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zAbstra
t: The paper deals with the problem of determiningHurwitz stability of a ball of polynomials de�ned by a weighted lpnorm in the 
oe�
ient spa
e where p is an arbitrary positive integerin
luding in�nity. The solution of the 
ase when the weights aresupposed to be the same for 
oe�
ient being above and below itsnominal value 
orresponding to symmetri
 ball has been given byTsypkin and Polyak. However, sometimes it seems to be useful tohave a possibility to 
onsider these weights as di�erent, resultingin the asymmetri
 ball. This is, for example, the situation wherethe weights express our level of 
on�den
e that the real value of a
oe�
ient lies in some interval. Su
h approa
h is used if the valueof a 
oe�
ient is estimated by an expert.Solution of the problem is based on frequen
y domain plot in the
omplex plane and on applying the Zero Ex
lusion Theorem. Themain idea 
onsists in separation of the original problem into four sub-problems and using an appropriate 
oordinate transformation whi
hmakes the value set independent of frequen
y. This transformationmakes it possible to move the relative value set into the origin of the
omplex plane and to easily formulate the ne
essary and su�
ient
ondition of Hurwitz stability of asymmetri
 ball of polynomials withpres
ribed radius or determine the maximum radius preserving sta-bility. The whole graphi
al pro
edure 
onsists of four plots insteadof one, needed in the symmetri
 
ase.Keywords: robust stability, parametri
 un
ertainty, 
ontinuous-time systems.1. Introdu
tionSin
e the publi
ation of the 
elebrated Kharitonov theorem, Kharitonov (1978),the area of robust stability analysis of linear systems with parametri
 un-
ertainty has been intensively developed. A 
omprehensive survey of results
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hieved in last de
ades 
an be found in Barmish (1994) and Bhatta
haryya etal. (1995). Several results have been a
hieved espe
ially for interval systems.A very simple proof of the Kharitonov theorem was pointed out by Dasgupta(1988). The simpli�
ation of the Kharitonov theorem for low order systems wasgiven in Anderson et al. (1987), while Mansour et al. (1989) and Kraus etal. (1988) have given several 
ounterpart results on robust S
hur stability andstrong Kharitonov theorems for S
hur interval systems. A unifying frequen
ydomain approa
h for robust stability analysis was presented in Dasgupta et al.(1991).A more general 
ase represents 
onsideration of an un
ertain polynomialwhere the 
oe�
ients are 
onstrained by some lp weighted norm, p being apositive integer. Hurwitz stability margin of su
h a ball of polynomials wasdetermined by Tsypkin and Polyak (1991). The graphi
al method developed bythem is based on a 
omplex plane frequen
y domain plot. The main idea 
onsistsin transforming the 
oordinates of traditional frequen
y plot su
h that the valueset be
omes independent of frequen
y. This idea is stressed in Mansour (1994).Based on that the generalization of Tsypkin-Polyak lo
us is given, in thispaper we take into a

ount the 
ase of di�erent weights, 
onsidered for the
oe�
ient being above and below its nominal value. This 
onsideration is usefulif the weights re�e
t our level of 
on�den
e that the true value of a 
oe�
ient liesin some interval. The nominal value need not be ne
essarily equal to the 
enterof the interval. Su
h approa
h is adopted e.g. by Bondia and Pi
ó (2003a) inthe 
on
ept of fuzzy linear systems where the un
ertain parameters of a linearsystem are des
ribed by fuzzy numbers. In Bondia and Pi
ó (2003b) fuzzynumbers are used to distinguish between the most-
ases and the worst-
asesbehavior of a system.2. The Zero Ex
lusion Prin
ipleIn this se
tion a modi�
ation of the fundamental stability 
riterion in frequen
ydomain will be presented.Let A be a 
onne
ted region in the (n+1)-dimensional spa
e. Let us 
onsidera family of polynomials
p(s, A) = a0 + a1s + · · · + ansn, ai ∈ ℜ,a = [a0, . . . , an],a ∈ A. (1)Definition 1 Polynomial p(s,a) is said to be D-stable if and only if all itsroots lie in an open 
onne
ted domain D ⊂ C.Definition 2 A family of polynomials p(s, A) is said to be D-stable if and onlyif all its members are D-stable, i.e. p(s,a) is D-stable polynomial ∀a ∈ A.To derive the main result of this paper the well-known boundary 
rossingtheorem will be used.



On parametri
 Hurwitz stability margin of real polynomials 551Theorem 1 (Boundary 
rossing theorem) The family of polynomials
p(s, A) (1) of invariant degree is D-stable if and only ifa) there exists a D-stable polynomial p(s,a∗), a∗ ∈ A,b) s∗ /∈ roots(p(s, A)), ∀s∗ ∈ ∂Dwhere ∂D stands for boundary of D.This intuitive result simply states the fa
t that the �rst en
ounter of polyno-mial with �xed degree (i.e. 
oe�
ient an does not in
lude zero) with instabilityhas to be on the boundary of stability domain. Computationally more e�
ientversion of the boundary 
rossing theorem is formulated by the zero ex
lusionprin
iple.Theorem 2 (Zero ex
lusion prin
iple) The family of polynomials p(s, A)(1) is D-stable if and only ifa) there exists a D-stable polynomial p(s,a∗), a∗ ∈ A,b) 0 /∈ p(s∗, A), ∀s∗ ∈ ∂D,
) 
oe�
ient an does not in
lude 0.The set p(s∗, A), s∗ ∈ ∂D is 
alled the value set. In the 
ase of Hurwitzstability ∂D 
orresponds to the imaginary axis (semiaxis) of the 
omplex plane.Considering p1(ω) = h(ω) + jωg(ω) instead of p(jω) = h(ω) + jg(ω) where
h(s) and sg(s) are the even and odd parts of the polynomial p(s), respe
tively,the following theorem 
an be stated.Theorem 3 The family of polynomials p(s, A) (1) is Hurwitz stable if and onlyifa) there exists a Hurwitz stable polynomial p(s,a∗), a∗ ∈ A,b) 0 /∈ p1(ω, A), ∀ω ≥ 0,
) the 
oe�
ient an does not in
lude 0,d) for ω = 0 the value set p1(ω, A) does not in
lude points on the imaginaryaxis.Remark 1 From the monotoni
 phase in
rease property for Hurwitz polynomi-als follows that the frequen
y plot of p(s,a∗) in the 
omplex plane goes through
n quadrants in the 
ounter
lo
kwise dire
tion.Remark 2 Part d) of Theorem 3 is equivalent to the 
ondition that the 
oe�-
ient a0 does not in
lude 0 be
ause h(0) = 0 is equivalent to a0 = 0.Sin
e dividing of the even and odd parts of a polynomial by some positivefun
tions 
annot a�e
t zero ex
lusion or in
lusion in the value set we 
an repla
e
p1(ω) by p2(ω) = h(ω)/S(ω) + jg((ω)/S(ω)) where S(ω) and T (ω) are positivefun
tions of ω ≥ 0. Moreover, if limω→∞ h(ω)/S(ω) and limω→∞ g(ω)/T (ω)are �nite, we 
an repla
e 
ondition 
) of Theorem 3 by the 
ondition 
) of thefollowing theorem.



552 P. HU�EKTheorem 4 The family of polynomials p(s, A) (1) is Hurwitz stable if and onlyifa) there exists a Hurwitz stable polynomial p(s,a∗), a∗ ∈ A,b) 0 /∈ p2(ω, A)∀ω ≥ 0,
) for ω = ∞ the value set p2(ω, A) does not in
lude points on the imaginaryaxis for n even or points on the real axis for n odd,d) for ω = 0 the value set p2(ω, A) does not in
lude points on the imaginaryaxis.The equivalen
e of 
ondition 
) of Theorem 4 with 
ondition 
) of Theorem 3is based on the fa
t that if and only if an is zero then h(ω)/S(ω) or g(ω)/T (ω)vanishes for ω = ∞.3. The generalized Tsypkin-Polyak lo
usLet us 
onsider a family of polynomials (1) 
entered at a nominal point a0 =
[a0

0, a
0
1, . . . , a

0
n] with the 
oe�
ients lying in the asymmetri
 weighted lp ball ofradius ρ,

A :=







a :

[

n
∑

k=0

∣

∣

∣

∣

ak − a0
k

αk

∣

∣

∣

∣

p
]
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p

≤ ρ







(2)where αk = αk for ak < a0
k and αk = αk for ak ≥ a0

k.In (2) αk > 0 and αk > 0 are given weights for 
oe�
ients being below andabove their nominal values respe
tively, 1 ≤ p ≤ ∞ is a �xed integer, ρ ≥ 0 isthe radius of the ball. The family of polynomials (1) asso
iated with the set (2)is loosely referred to as the asymmetri
 ball of polynomials. The obje
tive is to
he
k if the asymmetri
 lp ball of polynomials (2) with pres
ribed ρ is robustlyHurwitz stable or not and also to determine the maximal ρ preserving robuststability of (2).Let us again de
ompose a member of family of polynomials (1) into its evenand odd parts. For s = jω we 
an write
p(jω, a) = h(ω, a) + jωg(ω, a),a ∈ A. (3)The nominal polynomial p0(s) evaluated in s = jω 
an then be written as
p0(jω) = p(jω, a0) = h0(ω) + jωg0(ω) (4)where
h0(ω) = a0

0 − a0
2ω

2 + a0
4ω

4 − · · ·
g0(ω) = a0

1 − a0
3ω

2 + a0
5ω

4 − · · · .
(5)
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 Hurwitz stability margin of real polynomials 553Denote by ∆ak = ak − a0
k and µk = ∆ak/αk. The deviations of even andodd parts of a polynomial then 
an be expressed as

∆h(ω) = h(ω, a) − h0(ω) =
∑

keven(−1)k/2∆akωk

∆g(ω) = g(ω, a) − g0(ω) =
∑

kodd(−1)(k−1)/2∆akωk−1 (6)respe
tively.Let us dis
uss four di�erent 
ases a

ording to the signs of ∆h(ω) and ∆g(ω).Case 1. ∆h(ω) ≥ 0, ∆g(ω) ≥ 0:For ∆h(ω) ≥ 0 we 
an write
∆h(ω) ≤

∑

k/2even µkαkωk −
∑

k/2odd µkαkωk. (7)For its absolute value we have
|∆h(ω)| ≤

∣
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∣

∣

∣

∣

∑
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∣

∣

∣

≤
∑

k/2even ∣∣µkαkωk
∣

∣+
∑

k/2odd ∣∣−µkαkωk
∣

∣ . (8)By applying Hölders inequality one obtains
|∆h(ω)| ≤

(

∑

keven |µk|
p

)
1

p





∑

k/2even(αkωk)q +
∑

k/2odd(αkωk)q


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1

q (9)where q is the index 
onjugate to p:
1

p
+

1

q
= 1. (10)Analogi
ally, for ∆g(ω) ≥ 0 we have

∆g(ω) ≤
∑

(k−1)/2even µkαkω(k−1) −
∑

(k−1)/2odd µkαkω(k−1) (11)and
|∆g(ω)| ≤


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∑

kodd |µk|
p





1

p
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554 P. HU�EKLet us introdu
e
Sp1(ω) =





∑

k/2even(αkωk)q +
∑

k/2odd(αkωk)q





1

q (13)and
Tp1(ω) =





∑

(k−1)/2even(αkω(k−1))q +
∑

(k−1)/2odd(αkω(k−1))q





1

q

. (14)Let us note that Sp1(ω) and Tp1(ω) are positive fun
tions of ω ≥ 0. Moreover,
limω→∞ h(ω, a)/Sp1(ω) and limω→∞ g(ω, a)/Tp1(ω) are �nite for all p(s,a),a ∈
A de�ned by (2).Substituting (13) and (14) into (9), (12) and (2) gives
(

|∆h(ω)|

Sp1(ω)

)p

+

(

|∆g(ω)|

Tp1(ω)

)p

≤
∑

keven |µk|
p +

∑

kodd |µk|
p =

n
∑

k=0

|µk|
p ≤ ρp (15)or equivalently

[(

|∆h(ω)|

Sp1(ω)

)p

+

(

|∆g(ω)|

Tp1(ω)

)p] 1

p

≤ ρ. (16)It means that the value set of the polynomial (1) spe
i�ed by (2) with
∆h(ω) ≥ 0, ∆g(ω) ≥ 0 evaluated in the 
oordinates (h(ω)/Sp1(ω), g(ω)/Tp1(ω))is the upper right quarter of lp-dis
 
entered at the nominal polynomial

(h0(ω)/Sp1(ω), g0(ω)/Tp1(ω))with radius ρ for any ω ≥ 0. Sin
e the parameters in ∆h(ω) and ∆g(ω) areindependent, any point of the upper right quarter of lp-dis
 (in
luding thoseon its boundary) 
an be rea
hed. By applying Theorem 4 we get the followingresult.Denote by Dp3(ρ) the quarter of lp dis
 with radius (ρ) in the third quadrantin the 
omplex plane:
Dp3(ρ) :=

{

(x, y) : x ≤ 0, y ≤ 0; [|x|p + |y|p]
1

p ≤ ρ
}

. (17)Theorem 5 The family of polynomials (1) spe
i�ed by (2) with ∆h(ω) ≥ 0 and
∆g(ω) ≥ 0 is Hurwitz stable if and only if the frequen
y plot of the nominalpolynomial p(s,a0) in the 
omplex plane h(ω)/Sp1(ω) + j(g(ω)/Tp1)a) goes through n quadrants in the 
ounter
lo
kwise dire
tion,b) does not interse
t the quarter of lp dis
 with radius ρ in the 3rd quadrant,
Dp3(ρ),
) a0

n > ραn for n = 4i + 2, 4i + 3, i = 0, 1, 2, . . ..



On parametri
 Hurwitz stability margin of real polynomials 555Remark 3 The 
ondition 5
) 
omes from 4
), the 
ondition 4d) is always sat-is�ed.Case 2. ∆h(ω) ≤ 0, ∆g(ω) ≤ 0:For ∆h(ω) ≤ 0 we have
∆h(ω) ≥

∑

k/2even µkαkωk −
∑

k/2odd µkαkωk (18)or equivalently, for its absolute value
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q (20)where q is the index 
onjugate to p.Analogi
ally, for ∆g(ω) we have
∆g(ω) ≥
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∑
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e
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556 P. HU�EKSimilarly to previous 
ase, Sp2(ω) and Tp2(ω) are positive fun
tions of ω ≥ 0and both limω→∞ h(ω, a)/Sp2(ω) and limω→∞ g(ω, a)/Tp2(ω) are �nite for all
p(s,a),a ∈ A de�ned by (2).Substituting (23) and (24) into (20), (22) and (2) gives
(

|∆h(ω)|

Sp2(ω)

)p

+

(

|∆g(ω)|

Tp2(ω)

)p

≤
∑

keven |µk|
p +

∑

kodd |µk|
p =

n
∑

k=0

|µk|
p ≤ ρp (25)or equivalently

[(

|∆h(ω)|

Sp2(ω)

)p

+

(

|∆g(ω)|

Tp2(ω)

)p] 1

p

≤ ρ. (26)It means that the value set of the polynomial (1) spe
i�ed by (2) with
∆h(ω) ≤ 0, ∆g(ω) ≤ 0 evaluated in the 
oordinates (h(ω)/Sp2(ω), g(ω)/Tp2(ω))is the lower left quarter of lp-dis
 
entered at the nominal polynomial (h0(ω)/Sp2

(ω), g0(ω)/Tp2(ω)) with radius ρ for any ω ≥ 0. Using the same arguments asabove, appli
ation of Theorem 4 leads to the following result.Denote by Dp1(ρ) the quarter of lp dis
 with radius (ρ) in the �rst quadrantin the 
omplex plane:
Dp1(ρ) :=

{

(x, y) : x ≥ 0, y ≥ 0; [|x|p + |y|p]
1

p ≤ ρ
}

. (27)Theorem 6 The family of polynomials (1) spe
i�ed by (2) with ∆h(ω) ≤ 0 and
∆g(ω) ≤ 0 is Hurwitz stable if and only if the frequen
y plot of the nominalpolynomial p(s,a0) in the 
omplex plane h(ω)/Sp2(ω) + j(g(ω)/Tp2)a) goes through n quadrants in the 
ounter
lo
kwise dire
tion,b) does not interse
t the quarter of lp dis
 with radius ρ in the 1st quadrant,
Dp1(ρ),
) a0

n > ραn for n = 4i, 4i + 1, i = 0, 1, 2, . . .,d) a0
0 > ρα0.Remark 4 Conditions 6
) and 6d) are equivalent to 
onditions 4
) and 4d),respe
tively.Using similar reasoning for the 
ases ∆h(ω) ≤ 0, ∆g(ω) ≥ 0 and ∆h(ω) ≥ 0,

∆g(ω) ≤ 0 the following theorems 
an be derived.Denote by Dp2(ρ) and Dp4(ρ) the quarter of lp dis
 with radius (ρ) in these
ond and fourth quadrant in the 
omplex plane, respe
tively:
Dp2(ρ) :=

{

(x, y) : x ≤ 0, y ≥ 0; [|x|p + |y|p]
1

p ≤ ρ
}

Dp4(ρ) :=
{

(x, y) : x ≥ 0, y ≤ 0; [|x|p + |y|p]
1

p ≤ ρ
}

. (28)



On parametri
 Hurwitz stability margin of real polynomials 557Theorem 7 The family of polynomials (1) spe
i�ed by (2) with ∆h(ω) ≤ 0 and
∆g(ω) ≥ 0 is Hurwitz stable if and only if the frequen
y plot of the nominalpolynomial p(s,a0) in the 
omplex plane h(ω)/Sp2(ω) + j(g(ω)/Tp1(ω))a) goes through n quadrants in the 
ounter
lo
kwise dire
tion,b) does not interse
t the quarter of lp dis
 with radius ρ in the 4th quadrant,
Dp4(ρ),
) a0

n > ραn for n = 4i, 4i + 1, i = 0, 1, 2, . . .,d) a0
0 > ρα0.Theorem 8 The family of polynomials (1) spe
i�ed by (2) with ∆h(ω) ≥ 0 and

∆g(ω) ≤ 0 is Hurwitz stable if and only if the frequen
y plot of the nominalpolynomial p(s,a0) in the 
omplex plane h(ω)/Sp1(ω) + j(g(ω)/Tp2(ω))a) goes through n quadrants in the 
ounter
lo
kwise dire
tion,b) does not interse
t the quarter of lp dis
 with radius ρ in the 2nd quadrant,
Dp2(ρ),
) a0

n > ραn for n = 4i + 2, 4i + 3, i = 0, 1, 2, . . ..Sin
e the frequen
y plot of any member of the asymmetri
 ball of polyno-mials (2) jumps between four 
ases, mentioned above, depending on frequen
y,it is obvious that the asymmetri
 ball is robustly Hurwitz stable if and only ifthe 
onditions of Theorems 5�8 are met all at on
e. From those theorems it alsodire
tly follows that the maximum ρ preserving stability of (2) is equal to themaximum ρ satisfying the 
onditions of Theorems 5�8.Theorem 9 Let us denote the parti
ular stability margins satisfying 
onditionsof Theorems 5�8 by ρp1, ρp2, ρp3 and ρp4 respe
tively. Then the maximumradius preserving stability of asymmetri
 ball of polynomials (2) is ρp max =
min{ρp1, ρp2, ρp3, ρp4}.Let us illustrate the derived result on an example.4. ExampleConsider the family of polynomials

p(s, A) = 433.5 + 667.5s + 502.6s2 + 251.7s3 + 80.3s4 + 14.2s5 + s6with
α = [43.8, 29.6, 25.1, 15.0, 5.6, 1.4, 0.1],

α = [48.2, 26.5, 29.1, 12.6, 4.3, 2.2, 0.4].Let us determine the maximum stability radius for p = 2 and p = ∞ (see (2)).For p = 2 the four plots 
orresponding to Theorems 5�8 are shown in Figs. 1�4, respe
tively. The parti
ular stability margins are ρ21 = 4.01, ρ22 = 2.68,
ρ23 = 2.65 and ρ24 = 3.68. The maximum radius preserving stability is ρ2max =
min{ρ21, ρ22, ρ23, ρ24} = 2.65.



558 P. HU�EKFor p = ∞ the four plots 
orresponding to Theorems 5�8 are shown inFigs. 5�8, respe
tively. The parti
ular stability margins are ρ∞1 = 1.23, ρ∞2 =
2.26, ρ∞3 = 1.44 and ρ∞4 = 2.17. The maximum radius preserving stability is
ρ∞max = min{ρ∞1, ρ∞2, ρ∞3, ρ∞4} = 1.44.
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y plot for ∆h(ω) ≤ 0, ∆g(ω) ≥ 0
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y plot for ∆h(ω) ≥ 0, ∆g(ω) ≤ 0
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