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694 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKISuppose that the set of objets is partitioned into many relatively small sub-sets and we have some reason to suspet that one or several of these subsets maybe atypial or aberrant. Our motivating example is a set of questionnaires par-titioned into subsets orresponding to pollsters. Similar situations our veryfrequently if data onerning, e.g., patients, are partitioned into subsets orre-sponding to di�erent hospitals (with some of the hospitals possibly atypial), orstudents, partitioned into subsets orresponding to shools, et. The problemis partiularly important if we have very large sets of data. Although there isextensive literature on identifying individual outliers among data points (Bar-nett and Toby, 1994; Hampel et al., 1986; Renze, no date), deteting atypialsubsets has not reeived enough attention yet. This problem is losely relatedto disriminant analysis (Morrison, 1967; Koronaki, 2005; Lahenbruh, 1975;Ripley, 1996), disordany tests, homogeneity tests, goodness-of-�t tests (Mar-dia, Kent and Bibby, 1979; Venables and Ripley, 2002) and blok proeduresfor multiple outliers (Barnett and Toby, 1994).For simpliity let us fous on just one subset, marked out. We are to deideif this subset is abnormal, unrepresentative, e.g. inludes some errors or di�ersfrom the rest of data with respet to the mean or ovariane struture. In orderto verify or falsify our supposition we perform a test of disordany. We willonstrut a suitable new measure J , whih quanti�es separability between oursuspeted subset and the rest of data. Small value of J indiates good separationand thus supports our supposition. The measure J is normalized so that ittakes values in the interval [0,1℄, with 0 orresponding to perfet separability.Therefore if the value of J is signi�antly small, this is an evidene of atypialityof the subset under onsideration. In fat, we will de�ne two versions of measure
J , denoted Jd and Jw. Preise de�nitions are given in Setion 3. In view ofour appliations, both these measures are related to quadrati disriminationand estimation of lassi�ation error (Koronaki, 2005; Lahenbruh, 1967, 1975;Lahenbruh and Mikey, 1968). In priniple our idea of quantifying separabilityan be applied more generally, with other methods of disrimination used insteadof quadrati disrimination.Formally, the problem, whih we onsider in this paper, an be regarded asa speial ase of testing homogeneity between two samples. However, we shouldpoint out some di�erenes. We have in mind situations where a relatively smallsubset may stand out from the homogeneous main bulk of data. Moreover, inmost appliations we should perform simultaneous tests of multiple hypotheses,orresponding to several suspeted subsets. Let us also emphasize that we as-sume an a priori given and known partition of data into subsets; we are onlyto detet whih of them are outlying. In this respet our proedure di�ers fromdetetion of multiple outliers (Barnett and Toby, 1994).2. The general sheme of the algorithmOur algorithm onsists of the following two steps:



A new method for identifying outlying subsets of data 695Step 1. We perform the prinipal omponent analysis (Mardia, Kent and Bibby,1979; Morrison, 1967) in order to redue the dimensionality of data. We retainonly a limited number of priipal omponents. It is neessary if the number ofobjets is not too large. Let us note that the quadrati disrimination requiresestimation of ovariane matries from two samples. To ensure reasonable pre-ision of estimation, the ratio of the sample size to the dimension annot be toosmall.Step 2. We �x a threshold C. For the onsidered subset of objets, we omputethe measure J , whih indiates how well this subset is separated from the restof data. If J < C, then we deide that the subset is atypial. Otherwise wedo not have enough evidene to suspet its atypiality. Let us remark that ourapproah �ts in the lassial framework of statistial tests of signi�ane.3. Desription of the algorithm and simulations3.1. De�nition of the measures Jd and JwReall that we have an n × d matrix X = [xi,j ]i=1,...,n;j=1,...,d with a spei�edsubset of n1 rows. We try to separate this subset from the remaining n2 = n−n1rows, using the quadrati disriminant funtion (QDF). Let us �rst reall thebasi formulas and the bakground of lassial disriminant analysis. Supposethat we have two populations (lasses) desribed by multivariate normal distri-butions N(µk, Vk) for k = 1, 2. We onsider funtions given by
Dk(x) = ln(πkpk(x)) = −

1

2
(x−µk)T V −1

k (x−µk)−
1

2
ln |Vk|+ lnπk + onstfor k = 1, 2 where pk(x) is the density of the probability distribution in the kthlass and πk is the prior probability of the kth lass. The QDF is de�ned as

D(x) = D2(x)−D1(x). The posterior probability of the two lasses is given by
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.The Bayes lassi�ation rule assigns (the objet desribed by) vetor x to lass 1or 2 aording to p(1|x) > p(2|x) or p(1|x) 6 p(2|x), respetively. This deisionrule is also alled MAP (maximum a posteriori) estimate of the lass:MAP(x) =

{

1 if D(x) < 0;
2 if D(x) > 0.The MAP deision rule is known to be optimal, i.e. it minimizes the probabilityof mislassi�ation. Sine the parameters of the lasses are usually unknown, in



696 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKIpratie QDF with estimated parameters is used. It is obtained in the followingway. We regard data as a set of row vetors X = {xi}, i = 1, ..., n partitionedinto two lasses, C1, C2. Here xi denotes the d-dimensional vetor of attributesof the ith objet. We will write i ∈ Ck if ith objet belongs to kth lass. Symbol
D̂(x|X) will denote empirial QDF, given by a formula analogous to that for
D(x) with the population parameters µk and Σk replaed by their estimates:

µ̂k = x̄k =
1

nk

∑

i∈Ck

xi, V̂k =
1
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∑

i∈Ck

(xi − x̄k)(xi − x̄k)T .Of ourse, it would be possible to replae also the prior probabilities by theirestimates, but for our purposes we deided to use �xed priors π1 = π2 = 1
2 .Finally, we are in a position to preisely de�ne the measures Jd and Jw. Theyare based on the leave-one-out estimators of the lass assignments MAP(xi) andthe posteriors p(k|xi) for all data points xi, i = 1, ..., n. Let D̂CV(xi|X − xi)stand for the QDF estimated from the data with removed vetor xi, evaluatedat xi. Expliitly, we de�ne for k = 1, 2 and i = 1, ..., n,
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D̂CV(xi|X − xi) = D̂2,CV(xi|X − xi) − D̂1,CV(xi|X − xi),where subsript CV or CV[−i] indiates the leave-one-out ross validation esti-mates, i.e.
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V̂k,CV[−i] = V̂k otherwise,Quantities p̂CV(k|xi; X−xi) and M̂APCV(k|xi; X−xi) are de�ned in an obviousway in terms of D̂CV(xi|X − xi):
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2 if D̂CV(xi|X − xi) > 0.



A new method for identifying outlying subsets of data 697Finally, writing li(k) := p̂CV(k|xi; X − xi) and mi := M̂APCV(k|xi; X − xi) forbrevity, we de�ne:Jd =
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.Note that Jd is the usual leave-one-out estimator of the probability of mislas-si�ation (Koronaki, 2005; Lahenbruh, 1967, 1975; Lahenbruh and Mikey,1968). The measure Jw an be regarded as a weighted or fuzzy version of Jd. Ifwe replaed li(1) by 1 or 0 aording to li(1) > li(2) or li(1) 6 li(2) � and li(2)analogously � then we would obtain exatly the formula for Jd.Let us sum up the above onsiderations. We estimate the probability ofinorret lassi�ation by the ross validation leave-one-out method. In this waywe onstrut the measure Jd. An alternative measure Jw is de�ned analogously,but we use estimated posterior probabilities of the two lasses instead of thelass indiators. It is interesting to note that in our simulation experimentsdesribed in the next setion, the measure Jw turned out to be better (moresensitive) than Jd.We should emphasize that omputation of Jd and Jw makes sense even ifthe probability distributions in both lasses are not normal. In fat, Jd is anunbiased estimator for the probability of mislassi�ation of QDF based on thelearning sample of size n-1 (Lahenbruh, 1967; Lahenbruh and Mikey, 1968).Moreover, in the de�nition of our separability measure we an use virtuallyany algorithm of lassi�ation instead of QDF. In this way the whole family ofseparability measures an be introdued, based on the same general idea. In thispaper we have hosen to work with QDF, beause we think it is most suitablefor appliation to our survey data.3.2. Choosing the value of CWe selet the threshold C aording to the lassial theory of testing statistialhypotheses (Koronaki, 2005; Venables and Ripley, 2002; Wataªa, 2002). Thenull hypothesis is that the given subset is not di�erent from the rest of data (i.e.objets belonging to the subset under onsideration do not di�er systematiallyfrom the remaining objets). The test rejets the null hypothesis if the teststatisti falls below the ritial value (Jd < C or Jw < C). We should hoose
C so that the test has the given level of signi�ane α. Of ourse, analytialomputation of C is impossible. In the era of easily available powerful omputersand �exible statistial software, this di�ulty an be overome by simulationmethods. In our work we use R software environment for statistial omputing(Beker, Chambers and Wilks, 1988; Venables and Ripley, 2002).



698 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKIWe repeatedly selet marked out subsets at random, eah subset onsistingof n1 rows, from the whole set of data. For eah random seletion, we performomputations desribed in Subsetion 3.1, i.e. we ompute the measure of sep-arability Jd or Jw. The histogram of these values is an empirial approximationto the probability distribution of the random variable (Jd or Jw, respetively)under the null hypothesis. Clearly, the quantile of order α of this distributionis the sought ritial threshold C.The empirial probability distribution under the null hypothesis is shownin the upper part of Fig. 1 (histogram J represents the distribution of Jd) andFig. 2 (histogram of Jw). The omputations are performed on an arti�ial set ofdata, generated from a multivariate normal distribution, for n = 1000, n1 = 20,
d = 10. The quantile of Jd of order α = 0.01 is equal to C=0.3928571 and for
α = 0.05 we have C = 0.4250000.

Figure 1. Measure Jd: empirial probability distribution under the null hypoth-esis (histogram J) and under an alternative hypothesis (histogram Josz), for
n=1000, n1=20, d=10.
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Figure 2. Measure Jw: the empirial probability distribution under the nullhypothesis (histogram Jw) and under an alternative (histogram Joszw), for
n=1000, n1=20, d=10.3.3. Computation of the power of the test for alternative hypothesesLet us now examine the distribution of our separability measures when there issome systemati di�erene between objets in the marked out subset and the restof data. Namely, we distort all the objets in the marked out subset aordingto the formula x′

i,j = xi,j/2 + 1/2 (if row i belongs to the subset, x′
i,j = xi,jotherwise). The omputations are quite analogous to the previously onsideredones. The results for Jd are shown in the lower part of Fig. 1 (histogram Josz).In this way we ompute the power of the test. For the speial form of alternativedesribed above, the power is very lose to 100% (for the tests at standard levelsof signi�ane α=0.05 and even α = 0.01).Analogous omputations are onduted also for the seond version of ourmeasure, Jw. The results are shown in Fig. 2 (histogram Joszw). By omparingFig. 1 with Fig. 2 we an see that the properties of Jd and Jw are similar. Bothof our measures an be used to quantify separability of data subsets in muhthe same way. However, Jw is more sensitive and thus tests based on Jw are



700 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKImore powerful than those based on Jd. Therefore, in our further analyses weonentrate on Jw.4. Analysis of real-life data4.1. Desription of the ECAP data set and preliminary analysisIn our work we use data olleted in a preliminary part of Polish Allergi Sur-vey, ECAP 2007. Array X = [xi,j ]i=1,...,n;j=1,...,d of dimensions n=2240 (re-spondents) and d= 17 (features or attributes) is partitioned into 21 subsets ofdi�erent size. These subsets orrespond to di�erent pollsters. The ardinalityof the subsets is given in Fig. 3. The problem is to identify whih subsets areatypial.

Figure 3. Numbers of respondents belonging to the 21 subsets. Vertial barsgive the number of respondents questioned by eah of the 21 pollsters.Before applying our main algorithm, we onduted the prinipal omponentanalysis. The goal was to redue dimensionality. The standard deviations or-responding to the prinipal omponents are:30.96199029 26.56101213 8.36990581 6.26343886 1.585214820.92421190 0.48679767 0.45873532 0.27564555 0.242083830.16604877 0.13678143 0.11012109 0.08888029 0.07883676These values are shown in Fig. 4.On the basis of the above results we deided to use only the �rst four prinipalomponents in further analysis. Therefore, the dimension d of our data was
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Figure 4. Standard deviations for subsequent prinipal omponentsredued from 17 to 4 and disriminant analysis was onduted in 4-dimensionalspae. The �rst two prinipal omponents of our set of data are presented inFig. 5 and the other two (omponents no. 3 and 4) - in Fig. 6. The pointsbelonging to subset no. 13 are shown as bigger irles in both �gures. Thereason why subset no. 13 is singled out is explained later in this setion.In Fig. 5 points are learly plaed on several parallel straight lines. Thisphenomenon simply re�ets the disrete struture of data. Many of the featuresare either binary or take only a small number of possible values.4.2. Results of appliation of our methodWe exlude subsets no. 7, 17 and 19 from further onsiderations, beause theyontain too few respondents (less than 10). For eah of the remaining 18 subsetswe ondut a statistial test of the null hypothesis desribed in Subsetion 3.2(that a given subset is not signi�antly di�erent from the rest of data). Letus note that the threshold C onsidered in Subsetion 3.2 depends not only onthe given signi�ane level α but also on n and n1 (the size of the data setand the subset) and on the overall struture of data. Therefore, we had torepeat omputations desribed in 3.2 on our data set separately for eah valueof n1 (i.e. 18 times). In all these omputations we used the array X ontainingreal data set desribed in Setion 4.1. We obtained 18 distint (but similar inshape) probability distributions of Jw under the null hypothesis. Nine of thesedistributions are skethed in Fig. 7 and one of them is shown in detail in Fig. 8.The obtained values of the separability index Jd and Jw for all 18 subsetsunder onsideration are shown in Table 1.
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Figure 5. Data set in the spae of the �rst and seond prinipal omponents.Points belonging to subset no. 13 are marked with bigger irles

Figure 6. Data set in the spae of the third and fourth prinipal omponents.Points belonging to subset no. 13 are marked with bigger irles
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Figure 7. Examples of probability distributions of index Jw under the nullhypothesis for the real data set X for nine hosen values of n1.



704 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKI

The computed value of index  
Jw  =   0.455584 for subset no. 13 Figure 8. Empirial probability distribution of index Jw under the null hy-pothesis for the real data set X with n=2240, n1=82, d=4. The atual valueof Jw for the subset no. 13 is indiated by the arrow (this subset ontains 82respondents).Let us now explain the meaning of the obtained results, fousing on subsetno. 13 (marked by two stars and boldfae in Table 1). We have hosen this subsetbeause of the smallest p-value. The value of Jd is equal 0.3995287 and the valueof Jw is equal 0.4555840. Among 1000 subsets of 82 elements seleted at randomfrom all 2240 respondents there is no subset with the value Jd below 0.3995287.Analogously, only one of 1000 subsets has the value Jw below 0.4555840. Thusthe p-values of the two tests (Monte Carlo approximations) are p=0.000 and

p=0.001, respetively. Fig. 4 shows the probability distribution of Jw. In this�gure we also plaed the atual value of the test statisti Jw for subset no. 13.The results mean that subset no. 13 is signi�antly atypial (marked with **).In Table 1 we an also see a few other subsets (marked with *) whih seem tobe atypial, but not as muh as no. 13.Summing up, the analysis leads to the onlusion that at least subset no. 13and to a lesser extent also a few other subsets are signi�antly di�erent fromthe main bulk of data. On the basis of available information it is di�ultto identify the soure of these di�erenes. Maybe some of the pollsters wereassigned to atypial distrits or regions. There is also a possibility that someof the pollsters did not question the respondents in an honest way. Furtherinvestigation on�rmed that some of the pollsters were not adequately trained.



A new method for identifying outlying subsets of data 705Table 1. Results of the test for 18 marked out subsets of data. Subsequentolumns of the table indiate: ordinal number of the subset, number of respon-dents in this subset, indies Jd and Jw, p-values of the tests based on Jd andJw, respetively.
NP n1 Jd Jw p-value (Jd) p-value (Jw)

1 127 0.4892 0.4968 0.147 0.273 

2 141 0.4837 0.4953 0.332 0.083 

3 125 0.5067 0.4978 0.843 0.659 

4 115 0.4782 0.5038 0.728 0.713 

5 156 0.4379 0.4889 0.006 (*) 0.014 (*) 

6 155 0.4446 0.4838 0.005 (*) 0.008 (*) 

8 100 0.4706 0.4882 0.365 0.049 (*) 

9 95 0.4194 0.4792 0.020 (*) 0.028 (*) 

10 70 0.4465 0.4611 0.018 (*) 0.001 (*) 

11 133 0.4399 0.4862 0.009 (*) 0.060 

12 161 0.4517 0.4891 0.001 (*) 0.042 (*) 

13 82 0.3995 0.4556 0.001 (*) 0.000 (**) 

14 64 0.4099 0.4781 0.129 0.485 

15 106 0.4081 0.4767 0.003 (*) 0.009 (*) 

16 200 0.4914 0.4917 0.373 0.177 

18 85 0.4604 0.4947 0.038 0.119 

20 175 0.4425 0.4918 0.219 0.032 

21 118 0.4202 0.4691 0.005 (*) 0.001 (*) 4.3. Appliation of the test of Bartoszy«ski et al. to ECAP dataWe ompared our method with another multivariate test of homogeneity, and se-leted for this purpose the test due to Bartoszy«ski, Pearl and Lawrene (1997),BPL further on, mainly beause of its oneptual simpliity and beauty. In prin-iple, it was designed as a goodness�of��t test, but a minor modi�ation allowsus to use it as a test of homogeneity. Below we desribe the basi idea ofthe version of the BPL test whih we applied. As before, we assume that thedata onsist of n points in d-dimensional spae, with n1 points belonging to themarked out subset. We onsider all triangles with two verties in this subset (theside joining these points we all the base) and the third vertex belonging to theset of the remaining n2 = n−n1 points. Altogether we have N = n2n1(n1−1)/2suh triangles. We ount the triangles of three types: those in whih the base isthe shortest of the three sides, of intermediate length, and the longest. Underthe null hypothesis there is approximately N/3 triangles of every type. Thehi-square statisti, based on the ounts of triangles has an asymptoti expo-nential distribution. Unfortunately, in general, the sale parameter depends onthe underlying distribution of data. We estimate this parameter empirially,



706 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKIusing Monte Carlo bootstrap-like experiments in muh the same way as we didfor our method, see the previous setion. The results of the analysis are givenin Table 2.Table 2. Results of the BPL test applied to the ECAP data. Three olumnsindiate the number of the pollster, the value of test statisti and the p-value
NP chi2 p-value 

1 33879.44 0.2419 

2 597.90 0.9779 

3 13423.02 0.5644 

4 1110.76 0.9495 

5 17461.74 0.5557 

6 177375.27 0.0025 (*) 

8 854.09 0.9547 

9 1069.36 0.9405 

10 31445.05 0.0790 

11 34975.81 0.2480 

12 56285.84 0.1601 

13 18582.02 0.2851 

14 16096.25 0.2369 

15 71278.53 0.0265 (*) 

16 139123.65 0.0272 (*) 

18 19344.23 0.2850 

20 19982.50 0.5512 

21 52728.29 0.0916 We an see that the BPL test detets three atypial subsets at the level ofsigni�ane 0.05, namely subsets numbered 6, 15 and 16. The results seem tobe less deisive than those of our test. However, subsets number 6 and 15 areseleted by both methods.Let us mention that the omputational omplexity of the BPL test is high.Counting triangles is very time onsuming. Our test, based on QDF turned outto be muh faster.4.4. Additional analysis of Iris dataTo enable evaluation of our method, we applied our test as well as the BPL testalso to the lassial IRIS data set available in R. We hose this well-known setof data despite the fat that it is suitable rather for using disriminant analysisthan for deteting outlying subsets. However, we an use these data to examineour methodology of testing homogeneity and omputing p-values using MonteCarlo bootstrap-like experiments. We show the results in Table 3 and Fig. 9in the analogous way as in Table 1 and Fig. 8. The histograms present the



A new method for identifying outlying subsets of data 707Table 3. Results of our test for IRIS data. Three olumns of the table indiatethe name the of subset and the indies Jw and Jd. The p-values are pratiallyzero. Speies Jw JdIris setosa 0.000028 0.000Iris versiolor 0.100752 0.055Iris virginia 0.055071 0.035

Figure 9. Empirial probability distributions of indies Jw and Jd under thenull hypothesis for IRIS data set with n=150, n1=50, d=4. The atual valuesof Jw and Jd for subsets orresponding to the three speies are indiated byarrows.empirial distributions of our measures Jw and Jd for a subset (of 50 objets)randomly hosen from the IRIS set (of 150 objets). The arrows indiate thevalues for the three speies. All p-values are pratially zero, as one shouldexpet.For omparison, we applied also the BPL test to the Iris data. Values ofthe hi-square statisti are shown in Table 4. All three speies are perfetlyseparated. For this data set the results of our method and of the BPL testare very similar. This is hardly surprising, sine the IRIS set is a well-knownexample of easily separated data.Table 4. Results of the BPL test for IRIS data. Two olumns of the tableindiate the name of subset and hi2 statisti. The p-values are pratiallyzero. Speies hi2Iris setosa 244964.0Iris versiolor 144664.4Iris virginia 128913.4
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