-

Let us illustrate the derived result on an example.

4. Example
Consider the family of polynomials

p(s, A) = 433.5 4+ 667.55 + 502.65% + 251.75% 4 80.35% + 14.25° + s°
with

= [43.8,29.6,25.1,15.0,5.6,1.4,0.1],
[48.2,26.5,29.1,12.6,4.3,2.2,0.4].

Ql e

Let us determine the maximum stability radius for p = 2 and p = oo (see (2)).

For p = 2 the four plots corresponding to Theorems 5—8 are shown in Figs. 1—-
4, respectively. The particular stability margins are py; = 4.01, p22 = 2.68,
p23 = 2.65 and p24 = 3.68. The maximum radius preserving stability is pamax =
min{pa1, p22, p23, p2a} = 2.65.



558 P. HUSEK

For p = oo the four plots corresponding to Theorems 5-8 are shown in
Figs. 5-8, respectively. The particular stability margins are poo1 = 1.23, poo2 =
2.26, poo3 = 1.44 and poog = 2.17. The maximum radius preserving stability is

Poo max = min{poohpoo% P03, poo4} = 1.44.
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Figure 1. Frequency plot for Ah(w) > 0, Ag(w) >0
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Figure 2. Frequency plot for Ah(w) < 0,Ag(w) <0
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Figure 3. Frequency plot for Ah(w) < 0,Ag(w) >0
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Figure 4. Frequency plot for Ah(w) > 0,Ag(w) <0
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Figure 5. Frequency plot for Ah(w) > 0, Ag(w) > 0

20t 1
}7

15} 1
3
~
=" 10t 1
3
(=2}

sl |

0

. /S

-10 -5 0 5 10 15
h(@)'s,, (@)

Figure 6. Frequency plot for Ah(w) < 0,Ag(w) <0
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Figure 7. Frequency plot for Ah(w) < 0,Ag(w) >0
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Figure 8. Frequency plot for Ah(w) > 0,Ag(w) <0
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5. Conclusion

Extension of the Tsypkin-Polyak locus to the case of different weights considered
for coefficient being above and below its nominal value was presented in this
paper. It was shown that four plots have to be drawn instead of one in order to
determine the maximum radius of the asymmetric ball of polynomials preserving
Hurwitz stability. The result was demonstrated on an illustrative example.
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